Jan. 2012

Article ID: 1007 - 2985(2012)01 - 0012 - 06

Existence Theorems of Solutions for the System of Generalized Vector Cone-Properly Quasi-Convex Quasi-Equilibrium Problems*

CHEN Jian-chen, WANG Jin-duo

(College of Mathematics and Information Science Nanchang Hangkong University, Nanchang 330063, Jiangxi China)

Abstract: The system of generalized vector cone-properly quasi-convex quasi-equilibrium problems is considered. As its applications. The existence results are derived for weakly Pareto-Nash equilibrium points for multiobjective generalized game problems and multiobjective game problems in real locally convex Hausdorff topological spaces.

Key words: system of generalized vector cone-properly quasi-convex quasi-equilibrium problems; weakly Pareto-Nash equilibrium point

CLC number: O175

Document code: A

DOI: 10. 3969/j. issn. 1007 - 2985, 2012, 01, 004

1 Introduction

In order to describe the real world and economic behavior better, recently, much attention has been attracted to multicriteria equilibrium models. Motivated by ref. [1-5], we study the following system of generalized vector quasi-equilibrium problems.

Let $I = \{1, 2, \dots, n\}$, for each $i \in I$. Let X_i and Y_i be Hausdorff topological vector spaces. K_i is a nonempty subset of X_i , and $C_i \subseteq Y_i$ is a closed convex pointed cone with int $C_i \neq \emptyset$, where int C_i denotes the interior of C_i . And let $K = \prod_{i=1}^n K_i$. For every $i \in I$, let $f_i : K \times K_i \rightarrow Y_i$ be a vector-valued mapping and $S_i : K \rightarrow 2^{K_i}$ a set-valued mapping, where 2^{K_i} denotes the family of all nonempty subsets of K_i . The generalized vector quasi-equilibrium problem consists in finding $\overline{x} \in K$ such that for each $i \in I$, $\overline{x}_i \in S_i(\overline{x})$, $f_i(\overline{x},y_i) \notin -\text{int } C_i$, $\forall y_i \in S_i(\overline{x})$, where \overline{x}_i denotes the ith component of \overline{x} . For convenience, the generalized vector quasi-equilibrium problem is called the generalized symmetric vector quasi-equilibrium problem (briefly, GSVQEP), and \overline{x} is called a solution of the GSVQEP.

Ref. [5] has studied the generalized vector quasi-equilibrium problems without constraint (briefly, SGVEP), where, for each $i \in I$, f_i is a set-valued mapping. Ref. [2] studied the existence of solutions for the system of generalized vector quasi-equilibrium problems with constraint (briefly, SGQVEP), where for each i, f_i is a set-valued mapping. It is easy to see that SGQVEP includes SGVEP as a special case.

^{*} **Received date:** 2011 - 11 - 09

Foundation item; Supported by the National Natural Science Foundation of China (11061023); Natural Science Foundation of Jiangxi Province (2010GZS0176); Doctor Startup Project (EA200907383)

Biography: CHEN Jian-chen (1969-), male, lecturer of College of Mathematics and Information Science, Nanchang Hangkong University, doctor, master instructor; research area is nonlinear analysis.

Although SGQVEP of ref. [2] includes GSVQEP as a special case, the investigation of ref. [2] depends on the advantage of Banach spaces and $S_i(x) \neq \emptyset$. It is clear that if S_i is a singled-mapping, then int $S_i = \emptyset$. In this paper, by using new methods, we derive the existence results for weakly Pareto-Nash equilibrium points for multiobjective generalized game problems and multiobjective game problems in real locally convex Hausdorff topological spaces. As its corollary, one of the open problems proposed in ref. [1] is solved.

For other existence results related to equilibrium problems, we refer the reader to ref. [1-13] and references therein.

