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1. Introduction

The Lasso and related methods have received rapidly increasing attention in statistics

since the seminal work of Tibshirani (1996). For example, see a timely monograph by

Bühlmann and van de Geer (2011) as well as a retrospective review by Tibshirani (2011)

for general overview and recent developments.

In this paper, we develop a method for estimating a high-dimensional regression model

with a possible change-point due to a covariate threshold, while selecting relevant regressors

from a set of many potential covariates. In particular, we propose the `1 penalized least

squares (Lasso) estimator of parameters, including the unknown threshold parameter, and

analyze its properties under a sparsity assumption when the number of possible covariates

can be much larger than the sample size.

To be specific, let {(Yi, Xi, Qi) : i = 1, . . . , n} be a sample of independent observations

such that

(1.1) Yi = X ′iβ0 +X ′iδ01{Qi < τ0}+ Ui, i = 1, . . . , n,

where for each i, Xi is an M×1 deterministic vector, Qi is a deterministic scalar, Ui follows

N(0, σ2), and 1{·} denotes the indicator function. The scalar variable Qi is the threshold

variable and τ0 is the unknown threshold parameter. Note that since Qi is a fixed variable

in our setup, (1.1) includes a regression model with a change-point at unknown time (e.g.

Qi = i/n).

A regression model such as (1.1) offers applied researchers a simple yet useful framework

to model nonlinear relationships by splitting the data into subsamples. Empirical examples

include cross-country growth models with multiple equilibria (Durlauf and Johnson, 1995),

racial segregation (Card et al., 2008), and financial contagion (Pesaran and Pick, 2007),

among many others. Typically, the choice of the threshold variable is well motivated in

applied work (e.g. initial per capita output in Durlauf and Johnson (1995), and the minority

share in a neighborhood in Card et al. (2008)), but selection of other covariates is subject

to applied researchers’ discretion. However, covariate selection is important in identifying

threshold effects (i.e., nonzero δ0) since a piece of evidence favoring threshold effects with

a particular set of covariates could be overturned by a linear model with a broader set of

regressors. Therefore, it seems natural to consider Lasso as a tool to estimate (1.1).

The statistical problem we consider in this paper is to estimate unknown parameters

(β0, δ0, τ0) ∈ R2M+1 when M is much larger than n. For the classical setup (estimation of

parameters without covariate selection when M is smaller than n), estimation of (1.1) has

been well studied (see, e.g., Tong, 1990; Chan, 1993; Hansen, 2000). Also, a general method

for testing threshold effects in regression (i.e. testing H0 : δ0 = 0 in (1.1)) is available for

the classical setup (see, e.g., Lee et al., 2011).
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Although there are many papers on Lasso type methods and also equally many papers

on change points, sample splitting, and threshold models, there seem to be only a handful

of papers that intersect both topics. Wu (2008) proposed an information-based criterion

for carrying out change point analysis and variable selection simultaneously in linear mod-

els with a possible change point; however, the proposed method in Wu (2008) would be

infeasible in a sparse high-dimensional model. In change-point models without covariates,

Harchaoui and Levy-Leduc (2008, 2010) proposed a method for estimating the location of

change-points in one-dimensional piecewise constant signals observed in white noise, using

a penalized least-square criterion with an `1-type penalty, and Zhang and Siegmund (2007)

developed Bayes Information Criterion (BIC)-like criteria for determining the number of

changes in the mean of multiple sequences of independent normal observations when the

number of change-points can increase with the sample size. Ciuperca (2012) considered a

similar estimation problem as ours, but the corresponding analysis is restricted to the case

when the number of potential covariates is small.

In this paper, we consider the Lasso estimator of regression coefficients as well as the

threshold parameter. Theoretical properties of the Lasso and related methods for high-

dimensional data are examined by Bunea et al. (2007), Candès and Tao (2007), Bickel et al.

(2009), Meinshausen and Yu (2009), and van de Geer and Bühlmann (2009), among many

others. Most of the papers consider linear or nonparametric models with an additive mean

zero error. Some exceptions are van de Geer (2008) who considered high-dimensional gen-

eralized linear models with Lipschitz loss functions; Belloni and Chernozhukov (2011a) who

developed the Lasso estimator of quantile regressions in high-dimensional sparse models;

and Bradic et al. (2012) who worked out nonconcave penalized methods, including Lasso,

for Cox’s proportional hazards model with high-dimensional censored data. We contribute

to this literature by considering a regression model with a possible change-point and then

deriving nonasymptotic oracle inequalities for both the prediction risk and `1 estimation loss

for regression coefficients under a sparsity scenario. Since the Lasso estimator selects vari-

ables simultaneously, we show that oracle inequalities can be established without pretesting

the existence of the threshold effect. Furthermore, we establish conditions under which the

unknown threshold parameter can be estimated at nearly n−1 when the number of regressors

can be much larger than the sample size (n).

The remainder of this paper is as follows. In Section 2 we propose the Lasso estimator,

and in Section 3 we give a brief illustration of our proposed estimation method using a

real-data example in economics. In Section 4 we establish the prediction consistency of our

Lasso estimator. In Sections 5 - 8, we establish sparsity oracle inequalities in terms of both

the prediction loss and the `1 estimation loss of (α0, τ0), while providing low-level sufficient

conditions for three possible cases of threshold effects. In Section 9 we present results of

some simulation studies. Section 10 concludes and Appendix A contains all the proofs.
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2. Lasso Estimation

Let Xi(τ) denote the (2M×1) vector such that Xi(τ) = (X ′i, X
′
i1{Qi < τ})′ and let X(τ)

denote the (n × 2M) matrix whose i-th row is Xi(τ)′. This is distinguished from X (τ) ,

which denotes the (n×M) matrix whose i-th row is X ′i1{Qi < τ}. Let α0 = (β′0, δ
′
0)
′. Then

(1.1) can be written as

(2.1) Yi = Xi(τ0)
′α0 + Ui, i = 1, . . . , n.

Following Bickel et al. (2009), we use the following notation. For an L-dimensional

vector a, let |a|p denote the `p norm of a, and |J | denote the cardinality of J , where

J(a) = {j ∈ {1, . . . , L} : aj 6= 0}. In addition, let M(a) denote the number of nonzero

elements of a. Then,

M(a) =
L∑
j=1

1{aj 6= 0} = |J(a)|.

The valueM(α0) characterizes the sparsity of the model (2.1). Also, let aJ denote the vector

in RL that has the same coordinates as a on J and zero coordinates on the complement Jc

of J . For any n-dimensional vector W = (W1, . . . ,Wn)′, define the empirical norm as

‖W‖n :=

(
n−1

n∑
i=1

W 2
i

)1/2

.

Let y ≡ (Y1, . . . , Yn)′. For any fixed τ , consider the residual sum of squares

Sn(α, τ) = n−1
n∑
i=1

(
Yi −X ′iβ −X ′iδ1{Qi < τ}

)2
= ‖y −X(τ)α‖2n ,

where α = (β′, δ′)′.

Indicating by the superscript (j) the j-th element of a vector or the j-th column of a

matrix, define the following (2M × 2M) diagonal matrix:

D(τ) := diag
{∥∥∥X(τ)(j)

∥∥∥
n
, j = 1, ..., 2M

}
.

For each fixed τ , define the Lasso solution α̂(τ) by

α̂(τ) := argminα∈R2M {Sn(α, τ) + λ |D(τ)α|1} ,(2.2)

where λ is a tuning parameter that depends on n. It is important to note that for each

fixed τ , α̂(τ) is the weighted Lasso, which has advantages over the unweighted Lasso since

different values of τ generate different dictionaries.

We now estimate τ0 by

τ̂ := argminτ∈T⊂R {Sn(α̂(τ), τ) + λ |D(τ)α̂(τ)|1} ,
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where T ≡ [t0, t1] is a parameter space for τ0. In fact, for any finite n, τ̂ is given by an

interval and we simply define the maximum of the interval as our estimator. If we wrote the

model using 1 {Qi > τ} , then the convention would be the minimum of the interval being

the estimator. Then the estimator of α0 is defined as α̂ := α̂(τ̂). In fact, our proposed

estimator of (α, τ) can be viewed as the one-step minimizer such that:

(α̂, τ̂) := argminα∈R2M ,τ∈T⊂R {Sn(α, τ) + λ |D(τ)α|1} .(2.3)

3. Empirical Illustration

In this section, we apply the proposed Lasso method to the growth regression models

in economics. The neoclassical growth model predicts that economic growth rates would

converge in the long run. This theory has been tested empirically by looking at the negative

relationship between the long-run growth rate and the initial GDP given other covariates

(see Barro and Sala-i-Martin (1995) and Durlauf et al. (2005) for literature reviews). Al-

though empirical results confirmed the negative relationship of them, there has been some

criticism that the results heavily depend on the selection of covariates. Recently, Belloni

and Chernozhukov (2011b) show that the Lasso estimation can help select the covariates

in the linear growth regression model and that the Lasso estimation results reconfirm the

negative relationship between the long-run growth rate and the initial GDP.

We consider the growth regression model with a possible threshold. Durlauf and Johnson

(1995) provide the theoretical background of the existence of multiple steady states and

estimate the model with two possible threshold variables. They check the robustness by

adding other available covariates in the model, but it is not still free from the criticism of

the ad hoc variable selection. Our proposed Lasso method might be a good alternative in

this situation. Furthermore, as we will show later, our method works well even if there is

no threshold effect in the model. Therefore, one might expect more robust results from our

approach.

The regression model we consider has the following form:

gri = β0 + β1lgdp60i +X ′iβ2 + 1{Qi < τ}
(
δ0 + δ1lgdp60i +X ′iδ2

)
+ εi(3.1)

where gri is the annualized GDP growth rate of country i from 1960 to 1985, lgdp60i is the

log GDP in 1960, and Qi is a possible threshold variable for which we use the initial GDP

and the adult literacy rate in 1960 following Durlauf and Johnson (1995). Finally, Xi is

a vector of additional covariates related to education, market efficiency, political stability,

market openness, demographic characteristics, and so on. The list of all covariates used

and the description of each variable are given in Table 1. We include as many covariates

as possible, which would mitigate the potential omitted variable bias. The data set mostly

comes from Barro and Lee (1994), and the additional adult literacy rate is from Durlauf
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and Johnson (1995). Because of missing observations, we have 80 observations with 46

covariates (including a constant term) when Qi is the initial GDP, and 70 observations with

47 covariates when Qi is the literacy rate.

