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1 Introduction
The purpose of this paper is to investigate the following differential problem
A1) = f(ea(r) ¢ €J=[0,T].T> 0,
x(0) + ll.rox(s)ds = X(T),

where f € C(J xR, R) and 1 20, A= 1 or — 1.Note that if H= 0, A= 1, (1) is periodic boundary value problem. If
M= 0, == - 1,( 1) reduces to ant+ periodic boundary value problem. There are many existence resulis for ordinary dif-

(D

ferential equations with the above two boundary conditions( see references [ 1- 5] and references therein) .

It is well known that the monotone iterative technique is a powerful method used to approximate solutions of seve
al problems[m ? In this paper, we consider (1) by using the method of upper and lower solutions method combined
with monotone iterative technique. This technique plays important role in construd ing monotone sequen ces which conv-
erge to the solutions of our problem. In presence of a lower solution a and an upper solution B with B <a, we show the
sequences converge to the solutions of (1) under suitable conditions. Two examples are given to illustrate the obtained

results.

2 Case A= 1
Definition I A fundion GECI(J,R) is said to be a lower solution of (1) for A= 1 if
d(t) Sf(r,a()) 1 €1,
a(0) + uJZa(s)ds <a(T),

and an upper solution of (1) if the inequalities are reversed.
Let Qo= {y:u(t) Sy(t) S<o(t),t€J) if u(t) Sv(t) for t €J. We introduce the following assump-
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tions:
(Hy) GO,BOECI(],R) are lower and upper solutions of (1) for A= 1 respectively,and (1) Sap(t) for t €J;
(H2) fEC(J % Qs 0 . B
(Hs3) There exists M> 0 such that £ (¢, u)— f(t,v) <M (u— v) if v <u, u, v € Qpay,t €J.
Lemma I Put A= 1, assume that (H,), (H,), (Hs) hold. If
y (1) = f(t,a(0))+ M(y(1) = (1)) t €J,a(0) + U'[:ao(s)dsz y(T),
(1) = f(1.By(1)) + M(z(t) - By(1)) t € J,8(0) + Ll.ro Bo(s)ds = z(T),
then

B(r) <z(t) <y(t) < oao(r) t €J, (2)
and y,z are lower and upper solutions of (1) respedively.

Proof Note that there exist unique solutions for y and z. Put p= y— ay, g= By— z,then
T /s
p(T) = 3(1) = ao(1) < a0+ B af)ds- a0 - uf a(s)ds= o

q(T) = By(T)=- z(T) <By(0) + Uﬂﬁo(s)ds— By(0) - uJ: By(s)ds = 0,

and
p () 2f(t (1)) + M(y(t)- ao(t)) - f(t,a0(t)) = Mp(t t €.
g (1) 2f(t,Bo(1)) = f(2.Bo(1)) = M(z(1) - Bo(1)) = Mq(t t €.

Hence p(t) <e """ "p(T) <0,q(t) <e """ ¢(T) <0,¢t € J, then y(t) Sap(t), Bo(t) Sz(1), 1€ J.
Now let p= z— v, then

)
)

p(T) = Bo(0) + UJZ Bo(s)ds— ao(0) - Uﬂao(s) ds =

Bo(0) — a0(0) + uJZ(Bo(S)- w(s))ds <O.
Assumption ( Hz)
Pty = f(e.Bo(1)) = f(t, a0(t)) + M(z(t) = Bo(e))= M(y(1)— ao(t)) 2
- M(ao(t) = B(2))+ M(z(t) = y(1)) + M(ao(2) = Bo(2)) = Mp(t).
Hence p(t) <e e ')p(T) <0, t €] showing that z(t) Sy (1), t € J. Tt proves that (2) holds. Now we need to

show that v,z are lower and upper solutions of ( 1) respectively. Using again assumption (H3), we have

Y (1) = flta0(0) + M(y(1) = ao( 1) = f(t3(0) + f(,y(0) Sf(Ly()) €,

2(1) = f0Bo(0))+ M(z(0) = Bo(1)) = f(1,2(0)) + f(1,2(1)) 2f(t,2(0)) 1 €,

and
y(0) + UJ::y(s)ds S a(0) + UJZao(s)ds: y(T),

2(0) + uﬁ z(s)ds 2 Bo(0) + uJ‘; B(s)ds= z(T).
It shows that y, z are lower and upper solutions of (1) respectively. The proof is complete.

