
ar
X

iv
:1

20
9.

46
75

v1
  [

m
at

h.
PR

] 
 2

0 
Se

p 
20

12

Assortativity and clustering
of sparse random intersection graphs

Mindaugas Bloznelis∗, Jerzy Jaworski†, Valentas Kurauskas∗

Abstract

We consider sparse random intersection graphs with the property that the clustering co-
efficient does not vanish as the number of nodes tends to infinity. We find explicit asymptotic
expressions for the correlation coefficient of degrees of adjacent nodes (called the assorta-
tivity coefficient), the expected number of common neighbours of adjacent nodes, and the
expected degree of a neighbour of a node of a given degree k. These expressions are written
in terms of the asymptotic degree distribution and, alternatively, in terms of the parameters
defining the underlying random graph model.
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1 Introduction

Assortativity and clustering coefficients are commonly used characteristics describing statistical
dependency of adjacency relations in real networks ([18], [2], [20]). The assortativity coefficient
of a simple graph is the Pearson correlation coefficient between degrees of the endpoints of
a randomly chosen edge. The clustering coefficient is the conditional probability that three
randomly chosen vertices make up a triangle, given that the first two are neighbours of the third
one.
It is known that many real networks have non-negligible assortativity and clustering coefficients,
and a social network typically has a positive assortativity coefficient ([18], [21]). Furthermore,
Newman et al. [21] remark that the clustering property (the property that the clustering coeffi-
cient attains a non-negligible value) of some social networks could be explained by the presence of
a bipartite graph structure. For example, in the actor network two actors are adjacent whenever
they have acted in the same film. Similarly, in the collaboration network authors are declared
adjacent whenever they have coauthored a paper. These networks exploit the underlying bi-
partite graph structure: actors are linked to films, and authors to papers. Such networks are
sometimes called affiliation networks.
In this paper we study assortativity coefficient and its relation to the clustering coefficient
in a theoretical model of an affiliation network, the so called random intersection graph. In
a random intersection graph nodes are prescribed attributes and two nodes are declared adjacent
whenever they share a certain number of attributes ([11], [15], see also [1], [13]). An attractive
property of random intersection graphs is that they include power law degree distributions and
have tunable clustering coefficient see [5], [6], [8], [12]. In the present paper we show that the
assortativity coefficient of a random intersection graph is non-negative. It is positive in the case
where the vertex degree distribution has a finite third moment and the clustering coefficient is
positive. In this case we show explicit asymptotic expressions for the assortativity coefficient
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in terms of moments of the degree distribution as well as in terms of the parameters defining
the random graph. Furthermore, we evaluate the average degree of a neighbour of a vertex of
degree k, k = 1, 2, . . . , (called neighbour connectivity, see [16], [23]), and express it in terms of
a related clustering characteristic, see (3) below.
Let us rigorously define the network characteristics studied in this paper. Let G = (V, E) be
a finite graph on the vertex set V and with the edge set E . The number of neighbours of a vertex
v is denoted d(v). The number of common neighbours of vertices vi and vj is denoted d(vi, vj).
We are interested in the correlation between degrees d(vi) and d(vj) and the average value of
d(vi, vj) for adjacent pairs vi ∼ vj (here and below ’∼’ denotes the adjacency relation of G).
We are also interested in the average values of d(vi) and d(vi, vj) under the additional condition
that the vertex vj has degree d(vj) = k.
In order to rigorously define the averaging operation we introduce the random pair of ver-
tices (v∗1 , v

∗
2) drawn uniformly at random from the set of ordered pairs of distinct vertices. By

Ef(v∗1, v
∗
2) =

1
N(N−1)

∑

i 6=j f(vi, vj) we denote the average value of measurements f(vi, vj) eval-

uated at each ordered pair (vi, vj), i 6= j. Here N = |V| denotes the total number of vertices. By

E∗f(v∗1 , v
∗
2) = p−1

e∗ E
(

f(v∗1, v
∗
2)I{v∗1∼v∗

2
}

)

we denote the average value over ordered pairs of adja-

cent vertices. Here pe∗ = P(v∗1 ∼ v∗2) denotes the edge probability and I{vi∼vj} = 1, for vi ∼ vj,

and 0 otherwise. Furthermore, E∗kf(v∗1, v
∗
2) = p−1

k∗ E
(

f(v∗1, v
∗
2)I{v∗1∼v∗

2
}I{d(v∗

2
)=k}

)

, denotes the

average value over ordered pairs of adjacent vertices, where the second vertex is of degree k.
Here pk∗ = P(v∗1 ∼ v∗2, d(v

∗
2) = k).

The average values of d(vi)d(vj) and d(vi, vj) on adjacent pairs vi ∼ vj are now defined as follows

g(G) = E∗d(v∗1)d(v
∗
2), h(G) = E∗d(v∗1 , v

∗
2), hk(G) = E∗kd(v∗1 , v

∗
2).

We also define the average values

b(G) = E∗d(v∗1), b′(G) = E∗d2(v∗1), bk(G) = E∗kd(v∗1)

and the correlation coefficient

r(G) = g(G) − b2(G)
b′(G)− b2(G) ,

called the assortativity coefficient of G, see [18], [19].
In the present paper we assume that our graph is an instance of a random graph. We consider
two random intersection graph models: active intersection graph and passive intersection graph
introduced in [10] (we refer to Sections 2 and 3 below for a detailed description). Let G denote
an instance of a random intersection graph on N vertices. Here and below the number of vertices
is non random. An argument bearing on the law of large numbers suggests that, for large N , we
may approximate the characteristics b(G), bk(G), h(G) and hk(G) defined for a given instance
G, by the corresponding conditional expectations

b = E∗d(v∗1), bk = E∗kd(v∗1) h = E∗d(v∗1 , v
∗
2), hk = E∗kd(v∗1 , v

∗
2), (1)

where now the expected values are taken with respect to the random instance G and the random
pair (v∗1 , v

∗
2). We assume that (v∗1 , v

∗
2) is independent of G. Similarly, we may approximate r(G)

by r = g−b2

b′−b2
, where b′ = E∗d(v∗1) and g = E∗d2(v∗1).