Tables 2 and 3 summarize the model selection and estimation results. To compare dif-

ferent model specifications, we also apply the Lasso procedure to a linear model, i.e. all δ’s

are zeros in Equation (3.1). In each case, the regularization parameter λ is chosen by the

‘leave-one-out’ least squares cross validation method.

Main empirical findings are as follows. First, note that the number of covariates in

the threshold models is bigger than the number of observations. Thus, we cannot adopt

the standard least squares method to estimate the threshold regression model. Second,

the coefficients of lgdp60 are negative in all models, which confirms the theory of the

neoclassical growth models. Third, the coefficients of interaction terms between lgdp60 and

various education variables show the existence of threshold effects in both threshold model

specifications. This result implies that the growth convergence rates can vary according

to different education levels. Specifically, note that the interaction term between lgdp and

‘educ’ implies the marginal effect of lgdp becomes

lgdp×
(
β1 + β2educ+ 1{Q < γ}(δ1 + δ2educ)

)
.

In both threshold models, we have δ1 = 0, but some δ2’s are not zero. Thus, conditional

on other covariates, there exist different technological diffusion effects according to the

threshold point. In other words, a country with high education levels will converge faster

by absorbing technology easily and quickly. Finally, the Lasso with the threshold model

specification selects a more parsimonious model than that with the linear specification even

though the former imposes more covariates.

Compared to the results by Durlauf and Johnson (1995), our estimation results show a

couple of different points. The Lasso estimator does not confirm the threshold effect for

the variable lgdp60 itself. Different convergent rates are made only through the interaction

with the education variables. It is also noteworthy that the threshold parameter estimates

are much higher than those chosen by Durlauf and Johnson (1995). These differences show

the importance of model selection and the advantage of the proposed Lasso estimation.

4. Prediction Consistency

In this section, we establish the prediction consistency of our Lasso estimator. For no-

tational simplicity, we make the following convention, that is, D̂ = D(τ̂) and D = D (τ0) ,

and similarly, Ŝn = Sn(α̂, τ̂) and Sn = Sn (α0, γ0), and so on.
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Define f(α,τ)(x, q) := x′β + x′δ1{q < τ}, f0(x, q) := x′β0 + x′δ01{q < τ0}, and f̂(x, q) :=

x′β̂ + x′δ̂1{q < τ̂}. Let

V1j :=
(
nσ
∥∥∥X(j)

∥∥∥
n

)−1 n∑
i=1

UiX
(j)
i ,

V2j(τ) :=
(
nσ
∥∥∥X(j)(τ)

∥∥∥
n

)−1 n∑
i=1

UiX
(j)
i 1{Qi < τ}.

For a positive constant µ < 1, define the events

A :=
M⋂
j=1

{2|V1j | ≤ µλ/σ} ,

B :=

M⋂
j=1

{
2 sup
τ∈T
|V2j(τ)| ≤ µλ/σ

}
,

Also define J0 := J(α0) and Rn := Rn(α0, τ0), where

Rn(α, τ) := 2n−1
n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .

The following lemma gives some useful basic inequalities that provide a basis for all our

theoretical results.

Lemma 1 (Basic Inequalities). Conditional on the events A and B, we have∥∥∥f̂ − f0∥∥∥2
n

+ (1− µ)λ
∣∣∣D̂(α̂− α0)

∣∣∣
1
≤ 2λ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1

(4.1)

+ λ
∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣+Rn

and

(4.2)
∥∥∥f̂ − f0∥∥∥2

n
+ (1− µ)λ

∣∣∣D̂(α̂− α0)
∣∣∣
1
≤ 2λ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1

+
∥∥f(α0,τ̂) − f0

∥∥2
n
.

The basic inequalities in Lemma 1 involve more terms than that of the linear model (e.g.

Lemma 6.1 of Bühlmann and van de Geer, 2011) because our model in (1.1) includes the

unknown threshold parameter τ0 and the weighted Lasso is considered in (2.2). Also, it

helps prove our main results to have different upper bounds in (4.1) and (4.2) for the same

lower bound.

We now establish conditions under which A∩B has probability close to one with a suitable

choice of λ. Define

rn := min
1≤j≤M

∥∥X(j)(t0)
∥∥2
n∥∥X(j)

∥∥2
n

,
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where X(j)(τ) ≡ (X
(j)
1 1{Q1 < τ}, . . . , X(j)

n 1{Qn < τ})′ as before. Let Φ denote the cumu-

lative distribution function of the standard normal.

Lemma 2 (Probability of A ∩ B). Let {Ui : i = 1, . . . , n} be independent and identically

distributed as N(0, σ2). Then

P{A ∩ B} ≥ 1− 6MΦ

(
−
µ
√
nrn

2σ
λ

)
.

We are ready to establish the prediction consistency of the Lasso. Define Xmax :=

max (D) and Xmin := min (D (t0)). Also, let αmax denote the maximum value that all the

elements of α can take in absolute value.

Theorem 3 (Consistency of the Lasso). Let (α̂, τ̂) be the Lasso estimator defined by (2.3)

with

λ = Aσ
( log 3M

nrn

)1/2
(4.3)

for some constant A > 2
√

2/µ. Then, with probability at least 1− (3M)1−A
2µ2/8, we have∥∥∥f̂ − f0∥∥∥2

n
≤ 6λXmaxαmaxM(α0) + 2µλXmax |δ0|1

< 8XmaxαmaxλM(α0).

The nonasymptotic upper bound on the prediction loss in Theorem 3 can be easily

translated into asymptotic convergence. Specifically, if Xmax and αmax are bounded, then

Theorem 3 gives ∥∥∥f̂ − f0∥∥∥2
n
. λM(α0).

Hence, Theorem 3 implies the consistency of the Lasso, provided that n → ∞, M → ∞,

and λM(α0)→ 0. The last condition requires that the sparsity of the model be of smaller

order than
√

(nrn)/ log 3M .

Remark 1. Regarding consistency of the Lasso, see, among others, Corollary 6.1 of Bühlmann

and van de Geer (2011) for high-dimensional linear models and Lemma 6.7 of Bühlmann

and van de Geer (2011) for general convex loss functions. If rn is bounded away from zero,

then our result in Theorem 3 coincides with those of Bühlmann and van de Geer (2011).

5. Oracle Inequalities

In this section, we establish sparsity oracle inequalities in terms of both the prediction

loss and `1 estimation loss of α0. First of all, we make the following assumption that was

first introduced by Bickel et al. (2009).
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Assumption 1 (Restricted Eigenvalue (RE) (s, c0)). For some integer s such that 1 ≤ s ≤
2M and a positive number c0, the following condition holds:

κ(s, c0) := min
J0⊆{1,...,2M},
|J0|≤s

min
γ 6=0,∣∣∣γJc

0

∣∣∣
1
≤c0|γJ0 |1

|X(τ0)γ|2√
n|γJ0 |2

> 0.

Assumption 1 is just a restatement of restricted eigenvalue assumption of Bickel et al.

(2009) when τ0 were known. Bickel et al. (2009) provide sufficient conditions for the re-

stricted eigenvalue condition. In addition, van de Geer and Bühlmann (2009) show the

relations between the restricted eigenvalue condition and other conditions on the design

matrix.

Assumption 2 (Oracle Condition A). For some non-negative constant L1, either one of

the following two conditions holds:∥∥f(α0,τ̂) − f0
∥∥2
n
≤ L1λ

∣∣∣D̂ (α̂− α0)J0

∣∣∣
1
,(5.1)

λ
∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣+Rn ≤ L1λ
∣∣∣D̂ (α̂− α0)J0

∣∣∣
1
.(5.2)

Assumption 3 (Oracle Condition B). For some positive constant L2, the following condi-

tion holds: ∥∥f(α̂,τ0) − f0∥∥2n ≤ L2

∥∥∥f̂ − f0∥∥∥2
n
.(5.3)

Assumptions 2 and 3 are useful to obtain an oracle inequality, in conjunction with As-

sumption 1. These tighten the bounds in Lemma 1.

Conditions (5.1) and (5.2) in Assumption 2 are rather high-level assumptions but useful

to derive sparsity oracle inequalities. In next sections where we present main theorems of

the paper, we verify Assumption 2 or dispense with it under more primitive conditions.

Intuitively, Assumption 2 is satisfied if δ0 is very small, or if the difference between τ̂ and

τ0 is sufficiently small relative to the difference between α̂ and α0.

Remark 2. It is worth noting that (5.1) holds when δ0 = 0, that is, when there is no

threshold effect. Therefore, the oracle inequalities below hold regardless of the existence

of threshold effect, implying that we can make prediction without knowing the presence of

threshold effect or without pretesting it.

Remark 3. The smallest L2 in Assumption 3 can be chosen as∥∥f(α̂,τ0) − f0∥∥2n∥∥∥f̂ − f0∥∥∥2
n

,

provided that the denominator is nonzero. It seems natural, as an important special case, to

assume that the prediction loss is at least as large as an infeasible prediction risk replacing
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τ̂ with τ0, which would imply that L2 = 1. When we have L2 > 1, this results in an increase

in oracle inequalities below relative to the case when τ0 were known.

The following lemma is useful to derive sparsity oracle inequalities of the Lasso.

Lemma 4 (Oracle Inequalities of the Lasso). Assume that Assumption 1 holds with κ =

κ(s, 1+µ+L1

1−µ ) for µ < 1 and M(α0) ≤ s ≤ M. Furthermore, let Assumptions 2 and 3 hold.

Then conditional on the event A
⋂

B, we have∥∥∥f̂ − f0∥∥∥2
n
≤ (2 + L1)

2X2
maxL2

κ2
λ2s.

and

|α̂− α0|1 ≤
(2 + L1)

2X2
maxL2

(1− µ)Xminκ2
λs.

Remark 4. Compared to the case when τ0 were known (so that we can take T = {τ0}) and

thus L1 = 0 and L2 = 1, the upper bound is bigger by the multiple of
√
L2 (2 + L1) /2 for∥∥∥f̂ − f0∥∥∥

n
and of L2 (2 + L1)

2 /4 for |α̂− α0|1 . These multipliers can be viewed as prices

to pay to estimate unknown threshold parameter τ0.

