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Abstract. The closest string and substring problems find applications
in PCR primer design, genetic probe design, motif finding, and antisense
drug design. For their importance, the two problems have been extensively
studied recently in computational biology. Unfortunately both problems
are NP-complete. Researchers have developed both fixed-parameter algo-
rithms and approximation algorithms for the two problems.

In terms of fixed-parameter, when the radius d is the parameter, the
best-known fixed-parameter algorithm for closest string has time com-
plexity O(ndd+1), which is still superpolynomial even if d = O(log n).
In this paper we provide an O

�
n|Σ|O(d)

�
algorithm where Σ is the al-

phabet. This gives a polynomial time algorithm when d = O(log n) and
Σ has constant size. Using the same technique, we additionally provide
a more efficient subexponential time algorithm for the closest substring
problem.

In terms of approximation, both closest string and closest substring
problems admit polynomial time approximation schemes (PTAS). The
best known time complexity of the PTAS is O(nO(ε−2 log 1

ε
)). In this paper

we present a PTAS with time complexity O(nO(ε−2)).
At last, we prove that a restricted version of the closest substring has

the same parameterized complexity as closest substring, answering an
open question in the literature.

1 Introduction

The closest string and substring problems have been recently studied extensively
in computational biology [16,18,22,13,24,12,23,15,7,11,29,4,26,30]. The two prob-
lems have a variety of applications in bioinformatics, such as universal PCR
primer design [20,16,5,27,12,31], genetic probe design [16], antisense drug de-
sign [16,4], finding unbiased consensus of a protein family [2], and motif find-
ing [16,12,30,3,9]. In all these applications, a common task is to design a new
DNA or protein sequence that is very similar to (a substring of) each of the given
sequences. In the first three applications, the designed DNA sequence can bind
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to each of the given DNA sequences in order to perform its designated functions.
In the last two applications, the designed sequence acts as an unbiased repre-
sentative of all the given sequences. The common task has been formulated as
the closest string problem and the closest substring problem.

Given n length-m strings s1, s2, . . ., sn, and a radius d, the closest string
problem seeks for a new length-m string s such that d(s, si) ≤ d. Here d(·, ·)
is the Hamming distance. The closest substring problem seeks for a length L
(L ≤ m) string t such that for every i = 1, 2, . . . , n, there is a substring ti of
si with length L such that d(t, ti) ≤ d. The problems may also be described as
optimization problems where the objectives are to minimize the radius d.

Unfortunately, both of these two problems are NP-complete [10,16]. In ad-
dition to many heuristic algorithms without any performance guarantee (for
example [19,23,24]), researchers have developed approximation algorithms and
fixed-parameter algorithms for the two problems. Approximation algorithms sac-
rifice the quality of the solution in order to achieve polynomial time [14]. A poly-
nomial time approximation scheme (PTAS) achieves ratio 1 + ε in polynomial
time for any fixed ε > 0. Fixed-parameter algorithms find optimal solutions with
time complexity f(k) · nc for a constant c and any function f [6]. Here k is a
parameter naturally associated to the input instance.

For fixed-parameter algorithms, Stojanovic et al. [29] provided a linear time
algorithm for d = 1. Gramm et al. [13] provided the first fixed-parameter algorithm
for closest string with running time O(nm + ndd+1). Therefore, for small values
of d their algorithm can solve closest string in acceptable time. In this paper we
present a novel algorithm that finds the optimal solution of closest string problem
with running time O

(
nm + nd · (16|Σ|)d

)
. This is exponentially better than the

previous fixed-parameter algorithm when the alphabet has constant size.
The closest substring problem appeared to be harder than closest string in

terms of parameterized complexity. For unbounded alphabet size, it has been
shown that the problem is W [1]-hard even if all d, n, L are parameters [8,9]. The
W [1]-hardness indicates that the problem unlikely has a fixed-parameter poly-
nomial time algorithm [6]. For |Σ| being a constant or a parameter, the problem
is W [1]-hard even if both d and n are parameters [22]. For a more complete re-
view of the parameterized complexities of the closest substring problem, we refer
the readers to [9,22,25]. Marx [22] gave a |Σ|d(log d+2)(nm)log d+O(1) algorithm
for the closest substring problem. In this paper we present a new algorithm for
closest substring with improved time complexity O

(
(16|Σ|)d · nm�log d�+1

)
.