The main results of this paper are explicit asymptotic expressions as N → +∞ for the correlation
coefficient r, the neighbour connectivity bk, and expected number of common neighbours hk
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defined in (1). As a corollary we obtain that the random intersection graphs have tunable
assortativity coefficient r ≥ 0. Another interesting property is expressed by the identity

bk − hk = b− h+ o(1) as N → +∞ (2)

saying that the average value of the difference d(vi)− d(vi, vj) of adjacent vertices vi ∼ vj is not
sensitive to the conditioning on the neighbour degree d(vj) = k. That is, a neigbour vj of vi
may affect the average degree d(vi) only by increasing/decreasing the average number of common
neighbours d(vi, vj). It is relevant to mention that hk = (k−1)α[k], where α[k] = P(v∗1 ∼ v∗2 |v∗1 ∼
v∗3 , v

∗
2 ∼ v∗3, d(v

∗
3) = k) measures the probability of an edge between two neighbours of a vertex

of degree k. In particular, we have

bk = (k − 1)α[k] + b− h+ o(1) as N → +∞. (3)

The remaining part of the paper is organized as follows. In Section 2 we introduce the active
random graph and present results for this model. The passive model is considered in Section 3.
Section 4 contains proofs.

2 Active intersection graph

Let s > 0. Vertices v1, . . . , vn of an active intersection graph are represented by subsets
D1, . . . ,Dn of a given ground set W = {w1, . . . , wm}. Elements of W are called attributes
or keys. Vertices vi and vj are declared adjacent if they share at least s common attributes, i.e.,
we have |Di ∩Dj | ≥ s.
In the active random intersection graph Gs(n,m,P ) every vertex vi ∈ V = {v1, . . . , vn} selects
its attribute set Di independently at random ([11]) and all attributes have equal chances to
belong to Di, for each i = 1, . . . , n. We assume, in addition, that independent random sets
D1, . . . ,Dn have the same probability distribution. Then, we have

P(Di = A) =
(m
|A|

)−1
P (|A|), (4)

for each A ⊂ W , where P is the common probability distribution of the sizes Xi = |Di|, 1 ≤ i ≤ n
of selected sets. We remark that Xi, 1 ≤ i ≤ n are independent random variables.
We are interested in the asymptotics of the assortativity coefficient r and moments (1) in the
case where Gs(n,m,P ) is sparse and n, m are large. We address this question by considering
a sequence of random graphs {Gs(n,m,P )}n, where the integer s is fixed and where m = mn

and P = Pn depend on n. We remark that subsets of W of size s plays a special role, we
call them joints: two vertices are adjacent if their attribute sets share at least one joint. Our
conditions on P are formulated in terms of the number of joints

(Xi
s

)

available to the typical

vertex vi. We denote ak = E
(X1

s

)k
. It is convenient to assume that as n → ∞ the rescaled

number of joints Z1 =
(

m
s

)−1/2
n1/2

(

X1

s

)

converges in distribution. We also introduce the k-th
moment condition

(i) Z1 converges in distribution to some random variable Z;
(ii-k) 0 < EZk < ∞ and limn→∞EZk

1 = EZk.
We remark that the distribution of Z, denoted PZ , determines the asymptotic degree distribution
of the sequence {Gs(n,m,P )}n (see [5], [6], [8], [25]). We have, under conditions (i), (ii-1) that

lim
m→∞

P (d(v1) = k) = pk, pk = (k!)−1E
(

(z1Z)ke−z1Z
)

, k = 0, 1, . . . . (5)
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Here we denote zk = EZk. Let d∗ be a random variable with the probability distribution
P(d∗ = k) = pk, k = 0, 1, . . . . We call d∗ the asymptotic degree. It follows from (5) that the
asymptotic degree distribution is a Poisson mixture, i.e., the Poisson distribution with a random
(intensity) parameter z1Z. For example, in the case where PZ is degenerate, i.e., P(Z = z1) = 1,
we obtain the Poisson asymptotic degree distribution. Furthermore, the asymptotic degree has
a power law when PZ does. We denote

δi = Edi∗, δi = E(d∗)i, where (x)i = x(x− 1) · · · (x− i+ 1). (6)

Another important characteristic of the sequence {Gs(n,m,P )}n is the asymptotic ratio β =
limm→∞

(m
s

)

/n. Together with PZ it determines the first order asymptotics of the clustering
coefficient α = P(v1 ∼ v2|v1 ∼ v3, v2 ∼ v3), see [6], [8]. Under conditions (i), (ii-2), and

(m
s

)

n−1 → β ∈ (0,+∞) (7)

we have

α =
a1
a2

+ o(1) =
1

β1/2

δ
3/2
1

δ2 − δ1
+ o(1). (8)

Furthermore, we have α = o(1) in the case where
(

m
s

)

n−1 → +∞. We remark that α = o(1)
also in the case where the second moment condition (ii-2) fails and we have EZ2 = +∞, see [6].
To summarize, the clustering coefficient α does not vanish as n,m → ∞ whenever the asymptotic
degree distribution (equivalently PZ) has finite second moment and 0 < β < ∞.
Our Theorem 1, see also Remark 1, establishes similar properties of the assortativity coefficient r:
it remains bounded away from zero whenever the asymptotic degree distribution (equivalently
PZ) has finite third moment and 0 < β < ∞.

Theorem 1. Let s > 0 be an integer. Let m,n → ∞. Assume that (i) and (7) are satisfied. In
the case where (ii-3) holds we have

r =
a1

β−1(a1a3 − a22) + a2
+ o(1) (9)

=
1√
β

δ
5/2
1

δ3δ1 − δ
2
2 + δ2δ1

+ o(1). (10)

In the case where (ii-2) holds and EZ3 = ∞ we have r = o(1).