We now provide a lemma to derive an oracle inequality regarding the sparsity of the

Lasso estimator α̂. To do so, we make the following assumption.

Assumption 4. Assume that the largest eigenvalue of X(τ)′X(τ)/n is bounded uniformly

in τ ∈ T by φmax.

Lemma 5 (Sparsity of the Lasso). Let Assumption 4 hold. Then conditional on the event

A
⋂

B, we have

(5.4) M(α̂) ≤ 4φmax

(1− µ)2 λ2X2
min

∥∥∥f̂ − f0∥∥∥2
n
.

Lemma 5, combined with Lemma 4, implies that M(α̂) is a just constant multiple of

M(α0), where the constant depends on L1, L2, Xmax, Xmin, φmax, µ and κ (independent of

λ).

6. Case I. No Threshold

We first consider the case that δ0 = 0. In other words, we estimate a threshold model via

the Lasso, but the true model is simply a linear model Yi = X ′iβ0+Ui. This is an important

case to consider since in applications, one may not be sure not only about covariates selection

but also about the existence of the threshold in the model.

When δ0 = 0, then Assumption 2 (in particular, equation (5.1)) holds automatically with

L1 = 0. Then the following theorem can be proved easily, thanks to Lemmas 4 and 5.
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Theorem 6. Assume that δ0 = 0 and Assumption 1 with (s, c0) =
(
s, 1+µ1−µ

)
for some

M (α0) ≤ s ≤ M and Assumption 3 hold. Let Ui follow N(0, σ2) and (α̂, τ̂) be the Lasso

estimator defined by (2.3) with

λ = Aσ
( log 3M

nrn

)1/2
and A > 2

√
2/µ. Then, with probability at least 1− (3M)1−A

2µ2/8 , we have∥∥∥f̂ − f0∥∥∥
n
≤ 2AσXmax

κ

(
L2 log 3M

nrn
s

)1/2

,

|α̂− α0|1 ≤ 4AσL2

(1− µ)κ2
X2

max

Xmin

(
log 3M

nrn

)1/2

s.

If Assumption 4 holds in addition, then

M(α̂) ≤ 16φmaxL2

(1− µ)2 κ2
X2

max

X2
min

s.

To appreciate the usefulness of the inequalities derived above, it is worth comparing

inequalities in Theorem 6 with those in Theorem 7.2 of Bickel et al. (2009). The latter

corresponds to the case that δ0 = 0 is known a priori, λ = 2Aσ(logM/n)1/2, µ = 1/2,

and Xmax = 1 using our notation. It can be seen that if we take the same λ both in

Theorem 6 and in Theorem 7.2 of Bickel et al. (2009), the bounds for the prediction risk,

the `1 estimation loss of α0, and the sparsity of α̂ are larger only by the multiples of

L2Xmax, L2Xmax/Xmin and L2X
2
max/X

2
min, respectively. As mentioned in Remark 4, these

multipliers can be viewed as prices to pay to estimate (α0, τ0) without knowing that δ0 = 0.

Perhaps more importantly, when these multipliers are bounded uniformly in n, the main

implication of Theorem 6 is that the our Lasso estimator in (2.3) gives qualitatively the

same oracle inequalities as the Lasso estimator in the linear model, even though our model

is much more overparametrized in that δ and τ are added to β as parameters to estimate.

7. Case II. Diminishing Threshold

We now consider the case when there is a nonzero δ0, but the threshold parameter τ0 is not

well-identified though. We formulate this case by assuming that maxj=1,...,M |δ0j | = d0n
−ν ,

for some positive constants ν and d0, and call this case the diminishing threshold. To

establish oracle inequalities, we need to make the following additional assumption.

Assumption 5 (Smoothness of Design). For any η > 0, there exists C <∞ such that

sup
j

sup
|τ−τ0|<η

1

n

n∑
i=1

∣∣∣X(j)
i

∣∣∣2 |1 (Qi < τ0)− 1 (Qi < τ)| ≤ Cη.
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Assumption 5 has been assumed in the classical setup with a fixed number of stochastic

regressors to exclude cases like Qi has a point mass at τ0 or E (Xi|Qi = τ0) is unbounded. In

our setup, Assumption 5 amounts to a deterministic version of some smoothness assumption

with respect to the threshold variable Qi.

Let L∗1 be the non-negative solution of the following equation (in terms of x):

f (x) = x (2 + x) = Cd20n
−2νM (δ0) |t1 − t0|κ2

(
X2

maxL2λ
2M (α0)

)−1
=: C∗L1

.

That is, L∗1 = −1+
√

1 + C∗L1
. We now give oracle inequalities for the diminishing threshold

case.

Theorem 7. Assume that

max
j=1,...,M

|δ0j | = d0n
−ν ,(7.1)

for some positive constants ν and d0. Also, let Assumption 1 with (s, c0) =
(
s,

1+µ+L∗
1

1−µ

)
for

some M (α0) ≤ s ≤M, Assumption 3, and Assumption 5 hold. Let Ui follow N(0, σ2) and

(α̂, τ̂) be the Lasso estimator defined by (2.3) with

λ = Aσ
( log 3M

nrn

)1/2
and A > 2

√
2/µ. Then, with probability at least 1− (3M)1−A

2µ2/8 , we have∥∥∥f̂ − f0∥∥∥
n
≤ Aσ (2 + L∗1)Xmax

κ

(
L2 log 3M

nrn
s

)1/2

,

|α̂− α0|1 ≤ Aσ (2 + L∗1)
2 L2

(1− µ)κ2
X2

max

Xmin

(
log 3M

nrn

)1/2

s.

If Assumption 4 holds in addition, then

M(α̂) ≤ 4φmax (2 + L∗1)
2 L2

(1− µ)2 κ2
X2

max

X2
min

s.

Theorem 7 gives qualitatively equivalent inequalities as those in Theorem 6. Note that

κ’s in Theorems 6 and 7 can be different from each other, since different c0 are assumed in

the RE condition.

Remark 5. The diminishing threshold case can be viewed as a local departure from the

no-threshold case δ0. In this view, it is interesting to know the situation when the positive

constant L∗1 is close to zero. Note that L∗1 approaches zero if and only if C∗L1
gets close

to zero. Suppose that C, d0, t0, t1, κ,Xmax, L2, A, and σ are independent of n. Then L∗1
converges to zero if and only if

n−2νM(δ0)M (α0)
−1 (nrn)/(log 3M)→ 0.
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Hence, if rn is bounded away from zero and M diverges to infinity, then ν can be larger

than or equal to 1/2, which gives the lower limit for the diminishing δ0 to be interpreted as

the local departure from the no-threshold case.

8. Case III. Fixed Threshold

This section explores the case where the threshold effect is well-identified and discontin-

uous. We begin with the following assumption to reflect this.

Assumption 6 (Identifiability under Sparsity and Discontinuity of Regression). For a

given s ≥ M (α0) , and for any η and τ such that |τ − τ0| ≥ η ≥ mini 6=j |Qi −Qj | and

α ∈ {α :M (α) ≤ s}, there exists a c > 0 such that∥∥f(α,τ) − f(α0,τ0)

∥∥2
n
≥ cη > 0.

Assumption 6 implies, among other things, that for some s ≥ M (α0) , and for any

α ∈ {α :M (α) ≤ s} and τ such that (α, τ) 6= (α0, τ0),∥∥f(α,τ) − f(α0,τ0)

∥∥
n
6= 0.(8.1)

This condition can be regarded as identifiability of τ0. If τ0 were known, then a sufficient

condition for the identifiability under the sparsity would be that RE (s, c0) holds for some

c0 ≥ 1. Note that the RE condition is not required for other values of τ than τ0 in our paper.

Thus, the main point in (8.1) is that there is no sparse representation that is equivalent to

f0 when the sample is split by τ 6= τ0. For the fixed threshold case, basically we replace

Assumption 2 with Assumption 6, believing that the latter condition is easier to interpret

than the former.

Remark 6. Assumption 6 is stronger than just the identifiability of τ0 as it specifies the rate

of deviation in f as τ moves away from τ0. The linear rate here is sharper than the quadratic

one that is usually observed in more regular M-estimation problems and it reflects the fact

that the limit criterion function, in the classical setup with a fixed number of stochastic

regressors, has a kink at the true τ0. For instance, suppose that {(Yi, Xi, Qi) : i = 1, . . . , n}
are independent and identically distributed, and consider the case where only the intercept

is included in Xi. Assuming that Qi has a density function that is continuous and positive

everywhere (so that P (τ ≤ Qi < τ0) and P (τ0 ≤ Qi < τ) can be bounded below by c1 |τ − τ0|
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for some c1 > 0), we have that

E (Yi − fi (α, τ))2 − E (Yi − fi (α0, τ0))
2

= E (fi (α0, τ0)− fi (α, τ))2

= (α1 − α10)
2 P (Qi < τ ∧ τ0) + (α2 − α20)

2 P (Qi ≥ τ ∨ τ0)

+ (α2 − α10)
2 P (τ ≤ Qi < τ0) + (α1 − α20)

2 P (τ0 ≤ Qi < τ)

≥ c |τ − τ0| ,

for some c > 0, where fi (α, τ) = X ′iβ + X ′iδ1{Qi < τ}, α1 = β + δ and α2 = β, unless

|α2 − α10| is too small when τ < τ0 and |α1 − α20| is too small when τ > τ0. However,

when |α2 − α10| is small, say smaller than ε, |α2 − α20| is bounded above zero due to the

discontinuity that α10 6= α20 and P (Qi ≥ τ ∨ τ0) = P (Qi ≥ τ0) is also bounded above zero.

This implies the inequality still holds. Since the same reasoning applies for the latter case,

we can conclude our discontinuity assumption holds in the standard discontinuous threshold

regression setup. In other words, the previous literature has typically imposed conditions

sufficient enough to render this condition.

Remark 7. The restriction η ≥ mini 6=j |Qi −Qj | in Assumption 6 is necessary since we

consider the fixed design for both Xi and Qi. Throughout this section, we implicitly assume

that the sample size n is large enough such that mini 6=j |Qi −Qj | never binds in any of

inequalities below. This is typically true for the random design case if Qi is continuously

distributed.

To simplify notation, in this section, we assume without loss of generality that Qi = i/n.