Theorem 1 Put A= 1, suppose that (H,), (Hy), (H;) hold. Then there exist monotone sequences { a,, B,}
such that @, ~ o, B, B,t€J as n~ o0 and this convergence is uniformly and monotonically on J. Moreover, a, B
are maximal and minimal solutions of (1) in [ B, a]= {u € Cl( J.R) : By <u <a).

Proof Let



od () = [t 0 (1) + M(ar(0) = (1) ¢ €J,

a0+ 1 a(sds= ().

Bor(t) = f(6,B(1)+ M(Bui(t) - Bi(1)) ¢t €, (3)
B.(0) + Uﬁ@(s)ds= Br(T),

for n=10,1,2, -... Lemma 1 shows Bo(1) <B( 1) Say(1) Sao(t),t€J,and a,, By are lower and upper solutions

of (1) respedively. Assume that
Bo(t) <Bi(1) .. <B (1) Sa(t) - Sa(1) Sag(r) t €7
for some & 21 and let a, Bi be lower and upper solutions of (1) respectively. Then, using again lemma 1, we get
B(t) B i(t) Sawa(t) Sa(t), t€J,and o 1, By are lower and upper solutions of (1) respectively. By in
duction, we have
Bo(t) <B(1) < ..<B(1) Ca(t) € .. <a(t) Sap(t) t € Jforall n.

Hence B.(t) - B(t), an(t) - a(t),t€J ifn ~ 00, Indeed, taking the limit n~ ooon both sides of (3), we know
that a and B are solutions of (1).

Next,we are going to show that a, B are maximal and minimal solutions of (1) in[ By, a].To do it, we need to
show that if w(t) is any solution of (1) such that Bo(1) Sw(t) Sao(t), ¢ € J,then Bo(1) < B(1) Sw( 1) <
a( 1) Sao(t), ¢t €. Assume that for some k, B (1) <w (1) Sox( 1), €J. Let p= B.1— w,q=w—- 0. . Then

p(T) = Bai(T) = w(T) = B(0) - w(0) + uﬁ[&(s) - w(s)]ds <0,

¢(T) = w(T)- a1(T) = w(0) - a(0)+ Uﬁ[w(s)— a(s)]ds <O.
From assumption (H3), we have
p (1) = [ (0 Bi(1) = f(tow () + M(Bar() - Bi(1)) 2
- M(w(t) = B(o)+ M(Bui(1) -
Be(1)) = Mp(1) 1€,
g (1) = f(tow(0)) = f(t. (1)) = M(ai(1) = w(r)) 2
- M(a(t) = w(t))— M(wi(t) -
a (1)) = Mg(t) t€J.
Hence p(t) <e """ p(T) <0, q(t) <e """ ¢(T) <0, t € J showing that B (1) Sw(t) Lo (t),t €
J. Tt proves, by induction, that B (1) <w(¢) <a(t), ¢t €J for all n. Taking the limit n ~ o we have Bo( ¢) <
B(1) Sw(r) Sa(r) Sap(t), €], s the assertion of theorem 1 is true. The proof is complete.

3 Case \= -1
Definition 2 Functions a, BE Cl(], R) are coupled lower and upper solutions of (1) for A= — 1 if

a(t) Sf(talt)) t €7, 0a00) + Uﬁa(s)ds < BT,

B(r) 2f(t.B(1)) t € J,B(0)+ uﬂﬁ(s)ds 2- a(T).
(Hy) a0,B,€C'(J, R are coupled lower and upper solutions of (1) for A= — 1 and By(1) Sao(¢) for ¢ €J.
(Hs) fo € C(J % Qo) R) and 1+ B [ Fe 50804 g o[/ 80% 20 for e E€ 0 o, 10,
Lemma?2 Put A= — 1, assume that (Hs), (H2) and(Hs) hold. If
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y (t) = f(t, () + M(y(t) - ao(t)) t €7, Bo(0) + Uj;ﬁo(s)ds =- y(T),
Z(t) = f(t,Bo()) + M(z(t) — B(1)) t 1 J, Ao(0) + [Qo ao(s)ds =- z(T),
then
B(e) [ z(e) [ y(o) [ Mo(t) ¢ 1 ], (4)
and v,z are coupled lower and upper solutions of (1) .