2 Preliminaries

Definition 1 Let Y be a topological vector space, C be a closed convex point cone in Y, D be a non-empty subset of Y, and then a point $a \in D$ is called a minimal points of D if $D \cap (a-C) = \{a\}$. If int $C \neq \emptyset$, a point $a \in D$ is called a weak minimal point of D if $D \cap (a - \text{int } C) = \emptyset$. Min(D,C) and min $_W(D,C)$ will denote the sets of all minimal points and all weak minimal points of D, respectively.

The following definition can be found in ref. [14].

Definition 2 Let X be a Hausdorff topological space and Y be a Hausdorff topological vector space with a convex cone C. Let $f: X \rightarrow Y$ be a vector-valued function.

- (i) f is said to be C-continuous at $x_0 \in X$ if, for any open neighborhood V of the zero element θ in Y, there is an open neighborhood $N(x_0)$ of x_0 in X such that $f(x) \in f(x_0) + V + C$, $\forall x \in N(x_0)$; f is said to be C-continuous on X if it is C-continuous at every element of X.
- (ii) f is said to be (-C)-continuous at $x_0 \in X$ if, for any open neighborhood V of θ in Y, there exists an open neighborhood $N(x_0)$ of x_0 in X such that $f(x) \in f(x_0) + V C$, $\forall x \in N(x_0)$; f is said to be (-C)-continuous on X if it is (-C)-continuous at any point of X.
- **Remark** 1 A vector-valued mapping may be at the same time C-and (-C)-continuous, but not continuous (see ref. [14]). It is easily to see that f is C-and (-C)-continuity is equivalent to continuity in the scalar case, i. e. Y = R and $C = [0, +\infty)$.

Definition 3 Let Y be a topological vector space with a closed convex pointed cone C, let K be a nonempty convex subset of a vector space X, and let $f: K \rightarrow Y$ be given.

- (i) f is said to be C-convex if, for any $x, y \in K$ and $t \in [0,1]$. $tf(x) + (1-t)f(y) f(tx + (1-t)y) \in C$; f is said to be C-concave if -f is C-convex.
- (ii) (See ref. [8]) f is said to be C-properly quasi-convex if, for any $y_1, y_2 \in K$ and $t \in [0,1]$, one has either $f(ty_1 + (1-t)y_2) \in f(y_1) C$, or $f(ty_1 + (1-t)y_2) \in f(y_2) C$.

Definition 4 Let X and Y be two Hausdorff topological spaces, $T: X \rightarrow 2^Y$ is a set-valued mapping.

- (i) T is said to be upper semi-continuous (briefly, u. s. c.) at $x_0 \in X$ if for any neighborhood $N(T(x_0))$ of $T(x_0)$, there exists a neighborhood $N(x_0)$ of x_0 such that $T(x) \subseteq N(T(x_0))$, $\forall x \in N(x_0)$. We say that T is said to be upper semi-continuous on X if T is u. s. c. at every point $x \in X$.
- (ii) T is said to be lower semi-continuous (briefly, l. s. c.) at $x_0 \in X$ if for any $y_0 \in N(x_0)$ and any neighborhood $N(y_0)$ of y_0 , there exists a neighborhood $N(x_0)$ of x_0 such that $T(x) \cap N(y_0) \neq \emptyset$, $\forall x \in N(x_0)$. We say that T is said to be lower semi-continuous on X if it is lower semi-continuous at every $x_0 \in X$.
 - (iii) T is said to be continuous if it is, at the same time, u. s. c. and l. s. c. on X.
- (iv) T is said to be a closed mapping if graph $T = \{(x,y) \in X \times Y : y \in T(x)\}$ is a closed set in $X \times Y$.

Lemma $1^{[4-5]}$ Let X be a locally convex Hausdorff space. $K \subseteq X$ is a nonempty convex compact

subset. Let $T: K \to 2^K$ be u. s. c. with nonempty closed convex values. Then T has a fixed point in K.