Then T = [t0, t1] ⊂ [0, 1]. For some constant η > 0, define an event

C (η) =

{
sup

|τ−τ0|<η

∣∣∣∣∣ 2n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ λ√η
}
.

The following lemma gives the lower bound of the probability of the event A ∩ B ∩
[∩mj=1C(ηj)] for a given m and some positive constants η1, ..., ηm,. To deal with the event

∩mj=1C(ηj), an extra term is added to the lower bound of the probability, in comparison to

Lemma 2.

Lemma 8 (Probability of A∩B∩{∩mj=1C(ηj)}). For a given m and some positive constants

η1, ..., ηm,

P

A
⋂

B
⋂ m⋂

j=1

C (ηj)

 ≥ 1− 6MΦ

(
−
µ
√
nrn

2σ
λ

)
− 4

m∑
j=1

Φ

(
− λ

√
n

2
√

2σhn (ηj)

)
,

where hn (η) =
(

(2nη)−1
∑[n(τ0+η)]

i=[n(τ0−η)] (X
′
iδ0)

2
)1/2

.
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The following lemma gives an upper bound of |τ̂ − τ0| using only Assumption 6, condi-

tional on the events A and B.

Lemma 9. Let η∗ = max
{

mini 6=j |Qi −Qj | , c−16λXmaxαmaxM(α0) + c−12µλXmax |δ0|1
}

.

Suppose that Assumption 6 holds. Then conditional on the events A and B,

|τ̂ − τ0| ≤ η∗.

Remark 8. The nonasymptotic bound in Lemma 9 can be translated into the consistency

of τ̂ , as in Theorem 3. That is, if n → ∞, M → ∞, and λM(α0) → 0, Lemma 9 implies

the consistency of τ̂ , provided that Xmax, αmax, and c−1 are bounded uniformly in n.

We now provide a lemma for bounding the prediction risk as well as the `1 estimation

loss for α0. In particular, we state results without resorting to Assumption 5.1.

Lemma 10. Suppose that Assumption 1 with (s, c0) =
(
s, 2+µ1−µ

)
for someM (α0) ≤ s ≤M ,

and Assumptions 3, 5 hold. If |τ̂ − τ0| ≤ cτ for some cτ , then conditional on A, B and

C(cτ ), we have∥∥∥f̂ − f0∥∥∥2
n
≤ 3λ

[√
cτ + cτC2−1X−1min |δ0|1

]
∨ 9X2

maxL2

κ2
λ2s,

|α̂− α0|1 ≤
3
[√
cτ + cτC2−1X−1min |δ0|1

]
(1− µ)Xmin

∨ 9L2

(1− µ)κ2
X2

max

Xmin
λs.

As can be seen in the proof of Lemma 10, both the prediction risk and the `1 estimation

loss for α0 can be small if |τ̂ − τ0| is small, even without Assumption 5.1. The following

lemma shows that the bound for |τ̂ − τ0| can be further tightened if we combine results

obtained in Lemmas 9 and 10.

Lemma 11. Suppose that |τ̂ − τ0| ≤ cτ and |α̂− α0|1 ≤ cα for some (cτ , cα). Let η̃ :=

c−1
(
Xmaxcα +

√
cτ + (2Xmin)−1 |δ0|1Ccτ

)
λ. If Assumption 6 holds, then conditional on

the events A, B, and C(cτ ),

|τ̂ − τ0| ≤ η̃.

Lemmas 9, 10, and 11 suggest that we may be able to develop a chaining argument to

obtain sharper bounds for the prediction risk and the `1 estimation loss of (α0, τ0), as we

demonstrate in the following theorem. Before we state our main theorem, we first make an

additional assumption. The following condition consists of inequality constraints on λ, s,

|δ0|1, and other constants.
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Assumption 7 (Inequality Conditions). The following inequalities hold:

|δ0|1 λ <
c

C

(
3Xmax

(1− µ)X2
min

+
1

Xmin

)−1
,(8.2)

s >

(
3Xmax

(1− µ)Xmin
+ 1

)2(Xmax

Xmin
+

1− µ
3

)−1 4 (1− µ)κ2

9cL2X2
max

,(8.3)

s >
4κ2

3cL2X2
max

(
3Xmax

(1− µ)Xmin
+ 1

)
.(8.4)

Remark 9. It would be easier to satisfy Assumption 7 when the sample size n is large. To

appreciate Assumption 7 in a setup when n is large, suppose that (1) n → ∞, M → ∞,

s → ∞, and λ → 0; (2) |δ0|1 may or may not diverge to infinity; (3) Xmin, Xmax, αmax,

κ, c, C, and L2 are independent of n. Then (8.2)-(8.4) can hold simultaneously for all

sufficiently large n, provided that |δ0|1 λ→ 0.

We now give the main result of this section.

Theorem 12. Suppose that Assumption 1 with (s, c0) =
(
s, 2+µ1−µ

)
for some M (α0) ≤ s ≤

M , and Assumptions 3, 5, 6, and 7 hold. Let Ui follow N(0, σ2) and (α̂, τ̂) be the Lasso

estimator defined by (2.3) with

λ = Aσ
( log 3M

nrn

)1/2
and A > 2

√
2/µ. Then, there exist a sequence of constants η1, ..., ηm∗ for some finite m∗

such that, with probability at least 1− (3M)1−A
2µ2/8−4

∑m∗

j=1 (3M)−A
2/(16rnhn(ηj)) , we have∥∥∥f̂ − f0∥∥∥

n
≤ 3AσXmax

κ

(
L2 log 3M

nrn
s

)1/2

,

|α̂− α0|1 ≤
9AσL2

(1− µ)κ2
X2

max

Xmin

(
log 3M

nrn

)1/2

s.

and

|τ̂ − τ0| ≤
(
Xmax

Xmin
+

1− µ
3

)
9L2X

2
max

(1− µ)κ2
A2σ2

c

log 3M

nrn
s.

If Assumption 4 holds in addition, then

M (α̂) ≤ 36φmaxL2

(1− µ)2 κ2
X2

max

X2
min

s.

Theorem 12 gives the same inequalities (up to constants) as those in Theorems 6 and 7 for

the prediction risk as well as the `1 estimation loss for α0. Note that Assumption 5.1 is not

needed to obtain Theorem 12. This is because we have used the result from the tight bound

for |τ̂ − τ0|. It is important to note that |τ̂ − τ0| is bounded by λ2s, whereas |α̂− α0|1 is

bounded by λs. This can be viewed as a nonasymptotic version of the super-consistency of
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τ̂ to τ0. One of main contributions of this paper is that we have extended the well-known

super-consistency result of τ̂ when M < n (see, e.g. Chan, 1993) to the high-dimensional

setup (M � n).

9. Monte Carlo Experiments

In this section we conduct some simulation studies and check the properties of the pro-

posed Lasso estimator. The baseline model is the following threshold regression:

Yi = X ′iβ0 +X ′iδ01{Qi < τ0}+ Ui, i = 1, . . . , n,

where Xi is a M -dimensional vector generated from N(0, I), Qi is a scalar generated

from the uniform distribution on the interval of (0, 1), and the error term Ui is gener-

ated from N(0, 0.52). The threshold parameter is set as τ0 = 0.3, 0.4, and 0.5 depend-

ing on the simulation design, and the coefficients are set as β0 = (1, 0, 1, 0, . . . , 0), and

δ0 = c · (0,−1, 1, 0, . . . , 0) where c = 0 or 1. Note that there is no threshold effect when

c = 0. The number of observations is set as n = 200. Finally, the dimension of Xi in each

design is set as M = 50, 100, 200 and 400, so that the total number of regressors are 100,

200, 400 and 800, respectively. The range of τ is T = [0.15, 0.85].

We can estimate the parameters by the standard LASSO/LARS algorithm of Efron et al.

(2004) without much modification. Given a regularization parameter value λ, we estimate

the model for each grid point of τ that spans over 71 equi-spaced points on T. This

procedure can be conducted by using the standard linear Lasso. Next, we plug-in the

estimated parameter α̂(τ) :=
(
β̂(τ)′, δ̂(τ)′

)′
for each τ into the objective function and

choose τ̂ by

τ̂ := arg min
τ∈T⊂R

{
Ŝ (α̂ (τ) , τ) + λ

∣∣∣D (τ)1/2 α̂ (τ)
∣∣∣
1

}
(9.1)

and α̂ := α̂(τ̂). The regularization parameter λ is chosen by

λ := A× σ

√
log (3M)

nrn
(9.2)

where rn = minj ||X(j)(t0)||2n/||X(j)||2n and σ = 0.5 is assumed to be known. For the

constant A, we use four different values: A = 2.8, 3.2, 3.6, and 4.0.

Tables 4 and Figures 1–2 summarize these simulation results. To compare the perfor-

mance of the Lasso estimator, we also report the estimation results of the least squares

(Least Squares) available only when M = 50 and two oracle models (Oracle 1 and Oracle

2, respectively). Oracle 1 assumes that the regressors with non-zero coefficients are known.

In addition to that, Oracle 2 assumes that the true threshold parameter τ0 is known. Thus,

when c 6= 0, Oracle 1 estimates (β(1), β(3), δ(2), δ(3)) and τ using the least squares while
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Oracle 2 estimates only (β(1), β(3), δ(2), δ(3)). When c = 0, both Oracle 1 and Oracle 2

estimate only (β(1), β(3)). All results are based on 400 replications of each sample.

The reported mean-squared prediction error (PE) for each sample is calculated numer-

ically as follows. For each sample s, we have the estimates β̂s, δ̂s, and τ̂s. Given these

estimates, we generate a new data {Yj , Xj , Qj} of 400 observations and calculate the pre-

diction error as

P̂Es =
1

400

400∑
j=1

(
f(xj , qj ;β0, δ0, τ0)− f(xj , qj ; β̂s, δ̂s, τ̂s)

)2
(9.3)

where f(x, q;β, δ, τ) = x′β + x′δ1{q < τ}. The mean, median, and standard deviation of

prediction errors are calculated from the 400 replications, {P̂Es}400s=1. In Table 4, we also

report mean ofM(α̂) and `1-errors for α and τ when M = 50. For simulation designs with

M > 50, Least Squares is not available. Figures 1–2 report the similar statistics only for

the Lasso estimators.

First, the proposed Lasso estimator performs better than Least Squares in all designs.