Proof Note that there exist unique solutions for y and z. Putp= y— Ay, g= B— z,then

p(T) = y(T) = A(T) [= BO)= To wols)ds+ B(0) + I wo(s)ds = 0,

0(1) = B(T) = =(T) [~ A(0)= T sol(s)ds+ A(0) + Iy so(s)ds= 0,
and
pe(t) \ f(t A(D) + M(y(1) = A(D) = (1. A(D) = Mp(1) 1],
qe(t) \ (L B(0) = f(L.B(0) = M(2(1) = B(1)) = Mg(t) ¢ 1 J.

B MO G(TY [ 0,61 J,then y(¢) [ Ao(t), Bo(t) [ 2(t), t I J.Now

Hence p(t) [ e """ p(T)[ 0,q(1)[ e

let p= z— v, then

p(T) = - A(0) - [Qo ro('s) ds+ By(0) + [Qo bo(s) ds =
B(0) - A(0) + [QO(BQ(S)— A(s))ds [ 0.
Assumption (Hs) yields
pe(t) = f(t, Bo(r)) = f(1, M(2))+ M(z(1) — Bo(1)) — M(y(t) = M(1)) \
- M(A(2) - Bo(2)) + M(z(1) - y(1)) +
M(A(t) - B(2)) = Mp(1).
"p(T)[ 0,11 J showing that z() [ y(t), t1 J.Tt proves that (4) holds. Now we need to
show that v,z are cupled lower and upper solutions of (1) for K= — 1. Using again assumption ( H;) we have
ye(t) = f(1, A1) + M(y(1)— A1) = f(ey(0)) + f(e,y(0)) [ (e, x(2)) eI,
ze(t) = f(6, Bo(1))+ M(2(t) - B(2)) - f(1,2(8)) + f(1,2(8)) \ f(2,2(2)) 017,

- M(T-t

Hence p(t) [ e

and
y(0) + IQo y(s)ds [ A(0) + IQo ao(s)ds=- z(T),

z(0) + [Qo z(s)ds \ B(0) + [Qo po(s)ds=- y(T).
It shows that y, z are coupled lower and upper solutions of (1) respectively. The proof is complete.
Theorem 2 Put K= - 1, suppose that (Hz2), (H3), (H4) and (Hs) hold. Then there exist monotone sequences
{A, B} such that Avy 4,Biy 5,81 Jas ny | and this convergence is uniformly and monotonically on J. More-
over, (1) has a unique solution x 7 [ B, Ad]= {ul Cl(],R) B u/ A} and x= A= B
Proof Let
Ao (8) = [0, A(E) + MCAG(E) = A(e)) o T,

T

B.(0) + ]OO B (s)ds =— A (T),

Bewi(t) = f(t,B(t))+ M(Bsr(t) — Bu(t)) t 1],

A0) + 1o, wil(s)ds == Buer(T),
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for n=0,1,2,, .lemma 2 shows By(¢) [ Bi(¢)[ A(¢) [ A(¢t),¢1 J,and A, B, are wupled lower and upper
solutions of (1) respectively. Assume that
B(e) [ B(e) [ - [ BCe) [ ACo) [ . [ AC) [ M(1) t 17,

for some £\ 1 and let A, B: be coupled lower and upper solutions of (1) respectively. Then, using again lemma 2, we
get B(t)[ Bai(t) [ Aci(2)[ A(t),tl J,and Ay, B. 1 are coupled lower and upper solutions of (1) respee-
tively. By induction, we have

B(o) [ B(o)y [ . [ B(o) [ A(e) [T . [ ACo) [ M(2) ¢ I Jforall n.
Hence B.(t) y B(t),A(t) y A(t),t1 Jif ny ] .Indeed, taking the limit ny | on both sides of (5), we know
that ( A, B) is a solution of the following system:

K() = f(6, D) 0 LT, BO) + 1y w(s)ds == A(T),

B(t) = f(t, B(t)) ¢ 1 J, ACO) + [QOA(s)ds:— B(T).
Note that if we show that A= B, then A= B is asolution of (1) for K= — 1. Put P= B~ A then we have

P(T) = P(0) + IQOP( s)ds, (6)
and
Pe(t) = f(e, B(2)) = f(e, ACe)) = fo(e, N2)) P(e) e X ],
where Nis between Band A. It yields
P(T) = Q-CNDMpeo), Plry = QLN
From (6) and (7),we obtain

ds

P(0) t 1. (7)

> ’I' 3
&Tf’((s’\“))dsp(o) _ P(O) n [QO &fx(.s,N(S))dsdtP(O)‘

Hence, P(0)= 0, by assumption (Hs) , and finally, P(¢) = O on J, by (7). It proves that A= B,so A= Bis a solu
tion of (1) for K= - 1.

Next,we are going to show that A= B is a unique solution of (1) in [ B, A].To do it,we need to show that if
w(t) is any solution of (1) such that By(¢) [ w(¢) [ A(2t), ¢l J,then Bo(¢) [ B(e) [ w(t) [ Ae)[ Ao(2),
t I J. Assume that for some k, B:(¢) [ w(t) [ A(¢),tl J.Let p= Bus1— w, g= w— A 1.Then

T

p(T) = Ba(T) - w(T) = w(0) = A(0) + T [wls) = A(s)]ds [0,

g(T) = w(T) = Ar(T) = B(0) = w(0)+ T [Bls)= w(s)]ds [ 0.

From assumption (H3), we have
pe(t) = f(e. B(t)) = f(,w(t))+ M(Bui(2) = B(2)) \
- M(w(t)- B(2)) + M(Bui(1) -
B(2))= Mp(e) ¢ 1 J,
ge(1) = F(1w(1) = f(1, A(1)) = M( Ai(1)= A(1)) \
- MCA(1) —w(t)) = M(Ai(t) -
A(t)) = Mq(r) t 1 J.
Hence p(t) [ e " " p(T)[ 0,q(t)[ ¢ """ g(T) [ 0,¢1 J showing that Bu1(¢) [ w(t)[ Aw1(t),¢1
J. It proves, by induction, that B,(¢) [ w(t) [ A(¢),t I J for all n. Taking the limit n y | ,we have A(¢) =

w(t)= B(t),t1 J,so the assertion of theorem 2 is true. The proof is complete.
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4 Examples
Example 1 Consider the equation
xe(1) = (x(1)+ 5- ¢ “)sinx(t) - ﬁ) 0< 1< 1,
o €
x(0) + ZQOx(s)ds: x(1).

It is easy to see that A= t+ 1, Bo= 0 are lower and upper solution of ( 8) respectively. f (¢, u) = (u(t) + 5-
e_zl)sin u-— ﬁ), = sinu+ (u(t)+ 5- e_zl)cos u< 9for O] w/ t+ L,O[ ¢/ 1.f(t,y)—f(t,2x)< 9(y

—x) for O] x/ y /[ t+ 1. (H3) is saisfied. By theorem 1, (8) has at least a solution x(¢) :0[ x(¢) [ ¢+ 1.
Example 4.2 Consider the equation
xc(t)=x2(t)—l+tsinx(t) 0< t< 1,
x(0) =—- x(1).
A= 1, B= - 1 are coupled lower and upper solution of (9) respectively. f (¢, u)= u’— 1+ tsin u,fu= 2u+ t
csu /[ 3for— 1] w/ 1,0[ ¢/ Lf(t,y)=f(t,x) [ 3(y—x) for — 1[ x/ y[ 1.(Hs) is satisfied. Further, 1

(9)

- eQ/."(s'l\I('s))d's x 0, (Hs) is satisfied. By theorem 2, (9) has at least a solution x(¢):— 1[ x(¢) [ 1.
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