We note that the inequality a1a3 ≥ a22, which follows from Hölder’s inequality, implies that the
ratio in the right hand side of (9) is positive.
Remark 1. In the case where (i), (ii-2) hold and

(

m
s

)

n−1 → +∞ we have r = o(1).
Our next result Theorem 2 shows a first order asymptotics of the neighbour connectivity bk and
the expected number of common neighbours hk.

Theorem 2. Let s ≥ 1 and k ≥ 0 be integers. Let m,n → ∞. Assume that (i), (ii-2) and (7)
hold. We have

b = 1 + β−1a2 + o(1), h = β−1a1 + o(1) (11)

and

hk+1 =
a1
β

k

k + 1

pk
pk+1

+ o(1), (12)

bk+1 = 1 + β−1(a2 − a1) + hk+1 + o(1). (13)

Here a1 = (βδ1)
1/2 + o(1) and a2 = βδ2/δ1 + o(1).
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We remark that the distribution of the random graph Gs(n,m,P ) is invariant under permutation
of its vertices (we refer to this property as the symmetry property in what follows). Therefore,
we have b = E(d(v1)|v1 ∼ v2) and bk+1 = E(d(v1)|v1 ∼ v2, d(v2) = k + 1). In particular, the
increment bk+1− b shows how the degree of v2 affects the average degree of its neighbour v1. By

(11), (13), we have bk+1− b = a1
β

(

k
k+1

pk
pk+1

− 1
)

+ o(1). In Examples 1 and 2 below we evaluate

this quantity for a power law asymptotic degree distribution and the Poisson asymptotic degree
distribution.

Example 1. Assume that the asymptotic degree distribution has a power law, i.e., for some c > 0
and γ > 3 we have pk = (c+ o(1))k−γ as k → +∞. Then

k

k + 1

pk
pk+1

− 1 =
γ − 1

k
+ o(k−1).

Hence, for large k, we obtain as n,m → +∞ that bk+1 − b ≈ k−1(γ − 1)(δ1/β)
1/2.

Example 2. Assume that the asymptotic degree distribution is Poisson with mean λ > 0, i.e.,
pk = e−λλk/k!. Then

k

k + 1

pk
pk+1

− 1 =
k

λ
− 1

and, for large k, we obtain as n,m → +∞ that

bk+1 − b ≈ (λβ)−1/2k. (14)

Our interpretation of (14) is as follows. We assume, for simplicity, that s = 1. We say that
an attribute w ∈ W realises the link vi ∼ vj , whenever w ∈ Di ∩Dj . We note that in a sparse
intersection graph G1(n,m,P ) each link is realised by a single attribute with a high probability.
We also remark that in the case of the Poisson asymptotic degree distribution, the sizes of the
random sets, defining intersection graph, are strongly concentrated about their mean value a1.
Now, by the symmetry property, every element of the attribute set D2 of vertex v2 realises
about k/|D2| ≈ k/a1 links to some neighbours of v2 other than v1. In particular, the attribute
responsible for the link v1 ∼ v2 attracts to v1 some k/a1 neighbours of v2. Hence, bk+1 − b ≈
a−1
1 k ≈ (βλ)−1/2k.

Finally, we remark that (11), (12), and (13) imply (2).

3 Passive intersection graph

A collection D1, . . . ,Dn of subsets of a finite set W = {w1, . . . , wm} defines the passive adjacency
relation between elements of W : wi and wj are declared adjacent if wi, wj ∈ Dk for some Dk.
In this way we obtain a graph on the vertex set W , which we call the passive intersection graph,
see [11]. We assume that D1,D2, . . . ,Dn are independent random subsets of W having the same
probability distribution (4). In particular, their sizes Xi = |Di|, 1 ≤ i ≤ n are independent
random variables with the common distribution P . The passive random intersection graph
defined by the collection D1, . . . ,Dn is denoted G∗

1(n,m,P ).
We shall consider a sequence of passive graphs {G∗

1(n,m,P )}n, where P = Pn and m = mn

depend on n = 1, 2, . . . . We remark that, in the case where βn = mn−1 is bounded and it is
bounded away from zero as n,m → +∞, the vertex degree distribution can be approximated by
a compound Poisson distribution ([6], [14]). More precisely, assuming that βn → β ∈ (0,+∞);

(iii) X1 converges in distribution to a random variable Z;
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(iv) EZ4/3 < ∞ and limm→∞EX
4/3
1 = EZ4/3

it is shown in [6] that d(w1) converges in distribution to the compound Poisson random variable
d∗∗ :=

∑Λ
j=1 Z̃j . Here Z̃1, Z̃2,. . . are independent random variables with the distribution

P(Z̃1 = j) = (j + 1)P(Z = j + 1)/EZ, j = 0, 1, . . . ,

in the case where EZ > 0. In the case where EZ = 0 we put P(Z̃1 = 0) = 1. The random
variable Λ is independent of the sequence Z̃1, Z̃2,. . . and has Poisson distribution with mean
EΛ = β−1EZ.
We note that the asymptotic degree d∗∗ has a power law whenever Z has a power law. Further-
more, we have Edi∗∗ < ∞ ⇔ EZi+1 < ∞, i = 1, 2, . . . .
In Theorems 3, 4 below we express the moments b, h, bk, hk and the assortativity coefficient

r = g−b2

b′−b2
of the random graph G∗

1(n,m,P ) in terms of the moments

yi = E(X1)i and δ∗i = Edi∗∗ i = 1, 2, . . . .

Theorem 3. Let n,m → ∞. Assume that (iii) holds and
(v) P(Z ≥ 2) > 0, EZ4 < ∞ and limm→∞EX4

1 = EZ4.
In the case where βn → β ∈ (0,+∞) we have

r =
y2y4 + y2y3 − y23

y2y4 + y2y3 − y23 + β−1
n y22(y2 + y3)

+ o(1) (15)

= 1− δ∗2δ
2
∗1 − δ4∗1

δ∗1δ∗3 − δ2∗2
+ o(1). (16)

In the case where βn → +∞ we have r = 1− o(1). In the case where βn → 0 and nβ3
n → +∞

we have r = o(1).