This result reveals more evidently when there is no threshold effect, i.e. c = 0, which shows

the robustness of the Lasso estimator for whether or not there exists a threshold effect. We

can reconfirm the robustness when M = 100, 200, and 400 from Figures 1–2. Second, as

predicted by the theory developed in previous sections, the prediction errors and `1 errors

for α and τ increase slowly as M increases. The graphs also show that the results are quite

uniform across different regularization parameter values except A = 4.0. Finally,

We next consider different simulation designs. The M -dimensional vector Xi is now

generated from a multivariate normal N(0,Σ) with (Σ)i,j = ρ|i−j|, where (Σ)i,j denotes the

(i,j) element of the M ×M covariance matrix Σ. All other random variables are the same

as above. We conducted the simulation studies for both ρ = 0.1 and 0.3; however, Tables 5

and Figures 3–4 only report the results of ρ = 0.3 to save space (the results with ρ = 0.1

are similar). They show very similar results as previous cases: Lasso outperforms Least

Squares, and the prediction error,M(α̂), and `1-errors increase very slowly as M increases.

Figure 5 shows frequencies of selecting true parameters when both ρ = 0 and ρ = 0.3.

When ρ = 0, the probability that the Lasso estimates include the true nonzero parameters

is very high. In most cases, the probability is 100%, and even the lowest probability is as

high as 98.25%. When ρ = 0.3, the corresponding probability is somewhat lower than the

no-correlation case, but it is still high and the lowest value is 80.75%.

In sum, the simulation results confirm the theoretical results developed earlier and

show that the proposed Lasso estimator will be useful for the threshold model with high-

dimensional regressors.
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10. Conclusions

We have considered a high-dimensional regression model with a possible change-point

due to a covariate threshold and have developed the Lasso method. We have derived

nonasymptotic oracle inequalities and have illustrated the usefulness of our proposed es-

timation method via simulations and a real-data application. It would be an interesting

future research topic to extend the adaptive Lasso of Zou (2006) to our setup and to see

whether we would be able to improve the performance of our estimation method.

Appendix A. Proofs

Proof of Lemma 1. Note that

Ŝn + λ
∣∣∣D̂α̂∣∣∣

1
≤ Sn(α, τ) + λ |D(τ)α|1(A.1)

for all (α, τ) ∈ R2M × T. Now write

Ŝn − Sn(α, τ)

= n−1 |y −X(τ̂)α̂|22 − n
−1 |y −X(τ)α|22

= n−1
n∑
i=1

[
Ui −

{
Xi(τ̂)′α̂−Xi(τ0)

′α0

}]2 − n−1 n∑
i=1

[
Ui −

{
Xi(τ)′α−Xi(τ0)

′α0

}]2
= n−1

n∑
i=1

{
Xi(τ̂)′α̂−Xi(τ0)

′α0

}2 − n−1 n∑
i=1

{
Xi(τ)′α−Xi(τ0)

′α0

}2
− 2n−1

n∑
i=1

Ui
{
Xi(τ̂)′α̂−Xi(τ)′α

}
=
∥∥∥f̂ − f0∥∥∥2

n
−
∥∥f(α,τ) − f0∥∥2n

− 2n−1
n∑
i=1

UiX
′
i(β̂ − β)− 2n−1

n∑
i=1

Ui

{
X ′i δ̂1(Qi < τ̂)−X ′iδ1(Qi < τ)

}
.

Further, write the last term above as

n−1
n∑
i=1

Ui

{
X ′i δ̂1(Qi < τ̂)−X ′iδ1(Qi < τ)

}
= n−1

n∑
i=1

UiX
′
i(δ̂ − δ)1(Qi < τ̂) + n−1

n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .
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Hence, (A.1) can be written as∥∥∥f̂ − f0∥∥∥2
n
≤
∥∥f(α,τ) − f0∥∥2n + λ |D(τ)α|1 − λ

∣∣∣D̂α̂∣∣∣
1

+ 2n−1
n∑
i=1

UiX
′
i(β̂ − β) + 2n−1

n∑
i=1

UiX
′
i(δ̂ − δ)1(Qi < τ̂)

+ 2n−1
n∑
i=1

UiX
′
iδ {1(Qi < τ̂)− 1(Qi < τ)} .

Then on the events A and B, we have∥∥∥f̂ − f0∥∥∥2
n
≤
∥∥f(α,τ) − f0∥∥2n + µλ

∣∣∣D̂(α̂− α)
∣∣∣
1

+ λ |D(τ)α|1 − λ
∣∣∣D̂α̂∣∣∣

1
+Rn(α, τ)

(A.2)

for all (α, τ) ∈ R2M × T.
Note the the fact that∣∣∣α̂(j) − α(j)

0

∣∣∣+
∣∣∣α(j)

0

∣∣∣− ∣∣∣α̂(j)
∣∣∣ = 0 for j /∈ J0.(A.3)

On the one hand, by (A.2) (evaluating at (α, τ) = (α0, τ0)), on the events A and B,∥∥∥f̂ − f0∥∥∥2
n

+ (1− µ)λ
∣∣∣D̂(α̂− α0)

∣∣∣
1

≤ λ
(∣∣∣D̂(α̂− α0)

∣∣∣
1

+
∣∣∣D̂α0

∣∣∣
1
−
∣∣∣D̂α̂∣∣∣

1

)
+ λ

∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣+Rn(α0, τ0)

≤ 2λ
∣∣∣D̂(α̂− α0)J0

∣∣∣
1

+ λ
∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣+Rn(α0, τ0),

which proves (4.1). On the other hand, again by (A.2) (evaluating at (α, τ) = (α0, τ̂)), on

the events A and B,∥∥∥f̂ − f0∥∥∥2
n

+ (1− µ)λ
∣∣∣D̂(α̂− α0)

∣∣∣
1

≤ λ
(∣∣∣D̂(α̂− α0)

∣∣∣
1

+
∣∣∣D̂α0

∣∣∣
1
−
∣∣∣D̂α̂∣∣∣

1

)
+
∥∥f(α0,τ̂) − f0

∥∥2
n

≤ 2λ
∣∣∣D̂(α̂− α0)J0

∣∣∣
1

+
∥∥f(α0,τ̂) − f0

∥∥2
n
,

which proves (4.2). �

Proof of Lemma 2. Since Ui ∼ N(0, σ2),

P{Ac} ≤
M∑
j=1

P
{√

n|V1j | > µ
√
nλ/(2σ)

}
= 2MΦ

(
−µ
√
n

2σ
λ

)
≤ 2MΦ

(
−
µ
√
rnn

2σ
λ

)
,

where the last inequality follows from rn ≤ 1.
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Now consider the event B. Note that
∥∥X(j)(τ)

∥∥
n

is monotonically increasing in τ and∑n
i=1 UiX

(j)
i 1 {Qi < τ} can be rewritten as a partial sum process by the rearrangement of i

according to the magnitude of Qi. To simplify notation, we assume without loss of generality

that Qi = i/n. Then, by Lévy’s inequality (see e.g. Proposition A.1.2 of van der Vaart and

Wellner, 1996),

P
{

sup
τ∈T

√
n |V2j(τ)| > µ

√
nλ/(2σ)

}
≤ P

{
sup

1≤s≤n

∣∣∣∣∣ 1√
n

s∑
i=1

UiX
(j)
i

∣∣∣∣∣ > ∥∥∥X(j) (t0)
∥∥∥
n

µ
√
n

2σ
λ

}

≤ 2P

{
√
n|V1j | >

∥∥X(j)(t0)
∥∥
n∥∥X(j)

∥∥
n

µ
√
n

2σ
λ

}
.

Therefore, we have

P{Bc} ≤
M∑
j=1

P
{

sup
τ∈T

√
n|V2j(τ)| > µ

√
nλ/(2σ)

}

≤ 4MΦ

(
−
µ
√
rnn

2σ
λ

)
.

Since P{A ∩ B} ≥ 1− P{Ac} − P{Bc}, we have proved the lemma. �

Proof of Theorem 3. Note that

Rn = 2n−1
n∑
i=1

UiX
′
iδ0 {1(Qi < τ̂)− 1(Qi < τ0)} .

Then on the event B,

|Rn| ≤ 2µλ

M∑
j=1

∥∥∥X(j)
∥∥∥
n
|δ(j)0 |

≤ 2µλXmax |δ0|1 .

(A.4)

Then, conditional on A ∩ B, combining (A.4) with (4.1) gives∥∥∥f̂ − f0∥∥∥2
n

+ (1− µ)λ
∣∣∣D̂(α̂− α0)

∣∣∣
1
≤ 6λXmaxαmaxM(α0) + 2µλXmax |δ0|1 .(A.5)

since

|D(τ)(α̂− α0)J0 |1 ≤ 2XmaxαmaxM(α0),∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣ ≤ 2Xmax |α0|1 .

Using the bound that 2Φ (−x) ≤ exp
(
−x2/2

)
for x > 0 as in equation (B.4) of Bickel et al.

(2009), Lemma 2 with λ given by (4.3) implies that the event A∩B occurs with probability

at least 1− (3M)1−A
2µ2/8. Then the theorem follows from (A.5). �
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Proof of Lemma 4. Combining (4.2) with (5.1) in Assumption 2 or combining (4.1) with

(5.2) in Assumption 2 yields

(A.6)
∥∥∥f̂ − f0∥∥∥2

n
+ (1− µ)λ

∣∣∣D̂(α̂− α0)
∣∣∣
1
≤ (2 + L1)λ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1
,

which implies that ∣∣∣D̂(α̂− α0)Jc
0

∣∣∣
1
≤ 1 + µ+ L1

1− µ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1
.

This in turn allows us to apply Assumption 1, specifically RE(s, 1+µ+L1

1−µ ), to yield

κ2
∣∣∣D̂(α̂− α0)J0

∣∣∣2
2
≤ 1

n
|X(τ0)D̂(α̂− α0)|22

=
1

n
(α̂− α0)

′D̂X(τ0)
′X(τ0)D̂(α̂− α0)

≤ max(D̂)2

n
(α̂− α0)

′X(τ0)
′X(τ0)(α̂− α0)

= max(D̂)2
∥∥f(α̂,τ0) − f0∥∥2n ,

(A.7)

where κ = κ(s, 1+µ+L1

1−µ ).