For approximation algorithms, Lanctot et al. [16] gave the first polynomial
time approximation algorithm with approximation ratio 4

3 + o(1). Li et al. [17]
provided a PTAS for closest string with time complexity O(mnO(ε−5)). Ma [21]
provided a PTAS for closest substring problem. These two PTAS results were
collected in [18]. There have been many negative comments regarding the large
exponent of the PTAS [9,3,11,13,22]. By using a lemma in [22] and an idea of [17],
Andoni et al. [1] proposed a PTAS to obtain a much better time complexity
O(mnO(ε−2 log 1

ε )). By combining our new fixed-parameter algorithm, in Section 5
we provide a simpler PTAS with further improved time complexity O(mnO(ε−2)).
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Noticing the hardness of closest substring problem, Moan and Rusu [25] stud-
ied a more restricted version of closest substring. They put a diameter constraint
on top of the original closest substring problem by further requiring the pairwise
distances between substrings in the solution do not exceed a diameter D for
some D < 2d. They hoped that such a constraint may reduce the parameterized
complexity of closest substring when D is close enough to d. The condition for
this to happen is left as a main open problem in [25]. In this paper we answer
this question by proving that such condition does not exist. That is, for any
given ε > 0, all parameterized complexity results of closest string preserve in the
constrained instances for D < (1 + ε)d.

2 Preliminaries and Notations

Let Σ be an alphabet with constant size |Σ|. Suppose s is a string over Σ.
|s| denotes the length of s. s[i] denotes the i-th letter of s. Therefore, s =
s[1]s[2] . . . s[m], where m is the length of s. Let s and t be two strings with
the same length m, d(s, t) denotes the Hamming distance between s and t. Use
[1, m] to denote the set {1, 2, . . . , m}. For P = {i1, i2, . . . , ik} ⊆ [1, m], define
s|P = s[i1]s[i2] . . . s[ik] and dP (s, t) = d(s|P , t|P ). Let Q = [1, m] \ P . From
the definition of Hamming distance, clearly d(s, t) = dP (s, t) + dQ(s, t). Let
Q(s, t) denote the set of positions where s and t agree, i.e., Q(s, t) = {j | s[j] =
t[j]}. Similarly, for k given strings s1, s2, . . . , sk of same length, Q(s1, s2, . . . , sk)
denotes the position set where all strings agree. Let P (s, t) denote the position
set where s and t disagree.

Let s1, s2, . . ., sn be n strings of length m. The closest string problem asks
for a string center s such that d = maxn

i=1 d(s, ti) is minimized. The minimum
value of d is called the radius of the n input strings. D = max1≤i,j≤n d(si, sj)
is called the diameter of the n input strings. Let L ≤ m. The closest substring
problem asks for a length-L string center s and a length-L substring ti of each
si, such that d = maxn

i=1 d(s, ti) is minimized.
In this paper we will also study a more generalized version of closest string

problem, the neighbor string problem: Given n strings s1, s2, . . ., sn with length
m, and n nonnegative integers d1, d2, . . ., dn, the neighbor string problem seeks
for a length m string s such that d(s, si) ≤ di for every 1 ≤ i ≤ n. An instance
of the neighbor string problem is given by 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.