Remark 2. We note that y∗ := y2y4+ y2y3− y23 is always non-negative. Hence, for large n,m we
have r ≥ 0. To show that y∗ ≥ 0 we combine the identity 2y∗ = Ey(X1,X2), where

y(i, j) = y′(i, j) + y′(j, i), y′(i, j) = (i)2(j)4 + (i)2(j)3 − (i)3(j)3,

with the simple inequality

y(i, j) = (i)2(j)2
(

(i− 2)2 + (j − 2)2 − 2(i − 2)(j − 2)
)

≥ 0.

Remark 3. Assuming that y2 > 0 and y2 = o(mβn) as m,n → +∞, Godehardt et al. [12] showed
the following expression for the clustering coefficient of G∗

1(n,m,P )

α =
β−2
n m−1y32 + y3

β−1
n y22 + y3

+ o(1). (17)

Now, assuming that conditions (iii) and (v) hold we compare α and r using (15) and (17). For

βn → β ∈ (0,+∞) we have r < 1 and α =
(

1 + y22/(βy3)
)−1

+ o(1) < 1. In the case where
βn → +∞ we have r = 1 − o(1) and α = 1 − o(1). In the case where βn → 0 and nβ3

n → +∞
we have r = o(1) and α = o(1).
Our last result Theorem 4 shows a first order asymptotics of the neighbour connectivity bk and
the expected number of common neighbours hk in the passive random intersection graph.
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Theorem 4. Let m,n → ∞. Assume that βn → β ∈ (0,+∞) and (iii), (v) hold. Then

b = 1 + β−1
n y2 + y−1

2 y3 +O(n−1) = δ∗2δ
−1
∗1 + o(1), (18)

h = y−1
2 y3 +O(n−1) = δ∗2δ

−1
∗1 − 1− δ∗1 + o(1). (19)

Assuming, in addition, that P(d∗∗ = k) > 0, where k > 0 is an integer, we have

hk = k−1E(d2∗|d∗∗ = k) + o(1), (20)

bk = 1 + β−1y2 + hk + o(1) = 1 + δ∗1 + hk + o(1). (21)

Here d2∗ =
∑

1≤i≤Λ(Z̃i)2.

We remark that (18), (19), (20), (21) imply (2).

4 Proofs

Proofs for active and passive graphs are given in Section 4.1 and Section 4.2 respectively. We
note that the probability distributions of Gs(n,m,P ) and G∗

1(n,m,P ) are invariant under per-
mutations of the vertex sets. Therefore, for either of these models we have

b = E12d(ω1), h = E12d(ω1, ω2), (22)

bk = E12(d(ω2)|d(ω1) = k), hk = E12(d(ω1, ω2)|d(ω1) = k).

Here ω1 6= ω2 are arbitrary fixed vertices and E12 denotes the conditional expectation given the
event ω1 ∼ ω2. In the proof P̃ and Ẽ (respectively, P̃∗ and Ẽ∗) denote the conditional probability
and expectation given X1, . . . ,Xn (respectively, D1,D2,X1, . . . ,Xn). Limits are taken as n and
m = mn tend to infinity. We use the shorthand notation fk(λ) = e−λλk/k! for the Poisson
probability.

4.1 Active graph

Before the proof we introduce some more notation. Then we state and prove auxiliary lemmas.
Afterwards we prove Theorem 1, Remark 1 and Theorem 2.

The conditional expectation given D1,D2 is denoted E∗. The conditional expectation given the
event v1 ∼ v2 is denoted E12. We denote

Yi =
(Xi

s

)

, di = d(vi), d′i = di − 1, dij = d(vi, vj),

Ii = I{Xi<m1/4}, Ii = 1− Ii, δij = 1− Ii − Ij − (m1/2 − 1)−1 (23)

and introduce events

E ′
ij = {|Di ∩Dj| = s}, E ′′

ij = {|Di ∩Dj | ≥ s+ 1}, Eij = {|Di ∩Dj | ≥ s}.

Observe that Eij is the event that vi and vj are adjacent in Gs(n,m,P ). We denote

pe = P(Eij), ai = EY i
1 , xi = EXi

1, zi = EZi, m̃ =
(m
s

)

, βn =
m̃

n
.

We remark that the distributions of Xi = Xni, Yi = Yni and Zi = Zni = (n/m̃)1/2Yni depend
on n.

The following inequality is referred to as LeCam’s lemma, see e.g., [26].
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Lemma 1. Let S = I1 + I2 + · · · + In be the sum of independent random indicators with
probabilities P(Ii = 1) = pi. Let Λ be Poisson random variable with mean p1 + · · · + pn. The
total variation distance between the distributions PS and PΛ of S and Λ

sup
A⊂{0,1,2... }

|P(S ∈ A)−P(Λ ∈ A)| ≤ 2
∑

i

p2i . (24)

Lemma 2. ([6]) Given integers 1 ≤ s ≤ k1 ≤ k2 ≤ m, let D1,D2 be independent random
subsets of the set W = {1, . . . ,m} such that D1 (respectively D2) is uniformly distributed in the
class of subsets of W of size k1 (respectively k2). The probabilities p′ := P(|D1 ∩D2| = s) and
p′′ := P(|D1 ∩D2| ≥ s) satisfy

(

1− (k1 − s)(k2 − s)

m+ 1− k1

)

p∗k1,k2,s ≤ p′ ≤ p′′ ≤ p∗k1,k2,s, (25)

Here we denote p∗k1,k2,s =
(k1
s

)(k2
s

)(m
s

)−1
.