Combining (A.6) with (A.7) yields∥∥∥f̂ − f0∥∥∥2
n
≤ (2 + L1)λ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1

≤ (2 + L1)λ
√
s
∣∣∣D̂(α̂− α0)J0

∣∣∣
2

≤ (2 + L1)λ

κ

√
smax(D̂)

∥∥f(α̂,τ0) − f0∥∥n
≤ (2 + L1)λ

√
L2

κ

√
smax(D̂)

∥∥∥f̂ − f0∥∥∥
n
,

where the last inequality follows from Assumption 3. Then the first conclusion of the lemma

follows immediately.
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In addition, combining the arguments above with the first conclusion of the lemma yields∣∣∣D̂ (α̂− α0)
∣∣∣
1

=
∣∣∣D̂(α̂− α0)J0

∣∣∣
1

+
∣∣∣D̂(α̂− α0)Jc

0

∣∣∣
1

≤ (2 + L1) (1− µ)−1
∣∣∣D̂(α̂− α0)J0

∣∣∣
1

≤ (2 + L1) (1− µ)−1
√
s
∣∣∣D̂(α̂− α0)J0

∣∣∣
2

≤ 2 + L1

κ (1− µ)
max(D̂)

∥∥f(α̂,τ0) − f0∥∥n√s
≤ (2 + L1)

√
L2

κ (1− µ)
max(D̂)

∥∥∥f̂ − f0∥∥∥
n

√
s

≤ (2 + L1)
2 λL2

(1− µ)κ2
sX2

max,

which proves the second conclusion of the lemma since∣∣∣D̂ (α̂− α0)
∣∣∣
1
≥ min(D̂) |(α̂− α0)|1 .(A.8)

�

Proof of Lemma 5. As in (B.6) of Bickel et al. (2009), for each τ , the necessary and sufficient

condition for α̂(τ) to be the Lasso solution can be written in the form

2

n
[X(j)]′(y −X(τ)α̂(τ)) = λ

∥∥∥X(j)
∥∥∥
n

sign(β̂(j)(τ)) if β̂(j)(τ) 6= 0∣∣∣∣ 2n [X(j)]′(y −X(τ)α̂(τ))

∣∣∣∣ ≤ λ ∥∥∥X(j)
∥∥∥
n

if β̂(j)(τ)= 0

2

n
[X(j)(τ)]′(y −X(τ)α̂(τ)) = λ

∥∥∥X(j)(τ)
∥∥∥
n

sign(δ̂(j)(τ)) if δ̂(j)(τ) 6= 0∣∣∣∣ 2n [X(j)(τ)]′(y −X(τ)α̂(τ))

∣∣∣∣ ≤ λ ∥∥∥X(j)(τ)
∥∥∥
n

if δ̂(j)(τ)= 0,

where j = 1, . . . ,M .

Note that conditional on events A and B,

2

n

n∑
i=1

UiX
(j)
i ≤ µλ

∥∥∥X(j)
∥∥∥
n

2

n

n∑
i=1

UiX
(j)
i 1{Qi < τ} ≤ µλ

∥∥∥X(j)(τ)
∥∥∥
n
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for any τ , where j = 1, . . . ,M . Therefore,∣∣∣∣ 2n [X(j)]′(X(τ0)α0 −X(τ)α̂(τ))

∣∣∣∣ ≥ (1− µ)λ
∥∥∥X(j)

∥∥∥
n

if β̂(j)(τ)6= 0∣∣∣∣ 2n [X(j)(τ)]′(X(τ0)α0 −X(τ)α̂(τ))

∣∣∣∣ ≥ (1− µ)λ
∥∥∥X(j)(τ)

∥∥∥
n

if δ̂(j)(τ)6= 0.

Using inequalities above, write

1

n2
[X(τ0)α0 −X(τ̂)α̂]′X(τ̂)X(τ̂)′ [X(τ0)α0 −X(τ̂)α̂]

=
1

n2

M∑
j=1

{
[X(j)]′[X(τ0)α0 −X(τ̂)α̂]

}2
+

1

n2

M∑
j=1

{
[X(j)(τ̂)]′[X(τ0)α0 −X(τ̂)α̂]

}2

≥ 1

n2

∑
j:β̂(j) 6=0

{
[X(j)]′[X(τ0)α0 −X(τ̂)α̂]

}2
+

1

n2

∑
j:δ̂(j) 6=0

{
[X(j)(τ̂)]′[X(τ0)α0 −X(τ̂)α̂]

}2

≥ (1− µ)2 λ2

4

 ∑
j:β̂(j) 6=0

∥∥∥X(j)
∥∥∥2
n

+
∑

j:δ̂(j) 6=0

∥∥∥X(j)(τ̂)
∥∥∥2
n


≥ (1− µ)2 λ2

4
X2

minM (α̂) .

To complete the proof, note that

1

n2
[X(τ0)α0 −X(τ̂)α̂]′X(τ̂)X(τ̂)′ [X(τ0)α0 −X(τ̂)α̂]

≤ maxeig(X(τ̂)X(τ̂)′/n)
∥∥∥f̂ − f0∥∥∥2

n

≤ φmax

∥∥∥f̂ − f0∥∥∥2
n
,

where maxeig(X(τ̂)X(τ̂)′/n) denotes the largest eigenvalue of X(τ̂)X(τ̂)′/n. �

Proof of Theorem 6. Since δ0 = 0, Assumption 2 holds with L1 = 0. Then theorem follows

by combining Lemmas 4 and 5 with the bound on P(A ∩ B) as in the proof of Theorem

3. �

Proof of Theorem 7. First of all, recall the bound on P(A ∩ B) be obtained as in the proof

of Theorem 3. We consider the following two cases: (i) (5.1) holds with L1 = L∗1, and (ii)

it does not hold.

Case (i). If (5.1) holds with L1 = L∗1, then the conditions of Lemma 4 are satisfied. In

this case, the theorem can be proved as in the proof of Theorem 6 by combining Lemmas

4 and 5.
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Case (ii). Thus, it remains to consider the case that (5.1) does not hold, that is,

L∗1λ
∣∣∣D̂(α̂− α0)J0

∣∣∣
1
<
∥∥f(α0,τ̂) − f0

∥∥2
n
.(A.9)

First, note that the fact that∥∥f(α0,τ̂) − f0
∥∥2
n

=
1

n

n∑
i=1

(
X ′iδ0

)2 |1 {Qi < τ0} − 1 {Qi < τ̂}|

≤ d20n−2νCM (δ0) |t1 − t0| ,
(A.10)

where the last inequality follows from (7.1) and Assumption 5 with η = |t1 − t0|.
Now combining (4.2), (A.9), and (A.10) together yields that∥∥∥f̂ − f0∥∥∥2

n
≤
(

2

L∗1
+ 1

)∥∥f(α0,τ̂) − f0
∥∥2
n

≤
(

2

L∗1
+ 1

)
Cd20n

−2νM (δ0) |t0 − t1|

=
(2 + L∗1)

2

C∗L1

Cd20n
−2νM (δ0) |t0 − t1|

=
(2 + L∗1)

2X2
maxL2

κ2
λ2M(α0),

where the last two equalities follow from the construction of L∗1. This proves the first

conclusion of the theorem.

To obtain the bound on |α̂− α0|1, note that again using (4.2), (A.9), and (A.10) and

repeating the same arguments as above, we have∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ 1

(1− µ)λ

(
2

L∗1
+ 1

)∥∥f(α0,τ̂) − f0
∥∥2
n

≤ (2 + L∗1)
2X2

maxL2

(1− µ)κ2
λM(α0),

which, combined with (A.8), proves the second conclusion of the theorem. The third con-

clusion follows immediately from Lemma 5. �
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Proof of Lemma 8. Given Lemma 2, it remains to examine the probability of C (ηj). As in

the proof of Lemma 2, Lévy’s inequality yields that

P {C (ηj)
c} ≤ P

{
sup

|τ−τ0|≤ηj

∣∣∣∣∣ 2n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ0)− 1 (Qi < τ)]

∣∣∣∣∣ > λ
√
ηj

}
.

≤ 2P


∣∣∣∣∣∣ 2n

[n(τ0+ηj)]∑
i=[n(τ0−ηj)]

UiX
′
iδ0

∣∣∣∣∣∣ > λ
√
ηj


≤ 4Φ

(
− λ

√
n

2
√

2σhn (ηj)

)
.

Hence, we have proved the lemma since P
{
A
⋂
B
⋂[⋂m

j=1C (ηj)
]}
≥ 1−P{Ac}−P{Bc}−∑m

j=1 P{C (ηj)
c}. �

Proof of Lemma 9. As in the proof of Lemma 1, we have, on the events A and B,

Ŝn − Sn(α0, τ0)

=
∥∥∥f̂ − f0∥∥∥2

n
− 2n−1

n∑
i=1

UiX
′
i(β̂ − β0)− 2n−1

n∑
i=1

UiX
′
i(δ̂ − δ0)1(Qi < τ̂)−Rn

≥
∥∥∥f̂ − f0∥∥∥2

n
− µλ

∣∣∣D̂(α̂− α)
∣∣∣
1
−Rn.

(A.11)

Then using (A.3), on the events A and B,[
Ŝn + λ

∣∣∣D̂α̂∣∣∣
1

]
− [Sn(α0, τ0) + λ |Dα0|1]

≥
∥∥∥f̂ − f0∥∥∥2

n
− µλ

∣∣∣D̂(α̂− α0)
∣∣∣
1
− λ

[
|Dα0|1 −

∣∣∣D̂α̂∣∣∣
1

]
−Rn

≥
∥∥∥f̂ − f0∥∥∥2

n
− 2λ

∣∣∣D̂(α̂− α0)J0

∣∣∣
1
− λ

[
|Dα0|1 −

∣∣∣D̂α0

∣∣∣
1

]
−Rn

≥
∥∥∥f̂ − f0∥∥∥2

n
− [6λXmaxαmaxM(α0) + 2µλXmax |δ0|1] ,

(A.12)

where the last inequality follows from (A.4) and the following bounds:

2λ
∣∣∣D̂(α̂− α0)J0

∣∣∣
1
≤ 4XmaxαmaxλM (α0) ,

λ
[
|Dα0|1 −

∣∣∣D̂α0

∣∣∣
1

]
≤ 2XmaxαmaxλM (α0) .