Lemma 2 (Ky Fan's Section Theorem) Let x_0 be a nonempty compact convex subset of a Hausdorff topological vector space and A be a subset of $X_0 \times X_0$ such that:

- (1) For each $y \in X_0$, the set $x \in \{X_0 : (x,y) \in A\}$ is closed in X_0 ;
- (2) For each $x \in X_0$, the set $x \in \{X_0 : (x,y) \notin A\}$ is convex or empty;
- (3) For each $x \in X_0$, $(x,x) \in A$.

Then there exists a point $x^* \in X_0$ such that $\{x^*\} \times X_0 \subseteq A$.

Lemma 3 For each $i \in I$, let X_i be locally Hausdorff topological vector space and Y_i be Hausdorff topological vector space K_i be nonempty compact convex subset of X_i , $K = \prod_{i=1}^n K_i$. Let $f_i: K \times K_i \to Y_i$ be a vector valued mapping and $S_i: K \to 2^{K_1}$ a set-valued mapping, suppose that $Y_1 \subseteq Y_2 \subseteq \cdots \subseteq Y_n$ and for each $i \in I$, $C_i = C_n \cap Y_i$ is a closed convex pointed cone with int $C_i \neq \emptyset$. For each $i \in I$, assume that:

- (i) S_i is continuous on K with nonempty convex compact values;
- (ii) For each $x \in K$, $f_i(x,x_i) = \theta$, where x_i is the *i*th component of x;
- (iii) For each $(x, y_i) \in K \times K_i$, the $f_i(\cdot, \cdot)$ is $(-C_i)$ -continuous on $K \times K_i$;
- (iv) For each fixed $x \in K$, $f_i(x, \cdot)$ is C_i -convex.

Then GSVQEP has a solution.

3 Main Results

For any $i \in I = \{1, \dots, n\}$, let X_i and Y_i be two Hausdorff topological vector spaces and K_i a non-empty subset of X_i , and C_i a closed convex pointed cone of Y_i with int $C_i \neq \emptyset$. Write $K = \prod_{i=1}^n K_i$ and for each $i \in I$. Let $K_{\widehat{i}} = \prod_{i=1, i \neq \widehat{i}} K_i$. Thus we can write $x = (x_i, x_{\widehat{i}})$, for each $x \in K$, and for each $i \in I$. Let $g_i : K \rightarrow Y_i$ be a vector-valued mapping. The multiobjective game problem consists in finding $x \in K$ such that, for any $i \in I$, $g_i : (y_i, x_{\widehat{i}}) - g_i : (x_i, x_{\widehat{i}}) \notin -$ int C_i , $\forall y_i \in K_i$. A multiobjective game problem is often denoted by $\{K_i, g_i\}_{i \in I}$.

For each $i \in I$, let $G_i : K_{\widehat{i}} \to 2^{K_i}$ be a feasible strategy correspondence. The multiobjective generalized game problem consists in finding $\overline{x} \in K$ such that for each $i \in I$, $\overline{x}_i \in G_i$ ($\overline{x}_{\widehat{i}}$), and g_i (y_i , $\overline{x}_{\widehat{i}}$) = g_i (\overline{x}_i , $\overline{x}_{\widehat{i}}$) \notin —int C_i , $\forall y_i \in G_i$ ($\overline{x}_{\widehat{i}}$) \notin —int C_i , $\forall y_i \in G_i$ ($\overline{x}_{\widehat{i}}$). A multiobjective generalized game problem is usually denoted by $\{K_i, G_i, g_i\}_{i \in I}$.

In above two cases, \bar{x} is said to be a weakly Pareto-Nash equilibrium point.