Lemma 3. Let s > 0 be an integer. Let m,n → ∞. Assume that conditions (i) and (ii-3) hold.
Denote X̃n1 = m−1/2n1/(2s)Xn1I{Xn1≥s}. We have

lim
A→+∞

sup
n

EZ3
n1I{Zn1>A} = 0, (26)

sup
n

EX̃3s
n1 < ∞, lim

A→+∞
sup
n

EX̃3s
n1I{X̃n1>A} = 0. (27)

For any 0 ≤ u ≤ 3 and any sequence An → +∞ as n → ∞ we have

EZu
n1I{Zn1>An} = o(1), EX̃us

n1I{X̃n1>An}
= o(1). (28)

Proof of Lemma 3. The uniform integrability property (26) of the sequence {Z3
n1}n is a simple

consequence of (i) and (ii-3), see, e.g., Remark 1 in [5]. The first and second identity of (27)
follows from (ii-3) and (26) respectively. Finally, (28) follows from (26) and (27).

Lemma 4. In Gs(n,m,P ) the probabilities of events Eij = {vi ∼ vj}, E ′
12, E ′′

12, see (23), and
Bt = {|Dt ∩ (D1 ∪D2)| ≥ s+ 1} satisfy the inequalities

Y1Y2m̃
−1δ12 ≤ P̃(E ′

12) ≤ P̃(E12) ≤ Y1Y2m̃
−1, (29)

YiYjm̃
−1δij ≤ P̃∗(Eij) = P̃(Eij) ≤ YiYjm̃

−1, for {i, j} 6= {1, 2}, (30)

P̃(E ′′
12) ≤ Y1Y2X1X2(m̃m)−1, (31)

P̃∗(Bt) ≤ 2s ((s+ 1)!m̃m)−1 YtXt(X
s+1
1 +Xs+1

2 ). (32)

We recall that Yi and δij are defined in (23).

Proof of Lemma 4. The right hand side of (29), (30) and inequality (31) are immediate conse-
quences of (25). In order to show the left hand side inequality of (29) and (30) we apply the left
hand side inequality of (25). We only prove (29). We have, see (23),

P̃(E ′
12) = ẼIE ′

12
≥ ẼIE ′

12
I1I2 ≥ m̃−1Y1Y2I1I2

(

1−X1X2(m−X1)
−1

)

≥ m̃−1Y1Y2δ12. (33)

In order to show (32) we apply the right-hand side inequality of (25) and write

P̃∗(Bt) ≤
(|D1∪D2|

s+1

)(|Dt|
s+1

)( m
s+1

)−1 ≤
(X1+X2

s+1

)( Xt

s+1

)( m
s+1

)−1
. (34)

Invoking the inequalities
(

Xt

s+1

)(

m
s+1

)−1 ≤ YtXt
m̃m and

(X1 +X2)s+1 ≤ (X1 +X2)
s+1 ≤ 2s(Xs+1

1 +Xs+1
2 )

we obtain (32).
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Lemma 5. Assume that conditions of Theorem 2 are satisfied. Let k ≥ 0 be an integer. For
d∗1 =

∑

4≤t≤n IE1t and ∆ = P̃∗(d
∗
1 = k)− fk(β

−1a1Y1) we have

E∗|∆| ≤ R∗
1 +R∗

2 +R∗
3 +R∗

4, (35)

where R∗
1 = nm̃−1E∗Y1Y4|1− δ14| and

R∗
2 = n1/2m̃−1a

1/2
2 Y1, R∗

3 = a1Y1|(n− 3)m̃−1 − β−1|, R∗
4 = 2nm̃−2a2Y

2
1 .

Proof of Lemma 5. We denote S̃ = Ẽ∗d
∗
1 =

∑

4≤t≤n P̃∗(E1t) and S̃1 = m̃−1
∑

4≤t≤n Yt and write

∆ = ∆1 +∆2, ∆1 = P̃∗(d
∗
1 = k)− fk(S̃), ∆2 = fk(S̃)− fk(β

−1a1Y1).

We have, by Lemma 1, |∆1| ≤ 2
∑

4≤t≤n P̃
2
∗(E1t). Invoking (30) we obtain E∗|∆1| ≤ R∗

4. Next,
we apply the mean value theorem |fk(λ′)− fk(λ

′′)| ≤ |λ′ − λ′′| and write

|∆2| ≤ |S̃ − β−1a1Y1| ≤ r∗1 + r∗2 +R∗
3, (36)

where r∗1 = |S̃ − Y1S̃1| and r∗2 = Y1|S̃1 − (n− 3)m̃−1a1|. Note that by (30),

r∗1 ≤
∑

4≤t≤n

|P̃∗(E1t)− m̃−1Y1Yt| ≤
∑

4≤t≤n

m̃−1Y1Yt|1− δ1t|

and, by symmetry, E∗r
∗
1 ≤ R∗

1. Finally, we have

E∗r
∗
2 = Y1E∗|S̃1 −E∗S̃1| ≤ Y1

(

E∗(S̃1 −E∗S̃1)
2
)1/2

≤ R∗
2.

Lemma 6. Let m,n → ∞. Assume (i), (ii-3) and (7) hold. Then

E12d
′
1d

′
2 = nm̃−1a1 + n2m̃−2a22 + o(1), (37)

E12d
′
1 = nm̃−1a2 + o(1), (38)

E12(d
′
1)

2 = E12d
′
1 + n2m̃−2a1a3 + o(1), (39)

E12d12 = nm̃−1a1 + o(1). (40)

Proof of Lemma 6. Proof of (37). In order to prove (37) we write

E12 d
′
1d

′
2 = p−1

e Eκ, κ := IE12d
′
1d

′
2, pe := P(E12) (41)

and invoke the identities

Eκ = nm̃−2a31 + n2m̃−3a21a
2
2 + o(m̃−1), (42)

pe = m̃−1a21(1 + o(1)). (43)

Note that (43) follows from (30) and (28). Let us prove (42). To this aim we write

Eκ = E
(

IE12Ẽ∗(d
′
1d

′
2)
)