3 O
(
nm + nd · (16|Σ|)d

)
Algorithm for Closest String

Problem

Parameterized complexity has been used to tackle NP-hard problems [6]. In prin-
ciple, a fixed-parameter polynomial time algorithm is a well-structured super-
polynomial algorithm such that the superpolynomial factor is only with respect
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to one parameter of the given instance. Many NP-hard problems have been
found to be fixed-parameter tractable, which means that an algorithm with
running time f(k)·nc exists to solve the problem. Here k is a parameter naturally
associated with the problem; n is the size of the input and c is a constant. Clearly
f(k) must be superpolynomial if P �= NP. The hope is that this f(k) will not
grow too fast, and parameter k is small for practical instances; and hence the
problem can be solved efficiently in practice.

Gramm et al. [13] provided a fixed-parameter polynomial time algorithm for
closest string when the radius d is used as the fixed parameter. For a given
instance {s1, s2, . . . , sn} and a given value d, their algorithm finds a center string
s such that d(s, si) ≤ d in O(nm + ndd+1) time, if such a string exists.

In this section we provide a new algorithm for closest string problem with
time complexity O(nm + nd · (16|Σ|)d). When the alphabet size is a constant,
our algorithm is exponentially faster than the previous algorithm. In order to
design the algorithm for closest string, let us focus on the more generalized
neighbor string problem.

Lemma 1. 1 Let 〈(s1, d1), . . . , (sn, dn)〉 be an instance of the neighbor string
problem. If j satisfies d(s1, sj) > dj, then for Q = Q(s1, sj) and any solution s
of the neighbor string problem, dQ(s, s1) < d1

2 .

Proof. Let s be a solution, i.e. d(s, si) ≤ di for i = 1, 2, . . . , n. Let P = [1, m]\Q.
Then

dP (s, s1) + dP (s, sj) ≥ dP (s1, sj) = d(s1, sj) > dj . (1)

On the other hand,

dP (s, s1) + dP (s, sj)
=

(
d(s, s1) − dQ(s, s1)

)
+

(
d(s, sj) − dQ(s, sj)

)

= d(s, s1) + d(s, sj) − 2 dQ(s, s1)
≤ d1 + dj − 2 dQ(s, s1)

The second equation in the above derivation is because s1|Q = sj |Q. Combining
with (1), we get d1 + dj − 2 dQ(s, si) > dj . Consequently, dQ(s, s1) < d1

2 . The
lemma is proved. �

Theorem 1. Let d = max1≤i≤n di. If there is a solution s such that d(s, si) ≤ di

(1 ≤ i ≤ n), then algorithm StringSearch in Fig. 1 outputs a solution s′ such
that d(s′, si) ≤ di in time O(mn+nd ·T (d, d1)), where the size of the search tree

T (d, d1) ≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 22d1 .

Proof. First let us prove the correctness of the algorithm. It is easy to verify
that when the algorithm returns a non-null string in either line 2 or line 4.3,
1 Lemma 1 uses a similar idea as Lemma 2.2 in [22]. However the lemma in [22] cannot

be directly used in our algorithms.
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Algorithm StringSearch
Input: An instance of neighbor string 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉.
Output: String s such that d(s, si) ≤ di (i = 1, . . . , n), or NULL if there is no
solution.
1. Try to find i0 such that d(s1, si0) > di0 .
2. If step 1 fails, return s1.
3. Let Q = Q(s1, si0), P = [1, |s1|] \ Q.
4. For every possible string t of length |P | such that d(t, s1|P ) ≤ d1 and
d(t, si0 |P ) ≤ di0

4.1 Let ei = di −d(t, si|P ) for i �= 1, and e1 = min{d1 −d(t, s1|P ), �d1/2�−1};
4.2 Use StringSearch to find the solution u of
〈(s1|Q, e1), (s2|Q, e2), . . . , (sn|Q, en)〉;
4.3 If u �= NULL then let s|P = t and s|Q = u and return s.
5. Return NULL.