Corollary 1 For each $i \in I$, let X_i , Y_i , K_i , C_i , K as stated in lemma 3, and let $G_i: K_i \to 2^{K_i}$ and $g_i: K \to Y_i$ be vector valued mapping. For each $i \in I$, assume that:

- (i) G_i is continuous with nonempty convex compact values;
- (ii) $g_i(x)$ is at the same time C_i -and $(-C_i)$ -continuous on K;
- (iii) For each $x_{\widehat{i}} \in K_{\widehat{i}}$, $g_i(\cdot, x_{\widehat{i}})$ is C_i -convex.

Then the multiobjective generalized game problem $\Gamma = \{K_i, G_i, f_i\}_{i \in I}$ has a weakly Pareto-Nash equilibrium point.

Proof For any $i \in I$, let $f_i(x, y_i) = g_i(y_i, x_{\widehat{i}}) - g_i(x_i, x_{\widehat{i}})$ and $S_i(x) = G_i(x_{\widehat{i}})$, for any $x \in K$. It is easy to see that the conditions of lemma 3 hold. Hence the result follows.

Remark 2 Corollary 1 is a new existence result of weakly Pareto-Nash equilibrium points for the multiobjective generalized game problem in real locally convex Hausdorff topological spaces.

In some sense, it improves on corollary 2 of ref. [2].

Corollary 2 For each $i \in I$, let X_i , Y_i , K_i , C_i , K and g_i , as stated in corollary 1. Then the multiobjective game problem $\Gamma = \{K_i, g_i\}_{i \in I}$ has a weakly Pareto-Nash equilibrium point.

Proof For each $i \in I$, let $f_i(x, y_i) = g_i(y_i, x_{\widehat{i}}) - g_i(x_i, x_{\widehat{i}})$ and $G_i(x_i) = K_i$ for each $x_{\widehat{i}} \in K_i$. It is easily seen that the conditions of corollary 1 hold. Hence the result follows.

Lemma 4 let Y be a topological vector space, and $C \subseteq Y$ a closed convex pointed cone. Let K be a nonempty compact subset of a topological space X and $f: K \rightarrow Y$ is C-continuous. The $\min(f(K), C) \neq \emptyset$.

Proof If $f: K \rightarrow Y$ is C-continuous, we can see that for each $y \in Y$, $\{x \in K: f(x) \in y - C\}$ is closed. f(K) is a C-semicompact set and $\min(f(K), C) \neq \emptyset$. The proof is completed.

Theorem 1 For each $i \in I$, let X_i be a real locally convex Hausdorff topological vector space, Y_i a real Hausdorff topological vector space, K_i a nonempty convex compact subset of X_i , and C_i a closed con-

vex pointed cone of Y_i with int $C_i \neq \emptyset$. Write $K = \prod_{i=1}^n K_i$ and $K_{x_{\widehat{i}}} = \prod_{j=1, j \neq i}^n K_j$. For each $i \in I$, let $f_i : K \rightarrow Y_i$ be a vector valued mapping and $S_i : K \rightarrow 2^{k_i}$ a set-valued mapping, for each $i \in I$. Assume that:

- (1) For each $i \in I$, S_i is continuous on K with nonempty convex compact values;
- (2) For each $i \in I$, f_i is C_i -continuous and $-C_i$ -continuous on K at the same time;
- (3) For any fixed $f_i(\cdot,x_i)$ is C_i -properly quasi-convex.

Then there exists $\bar{x} \in K$ such that, for each i = I, $\bar{x}_i \in S_i(\bar{x})$, $f_i(y_i, \bar{x}_{\hat{i}}) - f_i(\bar{x}_i, \bar{x}_{\hat{i}}) \notin -\text{int } C_i$, $\forall y_i \in S_i(\bar{x})$.

Proof Define $A_i: K \to 2^{K_i}$ by $A_i(x) = \{v \in S_i(x): f_i(v, x_{\widehat{i}}) \in \min_w (f_i(S_i(x), x_{\widehat{i}}), C_i), \forall x \in K.$ Step I $\forall x \in K, i \in I, A_i(x)$ is a nonempty convex closed subset of K_i .