= E(κ̃1 + κ̃2),

where κ̃1 = IE ′
12
Ẽ∗d

′
1d

′
2 and κ̃2 = IE ′′

12
Ẽ∗d

′
1d

′
2, and show that

Eκ̃1 = nm̃−2a31 + n2m̃−3a21a
2
2 + o(m̃−1), Eκ̃2 = o(m̃−1). (44)
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Let us prove (44). Assuming that E12 holds we can write d′i =
∑n

t=3 IEit , i = 1, 2, and

Ẽ∗d
′
1d

′
2 = S1 + S2, S1 =

∑

3≤t≤n

P̃∗(E1t ∩ E2t), S2 = 2
∑

3≤t<u≤n

P̃∗(E1t ∩ E2u). (45)

To show the first identity of (44) we write Eκ̃1 = EIE ′
12
S1 +EIE ′

12
S2 =: I1 + I2 and evaluate

I1 = nm̃−2a31 + o(nm̃−2), I2 = n2m̃−3a21a
2
2 + o(n2m̃−3). (46)

We first evaluate I1. Given t ≥ 3, consider events

At = {|(D1 ∩D2) ∩Dt| = s} and Bt = {|Dt ∩ (D1 ∪D2)| ≥ s+ 1}. (47)

Assuming that E ′
12 holds we have that At implies E1t ∩ E2t and E1t ∩ E2t implies At ∪ Bt. Hence,

P̃∗(At) ≤ P̃∗(E1t ∩ E2t) ≤ P̃∗(At ∪ Bt). Now, we invoke the identity P̃∗(At) = m̃−1Yt and write

IE ′
12
m̃−1Yt = IE ′

12
P̃∗(At) ≤ IE ′

12
P̃∗(E1t ∩ E2t) ≤ IE ′

12

(

P̃∗(At) + P̃∗(Bt)
)

. (48)

¿From (48) and (32) we obtain, by the symmetry property,

n− 2

m̃
P(E ′

12)EY3 ≤ I1 ≤
n− 2

m̃
P(E ′

12)EY3 +
n− 2

m̃m
EP̃(E ′

12)R1, (49)

where R1 = Y3X3(X
s+1
1 +Xs+1

2 ). Next, we evaluate P̃(E ′
12) and P(E ′

12) = EP̃(E ′
12) using (29):

m̃P(E ′
12)EY3 = a31 + o(1), m̃EP̃(E ′

12)R1 = O(1).

Combining these relations with (49) we obtain the first relation of (46).
Let us we evaluate I2. We write

ẼIE ′
12
P̃∗(E1t ∩ E2u) = ẼIE ′

12
P̃∗(E1t) P̃∗(E2u) = P̃(E ′

12)P̃(E1t) P̃(E2u) (50)

and apply (29) to each probability in the right-hand side. We obtain

m̃−3(Y 2
1 Y

2
2 YtYu −Rtu) ≤ P̃(E ′

12)P̃(E1t) P̃(E2u) ≤ m̃−3Y 2
1 Y

2
2 YtYu, (51)

where Rtu = Y 2
1 Y

2
2 YtYu(1 − δ12δ1tδ2u) satisfies ERtu = o(1), see (28). Now, by the symmetry

property, we obtain from (51) the second relation of (46)

I2 = (n− 2)2EP̃(E ′
12)P̃(E1t) P̃(E2u) = n2m̃−3a21a

2
2 + o(n2m̃−3).

To prove the second bound of (44) we write, see (45), κ̃2 = IE ′′
12
(S1 + S2) and show that

I3 := EIE ′′
12
S1 ≤ x2s+1xs+1xsn/(m̃

2m), I4 := EIE ′′
12
S2 ≤ x22s+1x

2
sn

2/(m̃3m). (52)

Here x2s+1, xs+1, xs = O(1), by (27). Let us prove (52). We have, see (29),

S1 ≤
∑

3≤t≤n

P̃∗(E1t) ≤
∑

3≤t≤n

Y1Ytm̃
−1. (53)

Furthermore, by the symmetry property and (31), we obtain

I3 = E(ẼIE ′′
12
S1) = E(P̃(E ′′

12)S1) ≤ (n − 2)(m̃2m)−1EY 2
1 Y2Y3X1X2.
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Since the expected value in the right hand side does not exceed x2s+1xs+1xs, we obtain the first
bound of (52). In order to prove the second bound we write, cf. (50),

ẼIE ′′
12
P̃∗(E1t ∩ E2u) = P̃(E ′′

12)P̃(E1t) P̃(E2u) ≤ m̃−3m−1Y 2
1 Y

2
2 YtYuX1X2.

In the last step we used (29) and (31). Now, by the symmetry property, we obtain

I4 = E(ẼIE ′′
12
S2) ≤ (n− 2)2m̃

−3m−1EY 2
1 Y

2
2 Y3Y4X1X2 ≤ n2m̃−3m−1x22s+1x

2
s.

Proof of (38). We write, by the symmetry property,

E12d
′
1 = p−1

e E
∑

3≤t≤n

IE1tIE12 = (n− 2)p−1
e EIE13IE12 (54)

and evaluate using (29), (30)

EIE12IE13 = EP̃(E12)P̃(E13) = m̃−2EY 2
1 Y2Y3 + o(m̃−2) = m̃−2a21a2 + o(m̃−2).

Invoking this relation and (43) in (54) we obtain (38).
Proof of (39). Assuming that the event E12 holds we write

(d′1)
2 =

(

∑

3≤t≤n

IE1t

)2
= d′1 + 2

∑

3≤t<u≤n

IE1tIE1u

and evaluate the expected value

E12(d
′
1)

2 = E12d
′
1 + p−1

e (n− 2)2κ
∗. (55)

Here κ
∗ = EIE12IE13IE14 . We have

κ
∗ = EP̃(E12)P̃(E13)P̃(E14) = m̃−3EY 3

1 Y2Y3Y4 + o(m̃−3). (56)

In the last step we used (29), (30). Now (43), (55) and (56) imply (39).
Proof of (40). We note that d12 =

∑

3≤t≤n IE1tIE2t and EIE12d12 = EIE12S1, see (45). Next, we
write

E12d12 = p−1
e EIE12S1 = p−1

e (I1 + I3).

and evaluate the quantity in the right hand side using (43) and (46), (52).