Fig. 1. The algorithm StringSearch

the string is a solution of the input instance. Let us prove that when there is
a solution of the input instance, then the algorithm can find it. We prove this
by using induction on d1. If d1 = 0 then clearly the algorithm is correct. When
d1 > 0 and line 1 finds i0 successfully, by Lemma 1, the Q and P defined in line
3 are such that there is a solution s satisfying d(s|Q, s1|Q) ≤ e1. Therefore, this
s is such that d(s|Q, si|Q) ≤ ei for 1 ≤ i ≤ n. As a result, when t = s|P in line
4, by induction, the recursive call to Algorithm StringSearch at line 4.2 will
find u such that d(u, si|Q) ≤ ei for 1 ≤ i ≤ n. Then it is easy to verify that the
s returned in line 4.3 is a desired solution.

Next let us examine the time complexity of the algorithm StringSearch. We
estimate the size (number of leaves) of the search tree first. In line 4, assume t is
an eligible string and d(t, s1|P ) = k. Then |P | = d(s1|P , si0 |P ) ≤ d(t|P , s1|P ) +
d(t|P , si0 |P ) ≤ di0 + k ≤ d + k. Therefore, there are at most

(|P |
k

)
(|Σ| − 1)k ≤(

d+k
k

)
(|Σ| − 1)k such strings t. For each of them, the size of the subtree rooted

at t of the search tree is bounded by T (d, min{d1 − k, �d1/2	 − 1}). k can take
values from 0 to d1. Therefore, the search tree size satisfies

T (d, d1) ≤
d1∑

k=�d1/2�+1

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

+
�d1/2�∑

k=0

(
d + k

k

)
(|Σ| − 1)kT (d, �d1/2	 − 1) (2)

= I1 + I2 (3)

Clearly T (d, 0) = 1 because in this case s1 is the solution. We prove by
induction that for d̃ ≥ 1,

T (d, d̃) ≤ 22d̃

(
d + d̃

d̃

)
(|Σ| − 1)d̃. (4)
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It is easy to verify that when d̃ = 1, T (d, 1) ≤ (d+1)(|Σ|−1)+1, the statement
is true. When d̃ = 2, because of (2), T (d, 2) ≤

(
d+2
2

)
(|Σ| − 1)2 + (d + 1)(|Σ| −

1) + 1 ≤ 2
(
d+2
2

)
(|Σ| − 1)2, the statement is also true. Next we suppose d1 > 2

and eq. (4) is true for 0 ≤ d̃ < d1. We bound the two terms of (3) separately.
Let k0 = 
d1/2� + 1.

I1 =
d1∑

k=k0

(
d + k

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)kT (d, d1 − k)

≤
d1∑

k=k0

(
d + d1

k

)
(|Σ| − 1)k ·

(
d + d1 − k

d1 − k

)
(|Σ| − 1)d1−k · 22(d1−k)

=
(

d + d1

d1

)
(|Σ| − 1)d1

d1∑

k=k0

(
d1

k

)
· 22(d1−k)

≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 2d1−1

d1∑

k=k0

(
d1

k

)

≤
(

d + d1

d1

)
(|Σ| − 1)d1 · 22d1−2. (5)

The rest is to bound I2 by 3
(
d+d1

d1

)
(|Σ| − 1)d1 · 22d1−2.

I2 =
k0−1∑

k=0

(
d + k

k

)
(|Σ| − 1)k0T (d, d1 − k0)

≤
k0−1∑

k=0

(
d + k

k

)
(|Σ| − 1)k0 ·

(
d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1−k0 · 22(d1−k0)

=
(

d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

k0−1∑

k=0

(
d + k

k

)

≤
(

d + d1 − k0

d1 − k0

)
(|Σ| − 1)d1 · 22(d1−k0)

(
d + k0

k0

)
.

So we only need to prove
(

d + d1 − k0

d1 − k0

)(
d + k0

k0

)
2−2k0 ≤ 3

4
·
(

d + d1

d1

)
,

or equivalently,
(

d + d1 − k0

d1 − k0

)(
d1

k0

)
≤ 3

4
· 22k0

(
d + d1

d1 − k0

)
. (6)
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(6) is true because
(

d + d1 − k0

d1 − k0

)
≤

(
d + d1

d1 − k0

)
,

(
d1

k0

)
≤ 1

2
· 2d1+1 <

3
4

· 22k0 .