Suppose now that |τ̂ − τ0| ≥ η∗2. Then Assumption 6 and (A.12) together imply that[
Ŝn + λ

∣∣∣D̂α̂∣∣∣
1

]
− [Sn(α0, τ0) + λ |Dα0|1] > 0,

which leads to contradiction as τ̂ is the minimizer of the criterion function as in (2.3).

Therefore, we have proved the lemma. �
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Proof of Lemma 10. Recall the basic inequality in (4.1):∥∥∥f̂ − f0∥∥∥2
n

+ (1− µ)λ
∣∣∣D̂(α̂− α0)

∣∣∣
1

≤ 2λ
∣∣∣D̂(α̂− α0)J0

∣∣∣
1

+ λ
∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣+Rn.

Note that on C,

|Rn| =

∣∣∣∣∣2n−1
n∑
i=1

UiX
′
iδ0 {1(Qi < τ̂)− 1(Qi < τ0)}

∣∣∣∣∣
≤ λ

√
cτ ,

and due to the mean value theorem (applied to f (x) =
√
x) and Assumption 5,

∣∣∣∣∣∣D̂α0

∣∣∣
1
− |Dα0|1

∣∣∣ =

∣∣∣∣∣∣
M∑
j=1

(∥∥∥X (τ̂)(j)
∥∥∥
n
−
∥∥∥X (τ0)

(j)
∥∥∥
n

) ∣∣∣δ(j)0

∣∣∣
∣∣∣∣∣∣

≤
M∑
j=1

1

2

∥∥∥X (t0)
(j)
∥∥∥−1
n

∣∣∣δ(j)0

∣∣∣ 1

n

n∑
i=1

∣∣∣X(j)
i

∣∣∣2 |1 {Qi < τ̂} − 1 {Qi < τ0}|

≤ C2−1X−1mincτ |δ0|1 .

(A.13)

We now consider two cases: (i)
∣∣∣D̂(α̂− α0)J0

∣∣∣
1
>
√
cτ + cτC2−1X−1min |δ0|1 and case (ii)∣∣∣D̂(α̂− α0)J0

∣∣∣
1
≤ √cτ + cτC2−1X−1min |δ0|1.

Case (i): In this case, note that (5.2) in Assumption 2 holds with L1 = 1. Thus, we can

repeat the proof of Lemma 4 with L1 = 1, which gives that on on A and B,

|α̂− α0|1 ≤
9L2

(1− µ)κ2
X2

max

Xmin
λs,∥∥∥f̂ − f0∥∥∥2

n
≤ 9X2

maxL2

κ2
λ2s.

Case (ii): If
∣∣∣D̂(α̂− α0)J0

∣∣∣
1
≤ √cτ + cτC2−1X−1min |δ0|1, then it follows from (4.1) that∥∥∥f̂ − f0∥∥∥2
n
≤ 3λ

[√
cτ + cτC2−1X−1min |δ0|1

]
,∣∣∣D̂(α̂− α0)

∣∣∣
1
≤ 3

1− µ
[√
cτ + cτC2−1X−1min |δ0|1

]
,

which implies that

|α̂− α0|1 ≤
3

(1− µ)Xmin

[√
cτ + cτC2−1X−1min |δ0|1

]
.

Therefore, we have proved the lemma. �
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Proof of Lemma 11. Note that on A, B and C,∣∣∣∣∣ 2n
n∑
i=1

[
UiX

′
i

(
β̂ − β0

)
+ UiX

′
i1 (Qi < τ̂)

(
δ̂ − δ0

)]∣∣∣∣∣
≤ µλXmax |α̂− α0|1 ≤ µλXmaxcα

and ∣∣∣∣∣ 2n
n∑
i=1

UiX
′
iδ0 [1 (Qi < τ̂)− 1 (Qi < τ0)]

∣∣∣∣∣ ≤ λ√cτ .
Suppose η̃ ≤ |τ̂ − τ0| < cτ . Then, as in (A.11),

Ŝn − Sn(α0, τ0) ≥
∥∥∥f̂ − f0∥∥∥2

n
− µλXmaxcα − λ

√
cτ .(A.14)

Furthermore, due to (A.13), we obtain[
Ŝn + λ

∣∣∣D̂α̂∣∣∣
1

]
− [Sn(α0, τ0) + λ |Dα0|1]

≥ cη̃ − (µXmaxcα +
√
cτ )λ− C2−1X−1mincτ |δ0|1 λ.

Thus, since cη̃ =
(
Xmaxcα +

√
cτ + (2Xmin)−1 |δ0|1Ccτ

)
λ, we again use the contradiction

argument as in the proof of Lemma 9 to prove the lemma. �

Proof of of Theorem 12. Here we use the chaining argument by iteratively applying Lemmas

10 and 11 to tighten the bounds for the prediction risk and the estimation errors in α̂ and

τ̂ .

In view of Lemma 9, we first start with

cτ := c−18Xmaxαmaxλs.

Suppose that

(A.15)
3
[√
cτ + cτC2−1X−1min |δ0|1

]
(1− µ)Xmin

≤ 9L2

(1− µ)κ2
X2

max

Xmin
λs =: c(0)α ,

which in turn implies from Lemma 10 that |α̂− α0|1 and
∥∥∥f̂ − f0∥∥∥2

n
achieve the bounds in

the theorem given the choice of λ. Then Lemma 11 with cα = c
(0)
α yields that

|τ̂ − τ0| ≤ c−1
(
Xmaxcα +

√
cτ + (2Xmin)−1 |δ0|1Ccτ

)
λ

≤
(
Xmax

Xmin
+

1− µ
3

)
9L2X

2
max

c (1− µ)κ2
λ2s =: c(0)τ .

Thus, it remains to show that there is convergence in the iterated applications of Lemmas

10 and 11 toward the desired bound when (A.15) does not hold.
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When (A.15) does not hold for c
(m)
τ for some m, where the superscript m indicates the

m-th iteration, Lemmas 10 and 11 imply that

c(m+1)
α =

3

[√
c
(m)
τ + c

(m)
τ C2−1X−1min |δ0|1

]
(1− µ)Xmin

,

and

c(m+1)
τ = c−1

(
Xmaxc

(m+1)
α +

√
c
(m)
τ + (2Xmin)−1 |δ0|1Cc

(m)
τ

)
λ.

Whenever c
(m)
α ≤ c

(0)
α , we can stop the iteration and the desired bound is achieved as

discussed in (A.15). Hence, it suffices to derive the fixed point when we start with the

initial m such that c
(m)
α > c

(0)
α .

Next, we derive the fixed point as follows. First, suppose that c
(m)
τ >

(
C2−1X−1min |δ0|1

)−2
.

Recall that |δ0|1 6= 0 due to Assumption 6. Then we have

c(m+1)
α =

3c
(m)
τ C |δ0|1

(1− µ)X2
min

and thus

c(m+1)
τ =

C

c

(
3Xmax

(1− µ)X2
min

+
1

Xmin

)
|δ0|1 λc

(m)
τ ,

which is strictly less than c
(m)
τ under (8.2) . It implies that c

(m)
τ converges to zero as

the iteration continues. Therefore, there exists a sufficiently large m̃ such that c
(m)
τ ≤(

C2−1X−1min |δ0|1
)−2

holds for all m ≥ m̃.

Next assume that c
(m)
τ ≤

(
C2−1X−1min |δ0|1

)−2
. In this case, we have

c(m+1)
α =

6

√
c
(m)
τ

(1− µ)Xmin

and

c(m+1)
τ = 2c−1

(
3Xmax

(1− µ)Xmin
+ 1

)
λ

√
c
(m)
τ .(A.16)

Recall that we are considering the case that when (A.15) does not hold, so that c
(0)
τ <

c
(m)
τ ≤

(
C2−1X−1min |δ0|1

)−2
. Let

c(∞)
τ = 4c−2

(
3Xmax

(1− µ)Xmin
+ 1

)2

λ2.(A.17)

As long as c
(∞)
τ < c

(0)
τ (which is true under (8.3)), the fixed point of (A.16) is c

(∞)
τ since the

intial c
(m)
τ starts from the right-hand side of the fixed point and converges to c

(∞)
τ . Recall

that we can stop the iteration as soon as c
(m)
τ < c

(0)
τ . Thus, the iteration continues only a

finite number of times because c
(j)
τ is strictly decreasing. Each application of Lemmas 10
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and 11 in the chaining argument requires conditioning on C (ηj), j = 1, ...,m∗, for some

finite m∗.

Furthermore, (A.17) implies that

c(∞)
α =

12c−1

(1− µ)Xmin

(
3Xmax

(1− µ)Xmin
+ 1

)
λ.

Note that c
(∞)
α < c

(0)
α under (8.4). Therefore, for each case, we have shown that |α̂− α0|1 ≤

c
(0)
α and |τ̂ − τ0| ≤ c

(0)
τ . The bound for the prediction risk can be obtained similarly, and

then the bound for the sparsity of the Lasso estimator follows from Lemma 5. �
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Table 1. List of Variables

Variable Names Description
Dependent Variable
gr Annualized GDP growth rate in the period of 1960–85

Threshold Variables
gdp60 Real GDP per capita in 1960 (1985 price)
lr Adult literacy rate in 1960

Covariates
lgdp60 Log GDP per capita in 1960 (1985 price)
lr Adult literacy rate in 1960 (only included when Q = lr)
lsk Log(Investment/Output) annualized over 1960-85; a proxy for the log physical sav-

ings rate
lgrpop Log population growth rate annualized over 1960–85
pyrm60 Log average years of primary schooling in the male population in 1960
pyrf60 Log average years of primary schooling in the female population in 1960
syrm60 Log average years of secondary schooling in the male population in 1960
syrf60 Log average years of secondary schooling in the female population in 1960
hyrm60 Log average years of higher schooling in the male population in 1960
hyrf60 Log average years of higher schooling in the female population in 1960
nom60 Percentage of no schooling in the male population in 1960
nof60 Percentage of no schooling in the female population in 1960
prim60 Percentage of primary schooling attained in the male population in 1960
prif60 Percentage of primary schooling attained in the female population in 1960
pricm60 Percentage of primary schooling complete in the male population in 1960
pricf60 Percentage of primary schooling complete in the female population in 1960
secm60 Percentage of secondary schooling attained in the male population in 1960
secf60 Percentage of secondary schooling attained in the female population in 1960
seccm60 Percentage of secondary schooling complete in the male population in 1960
seccf60 Percentage of secondary schooling complete in the female population in 1960
llife Log of life expectancy at age 0 averaged over 1960–1985
lfert Log of fertility rate (children per woman) averaged over 1960–1985
edu/gdp Government expenditure on eduction per GDP averaged over 1960–85
gcon/gdp Government consumption expenditure net of defence and education per GDP aver-

aged over 1960–85
revol The number of revolutions per year over 1960–84
revcoup The number of revolutions and coups per year over 1960–84
wardum Dummy for countries that participated in at least one external war over 1960–84
wartime The fraction of time over 1960-85 involved in external war
lbmp Log(1+black market premium averaged over 1960–85)
tot The term of trade shock
lgdp60× ‘educ’ Product of two covariates (interaction of lgdp60 and education variables from

pyrm60 to seccf60 ); total 16 variables
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Table 2. Model Selection and Estimation Results with Q = gdp60