Proof of Theorem 1. It is convenient to write r in the form

r = η/ξ, where η = E12d
′
1d

′
2 − (E12d

′
1)

2, ξ = E12(d
′
1)

2 − (E12d
′
1)

2. (57)

In the case where (ii-3) holds we obtain (9) from (37), (38), (39) and (57). Then we derive (10)
from (9) using the identities

ai = βi/2zi + o(1), δi = ziz
i
1, i = 1, 2, 3. (58)

Now we consider the case where (ii-2) holds and EZ3 = ∞. It suffices to show that

η = O(1) and lim inf ξ = +∞. (59)
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Before the proof of (59) we remark that (43) holds under condition (ii-2). In order to prove the
first bound of (59) we show that E12d

′
1d

′
2 = O(1) and E12d

′
1 = O(1). To show the first bound

we write E12d
′
1d

′
2 = p−1

e EIE12d
′
1d

′
2 and evaluate

EIE12d
′
1d

′
2 = EIE12

∑

3≤t≤n

IE1tIE2t +EIE12

∑

3≤t,u≤n, t6=u

IE1tIE2u (60)

= (n− 2)κ∗
1 + (n− 2)2κ

∗
2,

where

κ
∗
1 = EIE12IE13IE23 ≤ EIE12IE13 ≤ m̃−2a2a

2
1 = O(n−2), (61)

κ
∗
2 = EIE12IE13IE24 ≤ m̃−3a22a

2
1 = O(n−3). (62)

In the last step we used (29) and (30). We note that (43), (60) and (61), (62) imply E12d
′
1d

′
2 =

O(1). Similarly, the bound E12d
′
1 = O(1) follows from (43) and the simple bound, cf. (54),

E12d
′
1 = p−1

e (n− 2)EIE12IE13 ≤ p−1
e nm̃−2a2a

2
1. (63)

In order to prove the second relation of (59) we show that lim inf E12(d
′
1)

2 = +∞. In view of
(43) and (55) it suffices to show that lim inf n3

κ
∗ = +∞. It follows from the left-hand side

inequality of (25) that

n3
κ
∗ ≥ n3EI1I2I3I4IE12IE13IE14 ≥ EI1I2I3I4Z

3
1Z2Z3Z4(1−O(m−1/2))3, (64)

where, by the independence of Z1, . . . , Z4, we have EI1I2I3I4Z
3
1Z2Z3Z4 =

(

EI1Z
3
1

)

(EI2Z2)
3.

Finally, (i) combined with (ii-2) imply EI2Z2 = z1 + o(1), and (i) combined with EZ3 = ∞
imply lim inf EI1Z

3
1 = +∞.

Proof of Remark 1. Before the proof we introduce some notation and collect auxiliary inequali-
ties. We denote

h = hn = m1/2n−1/(4s), h̃ = h̃n =
(h
s

)

β−1/2
n

and observe that, under the assumption of Remark 1, βn, hn, h̃n → +∞ and hn = o(m1/2). We
further denote

Iih = I{Xi<h}, Iih = 1− Iih, δijh = 1− Iih − Ijh − εh,

where εh = h2(m − h)−1, and remark that Iih = I{Zi<h̃} and εh = o(1). We observe that

conditions (i), (ii-k) imply, for any given u ∈ (0, k], that

EZu
1 = zu + o(1), EZu

1 I1h = zu + o(1), EZu
1 I1h = o(1). (65)

Now from (25) we derive the inequalities

EZ1Z2δ12h ≤ EZ1Z2I1hI2h(1− εh) ≤ nEIE12I1hI2h ≤ nEIE12 ≤ EZ1Z2. (66)

Then invoking in (66) relations EZ1 = z1 + o(1) and EZ1Z2δ12h = z21 + o(1), which follow from
(65) for u = 1, we obtain the relation

npe = nEIE12 = z21 + o(1). (67)
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Similarly, under conditions (i), (ii-2), we obtain the relations

n2EIE12IE13 = z21z2 + o(1), (68)

n3EIE12IE13IE24 = z21z
2
2 + o(1), (69)

and, under conditions (i), (ii-3), we obtain

n3EIE12IE13IE14 = z31z3 + o(1). (70)

Let us prove the bound r = o(1) in the case where (i), (ii-2) hold and EZ3 = +∞. In order to
prove r = o(1) we show (59). Proceeding as in (60), (61), (62), (63) and using (67) we show the
bounds E12d

′
1d

′
2 = O(1) and E12d

′
1 = O(1), which imply the first bound of (59). Next we show

the second relation of (59). In view of (55) and (67) it suffices to prove that lim supn3
κ
∗ = +∞.

In the proof we proceed similarly as in (64) above, but now we use the product I1hI2hI3hI4h

instead of I1I2I3I4. We obtain

n3
κ
∗ ≥

(

EI1hZ
3
1

)

(EI2hZ2)
3 (1− εh)

3.

Here EI2hZ2 = z1 + o(1), see (65). Furthermore, under conditions (i) and EZ3 = +∞ we have
EI1hZ

3
1 → +∞. Hence, n3

κ
∗ → +∞.

Now we prove the bound r = o(1) in the case where (i), (ii-3) hold. We shall show that

η = o(1) and lim inf ξ > 0. (71)

Let us prove the second inequality of (71). Combining the first identity of (63) with (67) and
(68) we obtain

E12d
′
1 = z2 + o(1). (72)

Next, combining (55) with (67) and (70) we obtain

E12(d
′
1)

2 = E12d
′
1 + z1z3 + o(1). (73)

It follows from (72), (73) and the inequality z1z3 ≥ z22 , which follows from Hoelder’s inequality,
that ξ = z2 + z1z3 − z22 + o(1) ≥ z2 + o(1). We have proved the second inequality of (71).
Let us prove the first bound of (71). In view of (60) and (72) it suffices to show that

p−1
e n2

κ
∗
2 = z22 + o(1), p−1

e nκ∗
1 = o(1). (74)

We note that the first relation of (74) follows from (67), (69). To prove the second bound of
(74) we need to show that κ∗

1 = o(n−2). We split

κ
∗
1 = EIE ′

12
IE13IE23 +EIE ′′

12
IE13IE23

and estimate, using (30) and (31),

EIE ′′
12
IE13IE23 ≤ EIE ′′

12
IE13 ≤ m̃−2m−1EY 2

1 Y2X1X2Y3 = O(n−2−s−1

).