Hence (4) is correct.
At each leaf, the time complexity of line 1 is O(nm). By carefully remembering

the previous distances and only update the O(d) positions changed, this can
be done in O(nd) time. The total running time is dominated by the leaves.
Therefore, the time complexity of the algorithm is O(nm + nd · T (d, d1)). �

Corollary 1. StringSearch solves the closest string problem in time

O
(
nm + nd · 24d(|Σ| − 1)d

)
.

4 More Efficient Algorithm For Closest Substring

In [22], a |Σ|d(log2 d+2)N log2 d+O(1) algorithm is given, where N is the total length
of the input strings. In this section we improve it to O

(
n|Σ|O(d)m�log2 d�+1

)
.

That is, the log2 d factor at the exponent of |Σ|d(log2 d+2) is removed. Moreover,
the total length N is replaced by the length m of the longest input string.

Again, in order to develop an algorithm for closest substring, we attempt to
solve a more generalized version of closest substring. For convenience, we call
the new problem partial knowledge closest substring. An instance of the partial
knowledge closest substring problem is given by 〈{s1, s2, . . . , sn}, d, d1, L, O, t̃〉,
where O ⊂ [1, L] and t̃ is a string of length |O|. The problem is to find a string
t of length L, such that t|O = t̃, d[1,L]\O(t, s1) ≤ d1, and for every i, d(t, ti) ≤ d
for at least one substring ti of si.

Theorem 2. Algorithm SubstringTry in Fig. 2 finds a solution for closest
substring with time complexity

O
(
(nL + nd · 24d|Σ|d · m�log2 d�+1

)
.

Sketch of Proof. When all the input strings have the same length L, a careful
comparison between Algorithm SubstringSearch and the previous Algorithm
StringSearch can see that the two algorithms are equivalent. The only differ-
ence is made when |si| > L. Then the “guess” operation in line 4 requires the
algorithm to try all possible substrings of si0 . This expands the search tree size
by a factor of at most m. Because of Lemma 1, the recursion of Algorithm Sub-
stringSearch is at most �log2 d	 levels. This increases the search tree size by a
factor of m�log2 d�. Combining with Corollary 1, the theorem is proved. �

5 More Efficient PTAS for Closest String

In [17,18], a PTAS for closest string problem was given. To achieve approximation
ratio 1 + ε, the running time of the algorithm was O

(
mnO(ε−5)

)
. Apparently
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Algorithm SubstringSearch
Input: 〈{s1, s2, . . . , sn}, d, L, O, t̃〉 such that |s1| = L.
Output: A solution t of the partial knowledge closest substring, or NULL if there
is no solution.
1. Let O′ = [1..L] \ O. Let s be a string such that s|O = t̃ and s|O′ = s1|O′ .
2. Try to find i0 such that d(s, ti0) > di0 for every substring ti0 of si0 .
3. If line 1 fails, return s.
4. Guess a substring ti0 of si0 .
5. Let P = P (s1, ti0) \ O.
6. For every possible string t of length |P | such that d(t, s1|P ) ≤ d1 and
d(t, ti0 |P ) ≤ d − d(t̃, ti0 |O)
6.1 Let t′ be a string such that t′|O = t̃ and t′|P = t.
6.2 Let e1 = min{d1 − d(t, s1|P ), �d1/2� − 1}.
6.3 Use SubstringSearch to find solution u of 〈{s1, s2, . . . , sn}, d, e1, L, O ∪
P, t′|O∪P 〉.
6.4 If 6.3 is successful then return u.
7. Return NULL.

Algorithm SubstringTry
Input: 〈{s1, s2, . . . , sn}, d, L〉.
1. for every length L substring t1 of s1,
1.1 call SubstringSearch with 〈{t1, s2, . . . , sn}, d, d, L, ∅, e〉.