In fact, since f_i is C_i -continuous and $S_i(x)$ is a nonempty convex compact subset of K_i , by lemma 4. $\min(f_i(S_i(x), x_{\widehat{i}}), C_i) \neq \emptyset$ and hence $\min_w (f_i(S_i(x), x_{\widehat{i}}), C_i) \neq \emptyset$. Thus, $A_i(x) \neq \emptyset$. Let $v_1, v_2 \in A_i(x)$, $t \in [0,1]$, $v = tv_1 + (1-t)v_2$. We need to show that $v \in A_i(x)$. It follows from v_1 , $v_2 \in S_i(x)$ and $f_i(v_j, x_{\widehat{i}}) \in \min_w (f_i(S_i(x), x_{\widehat{i}}), C_i)$, j = 1, 2, that

$$f_i(y_i, x_{\widehat{i}}) = f_i(v_j, x_{\widehat{i}}) \notin -\operatorname{int} C_i \qquad \forall y_i \in S_i(x), j = 1, 2.$$

$$(1)$$

Since $f_i(.,x_i)$ is C_i -properly quasi-convex, we have either

$$f_i(v,x_{\widehat{i}}) \in f_i(v_1,x_{\widehat{i}}) - C_i, \tag{2}$$

or

$$f_i(v, x_{\widehat{i}}) \in f_i(v_2, x_{\widehat{i}}) - C_i. \tag{3}$$

By (1),(2),(3),

$$f_i(y_i, x_{\widehat{i}}) - f_i(v, x_{\widehat{i}}) \notin -int C_i \quad \forall y_i \in S_i(x), \text{ i. e. },$$

$$f_i(v, x_{\widehat{i}}) \in min_w(f_i(S_i(x), x_{\widehat{i}}), C_i).$$

Hence $v \in A_i(x)$.

Step II Now we need to show that $A_i(x)$ is closed. Indeed, let a net $\{v_a\} \subseteq A_i(x)$ with $v_a \rightarrow v$. We need to show $v \in A_i(x)$. By the closeness of $S_i(x)$ and $v_a \in S_i(x)$, $v \in S_i(x)$. Since $f_i(v_a, x_{\widehat{i}}) \in \min_w (f_i(S_i(x), x_{\widehat{i}}), C_i)$, we have $f_i(y_i, x_{\widehat{i}}) = f_i(v_a, x_{\widehat{i}}) \notin \text{-int } C_i$, $\forall y_i \in S_i(x)$.

Suppose that $v \notin A_i(x)$. Then there exists $y_i \in S_i(x)$ such that $f_i(y_i, x_{\widehat{i}}) - f_i(v, x_{\widehat{i}}) \in -\text{int } C_i$. Since $-\text{int } C_i$ is an open set, there exists a symmetric open neighborhood O of the zero element in Y_i such that $f_i(y_i, x_{\widehat{i}}) - f_i(v, x_{\widehat{i}}) + O \subset -\text{int } C_i$. Thus $f_i(y_i, x_i) - f_i(v_a, x_{\widehat{i}}) + O \subset C_i \subset -\text{int } C_i$. By the C_i -continuity of f_i , there exists a_0 . Such that

 $f_i(y_i, x_{\widehat{i}}) = f_i(v_a, x_{\widehat{i}}) \in f_i(y_i, x_{\widehat{i}}) = f_i(v, x_{\widehat{i}}) + O = C_i \subseteq -int C_i$ for all $\alpha \geqslant \alpha_0$, which contradicts that

$$f_i(y_i, x_{\widehat{i}}) \in \min_{w} (f_i(S_i(x), x_{\widehat{i}}), C_i). \tag{4}$$

If (4) is not true, then there exists $\bar{y}_i \in S_i(x)$ such that $f_i(\bar{y}_i, x_{\hat{i}}) - f_i(v, x_{\hat{i}}) \in -\text{int } C_i$. Since