Linear Model
Threshold Model

τ̂ = 2898

β̂ δ̂
const. 0.0232 0.0232 -
lgdp60 -0.0153 -0.0120 -

lsk 0.0033 0.0038 -
lgrpop 0.0018 - -
pyrf60 0.0027 - -
syrm60 0.0157 - -
hyrm60 0.0122 0.0130 -
hyrf60 -0.0389 - -0.0807
nom60 - - 2.64× 10−5

prim60 -0.0004 -0.0001 -
pricm60 0.0006 −1.73× 10−4 −0.35× 10−4

pricf60 -0.0006 - -
secf60 0.0005 - -

seccm60 0.0010 - 0.0014
llife 0.0697 0.0523 -
lfert -0.0136 -0.0047 -

edu/gdp -0.0189 - -
gcon/gdp -0.0671 -0.0542 -

revol -0.0588 - -
revcoup 0.0433 - -
wardum -0.0043 - -0.0022
wartime -0.0019 -0.0143 -0.0023

lbmp -0.0185 -0.0174 -0.0015
tot 0.0971 - 0.0974

lgdp60× pyrf60 - −3.81× 10−6 -
lgdp60× syrm60 - - 0.0002
lgdp60× hyrm60 - - 0.0050
lgdp60× hyrf60 - -0.0003 -
lgdp60× nom60 - - 8.26× 10−6

lgdp60× prim60 −6.02× 10−7 - -
lgdp60× prif60 −3.47× 10−6 - −8.11× 10−6

lgdp60× pricf60 −8.46× 10−6 - -
lgdp60× secm60 -0.0001 - -
lgdp60× seccf60 -0.0002 −2.87× 10−6 -

λ 0.0004 0.0034
M(α̂) 28 26

# of covariates 46 92
# of obsesrvations 80 80

R2 0.85 0.80

Note: The regularization parameter λ is chosen by the ‘leave-one-out’ least squares
cross validation method. M(α̂) denotes the number of covariates to be selected by

LASSO, and ‘-’ indicates that the regressor is not selected. Recall that β̂ is the coeffi-

cient when Q ≥ γ̂ and that δ̂ is the change of the coefficient value when Q < γ̂.



THE LASSO FOR HIGH-DIMENSIONAL REGRESSION WITH A POSSIBLE CHANGE-POINT 33

Table 3. Model Selection and Estimation Results with Q = lr

Linear Model
Threshold Model

τ̂ = 82

β̂ δ̂
const. 0.0224 0.0224 -
lgdp60 -0.0159 -0.0099 -

lsk 0.0038 0.0046 -
syrm60 0.0069 - -
hyrm60 0.0188 0.0101 -
prim60 -0.0001 -0.0001 -
pricm60 0.0002 0.0001 0.0001
seccm60 0.0004 - 0.0018

llife 0.0674 0.0335 -
lfert -0.0098 -0.0069 -

edu/gdp -0.0547 - -
gcon/gdp -0.0588 -0.0593 -

revol -0.0299 - -
revcoup 0.0215 - -
wardum -0.0017 - -
wartime -0.0090 -0.0231 -

lbmp -0.0161 -0.0142 -
tot 0.1333 0.0846 -

lgdp60× hyrf60 -0.0014 - -0.0053
lgdp60× nof60 1.49× 10−5 - -
lgdp60× prif60 −1.06× 10−5 - −2.66× 10−6

lgdp60× seccf60 -0.0001 - -
λ 0.0011 0.0044

M(α̂) 22 16
# of covariates 47 94

# of observations 70 70
R2 0.82 0.80

Note: The regularization parameter λ is chosen by the ‘leave-one-out’ least squares
cross validation method. M(α̂) denotes the number of covariates to be selected by

LASSO, and ‘-’ indicates that the regressor is not selected. Recall that β̂ is the coeffi-

cient when Q ≥ γ̂ and that δ̂ is the change of the coefficient value when Q < γ̂.
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Table 4. Simulation Results with M = 50

Threshold Estimation Constant Prediction Error (PE)
E [M (α̂)] E |α̂− α0|1 E |τ̂ − τ0|1Parameter Method for λ Mean Median SD

Jump Scale: c = 1

τ0 = 0.5

Least Squares None 0.285 0.276 0.074 100.00 7.066 0.008

Lasso

A = 2.8 0.041 0.030 0.035 12.94 0.466 0.010
A = 3.2 0.048 0.033 0.049 10.14 0.438 0.013
A = 3.6 0.067 0.037 0.086 8.44 0.457 0.024
A = 4.0 0.095 0.050 0.120 7.34 0.508 0.040

Oracle 1 None 0.013 0.006 0.019 4.00 0.164 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 = 0.4

Least Squares None 0.317 0.304 0.095 100.00 7.011 0.008

Lasso

A = 2.8 0.052 0.034 0.063 13.15 0.509 0.016
A = 3.2 0.063 0.037 0.083 10.42 0.489 0.023
A = 3.6 0.090 0.045 0.121 8.70 0.535 0.042
A = 4.0 0.133 0.061 0.162 7.68 0.634 0.078

Oracle 1 None 0.014 0.006 0.022 4.00 0.163 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 = 0.3

Least Squares None 2.559 0.511 16.292 100.00 12.172 0.012

Lasso

A = 2.8 0.062 0.035 0.091 13.45 0.602 0.030
A = 3.2 0.089 0.041 0.125 10.85 0.633 0.056
A = 3.6 0.127 0.054 0.159 9.33 0.743 0.099
A = 4.0 0.185 0.082 0.185 8.43 0.919 0.168

Oracle 1 None 0.012 0.006 0.017 4.00 0.177 0.004
Oracle 2 None 0.005 0.004 0.004 4.00 0.176 0.000

Jump Scale: c = 0

N/A

Least Squares None 6.332 0.460 41.301 100.00 20.936

N/ALasso

A = 2.8 0.013 0.011 0.007 9.30 0.266
A = 3.2 0.014 0.012 0.008 6.71 0.227
A = 3.6 0.015 0.014 0.009 4.95 0.211
A = 4.0 0.017 0.016 0.010 3.76 0.204

Oracle 1 & 2 None 0.002 0.002 0.003 2.00 0.054

Note: M denotes the column size of Xi and τ denotes the threshold parameter. Oracle 1 & 2 are estimated by
the least squares when sparsity is known and when sparsity and τ0 are known, respectively. All simulations
are based on 400 replications of a sample with 200 observations.
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Figure 1. Mean Prediction Errors and Mean M(α̂)
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Figure 2. Mean `1-Errors for α and τ
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Table 5. Simulation Results with M = 50 and ρ = 0.3

Threshold Estimation Constant Prediction Error (PE)
E [M (α̂)] E |α̂− α0|1 E |τ̂ − τ0|1Parameter Method for λ Mean Median SD

Jump Scale: c = 1

τ0 = 0.5

Least Squares None 0.283 0.273 0.075 100.00 7.718 0.010

Lasso

A = 2.8 0.075 0.043 0.087 12.99 0.650 0.041
A = 3.2 0.108 0.059 0.115 10.98 0.737 0.071
A = 3.6 0.160 0.099 0.137 9.74 0.913 0.119
A = 4.0 0.208 0.181 0.143 8.72 1.084 0.166

Oracle 1 None 0.013 0.006 0.017 4.00 0.169 0.005
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 = 0.4

Least Squares None 0.317 0.297 0.099 100.00 7.696 0.010

Lasso

A = 2.8 0.118 0.063 0.123 13.89 0.855 0.094
A = 3.2 0.155 0.090 0.139 11.69 0.962 0.138
A = 3.6 0.207 0.201 0.143 10.47 1.150 0.204
A = 4.0 0.258 0.301 0.138 9.64 1.333 0.266

Oracle 1 None 0.013 0.007 0.016 4.00 0.168 0.006
Oracle 2 None 0.005 0.004 0.004 4.00 0.163 0.000

τ0 = 0.3

Least Squares None 1.639 0.487 7.710 100.00 12.224 0.015

Lasso

A = 2.8 0.149 0.080 0.136 14.65 1.135 0.184
A = 3.2 0.200 0.233 0.138 12.71 1.346 0.272
A = 3.6 0.246 0.284 0.127 11.29 1.548 0.354
A = 4.0 0.277 0.306 0.116 10.02 1.673 0.408

Oracle 1 None 0.013 0.006 0.017 4.00 0.182 0.005
Oracle 2 None 0.005 0.004 0.004 4.00 0.176 0.000

Jump Scale: c = 0

N/A

Least Squares None 6.939 0.437 42.698 100.00 23.146

N/ALasso

A = 2.8 0.012 0.011 0.007 9.02 0.248
A = 3.2 0.013 0.011 0.008 6.54 0.214
A = 3.6 0.014 0.013 0.009 5.00 0.196
A = 4.0 0.016 0.014 0.010 3.83 0.191

Oracle 1 & 2 None 0.002 0.002 0.003 2.00 0.054

Note: M denotes the column size of Xi and τ denotes the threshold parameter. Oracle 1 & 2 are estimated by
the least squares when sparsity is known and when sparsity and τ0 are known, respectively. All simulations
are based on 400 replications of a sample with 200 observations.
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Figure 3. Mean Prediction Errors and Mean M(α̂) when ρ = 0.3
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Figure 4. Mean `1-Errors for α and τ when ρ = 0.3
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Figure 5. Probability of Selecting True Parameters when ρ = 0 &ρ = 0.3
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