Fig. 2. The algorithms SubstringSearch and SubstringTry

this PTAS has only theoretical value as the degree of the polynomial grows very
fast when ε gets small. By using the Lemma 2.2 in [22] and an idea of [17,18],
Andoni et al. [1] proposed a PTAS in [17] to get much better time complexity
O(mnO(ε−2 log 1

ε )). The proof in [1] argued that when d = Ω(n/ε2), a standard
linear programming relaxation method can solve the closest string problem with
good approximation ratio. When d = O(n/ε2), one can exhaustively enumerate
all the possibilities of positions in the solution where r of the input strings do not
agree. However, by using Lemma 2.2 of [22], r can be reduced from the original
O(1

ε ) in [18] to O(log 1
ε ).

With our new fixed-parameter algorithm that runs O
(
mn + nd · (16|Σ|d)

)

time, we can further reduce the time complexity by the following algorithm: Use
the fixed-parameter algorithm to solve d = O(n/ε2), and use the standard linear
programming relaxation to solve the case d = Ω(n/ε2). It is easy to verify that
this provides a simple O(m · nO(ε−2)) PTAS.

Theorem 3. Closest string has a PTAS that achieves approximation ratio 1+ ε
with time O(m · nO(ε−2)).

6 Hardness Result

Together with the development of fixed-parameter polynomial time algorithms,
W-hierarchy has been developed to prove fixed-parameter intractability [6]. The
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W[1]-hardness results reviewed in Section 1 indicate that the closest substring
problem unlikely has fixed-parameter polynomial time algorithms even if both
d and n are fixed-parameters. More parameterized complexity results about the
closest substring problem can be found in [9,22,25].

Moan and Rusu [25] studied a variant of the closest substring problem by adding
a constraint on the diameter of the solution, and hoped that the constraint can
help reduce the parameterized complexity of the problem. The constraint is called
the bounded Hamming distance (BHD) constraint in their paper. Then the BHD-
constrained closest substring (BCCS) problem is defined as follows.

BCCS Given a set of n strings s1, s2, . . . , sn, substring length L, radius d,
and diameter D. Find length-L substring ti of each si, i = 1, 2, . . . , n, and a new
length-L string t, such that d(ti, tj) ≤ D, and d(t, ti) ≤ d.

Clearly, d ≤ D ≤ 2d. For any c ≥ 4
3 , Moan and Rusu proved that the diameter

constraint D ≤ c ·d does not reduce the complexity of closest substring problem.
More precisely, with any c ≥ 4

3 , all parameterized complexity results for closest
substring preserve for BCCS when using any non-empty subset of the following
values as parameters: the radius d, the alphabet size |Σ|, the number of input
strings n, the length of desired substrings L.

However, Moan and Rusu pointed out that in computational biology, D is
usually significantly smaller than 2d. Therefore, they hoped that when D

d is very
close to 1, the BCCS problem might become easier than the original closest
substring problem. If this is true, BCCS can be used to solve the practical
closest substring problems. The finding of the necessary condition for that BCCS
problem becomes easier is left as the “main open question” of the paper [25]. In
this section, we answer this question negatively with the following theorem.

Theorem 4. For any constant ε > 0, with the diameter constraint D ≤ (1 +
ε)d, all parameterized complexity (W [l]-hardness) results for closest substring
preserve for BCCS when using any non-empty subset of the following values as
parameters: the radius d, the alphabet size |Σ|, the number of input strings n,
the length of desired substrings L.