—int C_i is open, there exists a symmetric open neighborhood U of the zero element in Y_i such that $f_i(\bar{y}_i, x_{\hat{i}}) - f_i(v, x_{\hat{i}}) \in \text{-int } C_i$. Since C_i is convex, we have

$$f_i(\bar{y}_i, x_{\hat{i}}) + U - (f_i(v, x_i) + U + C_i) \subseteq -\text{int } C_i.$$
 (5)

Since S_i is lower semi-continuous and $x_a \to x$, for above $y_i \in S_i(x)$, there exists a net $\{y_i^a\}$ with $y_i^a \in S$ $\{x_a\}$ such that $y_i^a \to y_i$. Since f_i is C_i -continuous and $\{x_a\}$ -continuous on K and $\{y_i^a\}$ - $\{$

$$f_i(y_i^a, x_i^a) \in f_i(\bar{y}_i, x_i) + U - C_i$$
 for all $\alpha \geqslant \alpha_0$

and

$$f_i(v_\alpha, x_{x_{\widehat{i}}}^a) \in f_i(v, x_{\widehat{i}}) + U + C_i$$
 for all $\alpha \geqslant \alpha_0$.

By (5), we have $f_i(y_i^a, x_i^a) = f_i(v_a, x_i^a) \in -\text{int } C_i$. This contradicts that $v_a \in A_i(x_a)$, since $y_i^a \in S_i(x_a)$.

Step III Define $\varphi: K \to 2^K$ by $\varphi(x) = (A_1(x), \dots, A_n(x))$, $\forall x \in K$. Then, for each $x \in K$, $\varphi(x)$ is a nonempty convex closed subset of K, and φ is u. s. c. By lemma 1, here is a point $\overline{x} \in K$ such that $\overline{x} \in \varphi(\overline{x})$. That is, for any $i \in I$, $x_i \in A_i(\overline{x})$. By the definition of $A_i(\overline{x})$, for each $i \in I$, $\overline{x} \in S_i(\overline{x})$, $f_i(y_i, \overline{\hat{i}}) = f_i(x_i, \overline{\hat{i}}) \notin -\text{int } C_i$, $\forall y \in S_i(\overline{x})$.

The proof is completed.

Remark 3 It is easy to see that lemma 3 is an existence theorem for the GSVQEP.

Corollary 3 For each $i \in I$, let X_i, Y_i, C_i, K_i, K_i , K_i , K_i , K_i as stated in lemma 3. For each $i \in I$, let $g_i: K \to Y_i$ be a vector-valued mapping and $G_i: K_i \to 2^{K_i}$ a set-valued mapping. For each $i \in I$, assume that:

- (i) G_i is continuous with convex compact values;
- (ii) $g_i(x)$ is at the same time C_i -and $(-C_i)$ -continuous;
- (iii) For each $x_{\hat{i}} \in K_{\hat{i}}$, $g(\cdot, x_{\hat{i}})$ is C_i -properly quasi-convex.

Then the multiobjective generalized game problem $\Gamma = \{K_i, G_i, f_i\}_{i \in I}$ has a weakly Pareto-Nash equilibrium point.

Proof For each $i \in I$, let $S_i(x) = G_i(x_i)$ for any $x \in K$ and $f_i = g_i$. It is easy to see that the conditions of lemma 4 hold. Hence the result follows.

Remark 4 Corollary 3 is a new existence result of weakly Pareto-Nash equilibrium points for the multiobjective generalized problem in real locally Hausdorff topological spaces. It improves the corollary 2 of ref. [2].

Crollary 4 For each $i \in I$, let $X_i, Y_i, C_i, K_i, K_i, K_i$, as stated in corollary 3. For each $i \in I$, assume that:

- (i) g_i is at the same time C_i -and $(-C_i)$ -continuous;
- (ii) For each $x_{\widehat{i}} \in K_{\widehat{i}}$, $g(\cdot, x_{\widehat{i}})$ is C_i -properly quasi-convex.