Proof. The proof is done in three steps: First, we construct an instance of closest
string with radius d̃ and diameter D̃ = (1 + o(1))d̃. Then, we show that an
instance of closest substring with radius d and diameter D can be “merged”
with an instance of the closest string with radius d̃ and diameter D̃, so that the
new instance has radius d+ d̃ and diameter D+D̃. Thirdly, by letting d̃ 
 d and
D̃ 
 D, we get an instance such that the diameter is very close to the radius.
Thus, we reduce the closest substring problem to BCCS, and hence prove the
theorem. The detailed proof can be found in the appendix. �

7 Discussion

The closest string and closest substring are two problems motivated and well-
studied in computational biology. We proposed a novel technique that leads to
more efficient fixed-parameter algorithm for closest string. This is also the first
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polynomial algorithm for the problem when d = O(log n). The same technique
is then used to give a more efficient algorithm for closest substring. As a con-
sequence of the fixed-parameter algorithm, we presented a more efficient PTAS
of the closest string problem. At last, we showed that a restricted version of the
closest substring problem has the same parameterized complexity as the original
closest substring problem. This answers an open question raised in [25].

An interesting observation is that the approximation and fixed-parameter
strategies work complementarily for different d values. For smaller d < log2 n
and binary strings, our fixed-parameter algorithm has time complexity O(nm +
nd · 24d) = O(nm + n5 log2 n). For larger d > c ln n/ε2 for some constant c, the
linear programming relaxation’s time complexity is dominated by the time to
solve a linear programming of m variables and nm coefficients, which is again
a low-degree polynomial. This scenario can be intuitively explained as follows.
When d is small and n is large, each input string puts a strong constraint on
the solution, and consequently removes a large portion of the search space in a
fixed-parameter algorithm. Therefore, it is easier to design a fixed-parameter al-
gorithm. Conversely, when d is large and n is small, the constraint superimposed
by each input string is weaker and there are fewer constraints. Therefore, it is
easier to find an approximate solution to roughly satisfy those constraints.

But when d falls in between log2 n and c ln n/ε2, the polynomial will have
high degree for the fixed-parameter algorithm, and the approximation ratio of
the linear programming relaxation may exceed 1 + ε. The instances with d in
this range seem to be the “hardest” instances of the closest string problem.
However, because the fixed-parameter algorithm has polynomial (although with
high degree) running time on these instances, a proof for the “hardness” of
these instances seem to be difficult too. We leave the finding of more efficient
(approximation) algorithm for log2 n < d < c ln n/ε2 as an open problem.
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Appendix - Proof of Theorem 4

Step I

First let us construct an instance I1 of the closest string problem with very close
radius and diameter. Let k be an even number. Examine the instance with k
binary strings x1, x2, . . . , xk. Each xi has length L̃ =

(
k

k/2

)
. For each column j,

exactly half of x1[j], x2[j], . . . , xk[j] take value 0 and the other half take value
1. Hence there are in total

(
k

k/2

)
ways to assign values to a column. Each of the

(
k

k/2

)
columns takes a distinct way.

Claim 1. The radius of the constructed instance is d̃ = L̃/2.

Proof. Because of the construction, each string has half of the L̃ letters as 0.
Therefore, d(0L̃, xi) = L̃/2 for every xi. Therefore, the radius is at most L̃/2.

On the other hand, for any center string x, at each column, the total number
of differences between xi (i = 1, 2, . . . , k) and the center string is exactly k/2.
Therefore,

∑k
i=1 d(x, xi) = kL̃/2. Consequently, maxk

i=1 d(x, xi) ≥ L̃/2. The
claim is proved. �

Now let us examine the diameter of the constructed instance. For every two
strings xi and xj , the Hamming distance is the number of columns such that
xi and xj take different values. This is equivalent to the number of ways to
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split k elements into two equal-sized subsets, ensuring that elements i and j are
separated. With simple combinatorics, this number is 2

(k−2
k
2−1

)
. Therefore,

D̃

d̃
=

2
(k−2

k
2 −1

)

L̃/2
=

4
(k−2

k
2−1

)

(
k

k/2

) =
k

k − 1

In order to avoid the exponential growth of D̃ and d̃ with respect to k, we
note that D̃ and d̃ can be enlarged while keeping the same ratio D̃

d̃
by replacing

each xi by xixi . . . xi︸ ︷︷ ︸
K

, i.e., the concatenation of K copies of xi. In the rest of

the proof we consider I1 as such an enlarged instance, and the value K is to
be determined later. The notations diameter D̃, radius d̃, input string xi, and
string length L̃ all correspond to the enlarged instance.

Step II

Let I = 〈{s1, . . . , sn}, L, d〉 be an instance of the closest substring. We construct
a new instance in the following.

Let X be an i.i.d. random binary string with length 7(L + L̃). Then by using
Chernoff’s bound, it is easy to verify that with positive probability,

d(X[1..j], X[|X|−j+1, |X|])+d(X[j+1..|X|], X[1..|X|−j]) > 3(L+L̃) for j �= 0 and|X|.
(7)

By using the standard derandomization techniques such as conditional proba-
bility [28], we can easily design a polynomial time deterministic procedure to
construct the binary string X satisfying (7). Here we omit the detail.

For each si (i = 1, . . . , n) and each xj (j = 1, . . . , k), let

sij = X si[1..L]xj XX si[2..L + 1]xj XX . . . XX si[m − L + 1..m]xj X

The new instance is then

I2 = 〈{sij |i = 1, . . . , n, j = 1, . . . , k}, 15(L + L̃), d + d̃〉.

Claim 2. I has a solution with radius ≤ d and diameter ≤ D if and only if I2
has a solution with radius ≤ d + d̃ and diameter ≤ D + D̃.

Proof. Suppose I has a solution si[li..li + L − 1], i = 1, . . . , n with radius d and
diameter D. Then the substrings Xsi[li..li+L−1]xjX , i = 1, . . . , n, j = 1, . . . , k
are a solution of I2. It is easy to verify that the radius and diameter are bounded
by d + d̃ and D + D̃, respectively.

Now we prove the other direction. We first show that the solution of I2 is such
that X from different strings are aligned exactly together. Otherwise, because
of 7, the inexact overlaps between X from two input strings will cause at least
3(L + L̃) minus two times of the length of si[k..k + L]xj . This gives a diameter
at least L + L̃ > D + D̃, contradicting the condition.

Further, without making the solution worse, we can easily modify the solution
by “sliding” so that every substring has the form Xsi[li..li + L − 1]xjX for some
li. Next we show that si[li..li +L − 1] (i = 1, 2, . . . , n) is the desired solution for I.
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Let Xss̃X be the center of Xsi[li..li + L − 1]xjX with radius d + d̃. Be-
cause d̃ is the radius of I1, there is j0 such that d(s̃, xj0) = d̃. Therefore,
d(Xss̃X, Xsi[li..li + L − 1]xj0X) ≤ d + d̃ derives that d(s, si[li..li + L − 1]) ≤ d
for every i.

Similarly, there are j0 and j1 such that d(xj0 , xj1 ) = D̃. Therefore, d(Xsi[li..li+
L − 1]xj0X, Xsi′ [li′ ..li′ + L − 1]xj0X) ≤ D + D̃ derives that d(si[li..li + L −
1], si′ [li′ ..li′ + L − 1]) ≤ D for every i and i′.

The claim is proved. �

Step III

For any ε > 0, we let k = � 2
ε + 1	 and K =

⌈
4D

( k
k/2)ε

⌉
in the construction of I1.

Then d̃ = K
2 ·

(
k

k/2

)
≥ 2D

ε . Then in instance I2, the ratio between the diameter
and radius is

D + D̃

d + d̃
≤ D

d̃
+

D̃

d̃
≤ ε

2
+

k

k − 1
≤ 1 + ε

Thus, we successfully reduce the closest substring problem to the closest sub-
string problem with the constraint that the diameter is within 1 + ε times the
radius. The number n, length m of the input strings are increased only by a con-
stant factor determined by ε. The new length L and radius d of the substrings
are polynomials of the old L and d. Therefore, all the W -complexities of the
closest substring problem still hold with the diameter constraint D ≤ (1 + ε)d
for any small ε > 0. The theorem is proved. �
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