Then the multiobjective game problem $\Gamma = \{K_i, g_i\}_{i \in I}$ has a weakly Pareto-Nash equilibrium point.

Proof For each $i \in I$, let $g_i = g_i$ and $G_i(x_{\widehat{i}}) = K_i$ for each $x_{\widehat{i}} \in K_i$. It is easily seen that the conditions of corollary 3 hold. Hence the result follows.

Remark 5 Corollary 4 is a new existence theorem of weakly Pareto-Nash equilibrium points for the multiobjective game problem in real locally convex Hausdorff topological vector spaces. It is a generalization of corollary 4 of ref. [2].

References:

- [1] FU Jun-yi. Symmetric Vector Quasi-Equilibrium Problems [J]. J. Math. Appl., 2003, 285; 708 713.
- [2] LIN Zhi, YU Jian. The Existence of Solutions for the System of Generalized Vector Quasi-Equilibrium Problems [J].

- Applied Mathematics Letters, 2005, 18:415 422.
- [3] BLUM E,OETTLI W. From Optimization and Variational Inequalities to Equilibrium Problems [J]. Math. Student, 1994,63:123-145.
- [4] FAN K. A Minimax Inequality and Applications [M]//SHISHA O. Inequalities III. New York: Academic Press, 1972: 103-113.
- [5] GLICKSBERG I. A Further Generalization of the Kakutani Fixed Point Theorem with Application to Nash Equilibrium Points [J], Proc. Amer. Math. Soc., 1952, 31:70 174.
- [6] NOOR M A, OETTLI W. On General Nonlinear Complementarity Problems and Quasi-Equilibria [M]. Le Mate matiche XLIX, 1994:313 331.
- [7] TAN N X. Quasi-Variational Inequalities in Topological Linear Locally Convex Hausdorff Spaces [J]. Math. Nachr., 1985,12;2 231 2 245.
- [8] FERRO F. A Minimax Theorem for Vector-Valued Functions [J]. J. Optim. Theory Appl., 1989, 60:19 31.
- [9] JAHN J. Mathematical Vector Optimization in Partially Order Linear Spaces [J]. Peter Lang, Frankfurt, 1986.
- [10] ANSARI Q H, SCHAIBLE S, YAO J C. The System of Generalized Vector Equilibrium Problems with Appllications [J]. J. Global Optim., 2002, 22:3-16.
- [11] YU Jian, YUAN GXZ. The Study of Pareto Equilibria for Multiobjective Games by Fixed Point and Key Fan Minimax Inequality Methods [J]. Comput. Math. Appl., 1998, 35:17 24.
- [12] YU Jian, LUO Qun. On essential Components of the Solution Set of Generalized Games [J]. J. Math. Anal. Appl., 1999, 230; 303 310.
- [13] LIN Zhi, YU Jian. The Existence of Solutions for the System of Generalized Vector Quasi-Equilibrium Problems [J]. Applied Mathematics Letters, 2005, 18:415 422.
- [14] LIN Zhi. Essential Components of the Set of Weakly Pareto-Nash Equilibrium Points for Multi-Objective Generalized Games in Different Topological Spaces [J]. Journal of Optimization Theory and Applications, 2005, 124; 387 450.

广义向量锥拟凸拟平衡系统的存在性定理

陈剑尘,王进朵

(南昌航空大学数学与信息科学学院,南昌 江西 330063)

摘 要:在实局部凸 Hausdorff 拓扑空间中证明了广义向量锥拟凸拟平衡系统的存在性定理. 作为它的应用,得到了多目标广义系统问题弱 Pareto-Nash 均衡点的存在性结果.

关键词:广义向量维拟凸拟平衡系统;存在性定理;弱 Pareto-Nash 均衡点

中图分类号: 〇175

文献标识码:A

(责任编辑 向阳洁)