In the last step we combined the inequality Y u
i ≤ Xu

i I{Xi≥s} and (27). Furthermore, using the
right-hand side inequality of (48) we write

EIE ′
12
IE13IE23 ≤ EIE ′

12
m̃−1Y3 +EIE ′

12
P̃∗(B3)

and estimate, by (29) and (32),

EIE ′
12
m̃−1Y3 ≤ m̃−2EY1Y2Y3 = O(n−2β−1/2

n ),

EIE ′
12
P̃∗(B3) ≤ m̃−2m−1EY1Y2Y3X3(X

s+1
1 +Xs+1

2 ) = O(n−2−s−1

).
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Proof of Theorem 2. Relations (11) follow from (22) and (38), (40).
Before the proof of (12) and (13) we introduce some notation. Given two sequences of real
numbers {An} and {Bn} we write An ≃ Bn (respectively An ≃ 0) to denote the fact that
An − Bn = o(n−2) (respectively An = o(n−2)). We denote p∗ = P(v1 ∼ v2, d

′
1 = k) and

introduce random variables, see (23), I∗ = I1I2, I
∗
= 1− I

∗, and

τ1 = IE12τ, τ2 = IE ′′
12
τ, τ3 = IE ′

12
IE13IE23I{d∗1=k}, τ4 = IE ′

12
τ∗, τ5 = IE ′′

12
τ∗.

Here τ = IE23I{d′1=k} and τ∗ = IE13IE23I{d∗1=k−1}, and d∗1 =
∑

4≤t≤n IE1t . We remark that the

identity IE12 = IE ′
12
+ IE ′′

12
in combination with 1 = IE13 + IE13 implies

τ1 = τ2 + τ3 + τ4. (75)

Proof of (12), (13). In view of (22) we can write

hk+1 = E12(d12|d′1 = k) = p−1
∗ EIE12I{d′1=k}d12, (76)

bk+1 − 1 = E12(d
′
2|d′1 = k) = p−1

∗ EIE12I{d′1=k}d
′
2.

Furthermore, by the symmetry property, we have

EIE12I{d′1=k}d12 = (n− 2)EIE12τ
∗, EIE12I{d′1=k}d

′
2 = (n− 2)Eτ1. (77)

We note that (76), (77) combined with the identities IE12τ
∗ = τ4 + τ5 and (75) imply

hk+1 = (n− 2)p−1
∗ E(τ4 + τ5), bk+1 − 1 = (n− 2)p−1

∗ E(τ2 + τ3 + τ4), (78)

and observe that (12), (13) follow from (78) and the relations

p∗ = n−1(k + 1)pk+1 + o(n−1), (79)

Eτ3 = n−2β−1(k + 1)(a2 − a1)pk+1 + o(n−2), (80)

Eτ4 = n−2β−1ka1pk + o(n−2), (81)

Eτi = o(n−2), i = 2, 5. (82)

It remains to prove (79), (80), (81), (82).
In order to show (82) we combine the inequalities

τi ≤ IE ′′
12
IE23 = IE ′′

12
IE23(I

∗ + I
∗
) ≤ IE ′′

12
IE23I

∗ + IE12IE23I
∗

with the inequalities, which follow from (30) and (31),

EIE ′′
12
IE23I

∗ ≤ EP̃(E ′′
12)P̃∗(E23)I∗ ≤ (m̃2m)−1EY1Y

2
2 Y3X1X2I

∗ = O(n−2m−1/2)

EIE12IE23I
∗ ≤ EP̃(E12)P̃∗(E23)I∗ ≤ m̃−2EY1Y

2
2 Y3I

∗
= o(n−2).

In the last step we used the bound EY1Y
2
2 Y3I

∗
= o(1), which holds under conditions (i), (ii-2).

Proof of (81). We have

Eτ4 = EIE ′
12
P̃∗(E23 ∩ E13)P̃∗(d

∗
1 = k − 1). (83)
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We first replace in (83) the probability P̃∗(E23 ∩ E13) by P̃∗(A3) = Y3/m̃ using (47), (48). Then
we replace P̃∗(d

∗
1 = k−1) by fk−1(β

−1a1Y1) using Lemma 5. Finally, we replace IE ′
12

by m̃−1Y1Y2

using (29). We obtain

Eτ4 ≃ m̃−1EIE ′
12
Y3P̃∗(d

∗
1 = k − 1) (84)

≃ m̃−1EIE ′
12
Y3fk−1(β

−1a1Y1) (85)

≃ m̃−2EY1Y2Y3fk−1(β
−1a1Y1) (86)

= n−2β−2
n a21EY1fk−1(β

−1a1Y1). (87)

Here (84) follows from the bound EIE ′
12
P̃∗(B3) = o(n−2). To show this bound we write

IE ′
12
P̃∗(B3) = IE ′

12
P̃∗(B3)(I

∗ + I
∗
) ≤ IE ′

12
P̃∗(B3)I

∗ + IE ′
12
P̃∗(B′

3)I
∗
,

where B′
3 = {D3 ∩ (D1 ∪D2)| ≥ s}, and estimate, see (29), (32), (34),

EIE ′
12
P̃∗(B3)I

∗ ≤ m̃−2m−1EY1Y2Y3X3(X
s+1
1 +Xs+1

2 )I∗

≤ m̃−2m−3/4EY1Y2Y3X3(X
s
1 +Xs

2)

= O(n−2m−3/4),

EIE ′
12
P̃∗(B′

3)I
∗ ≤ m̃−2EY1Y2Y3(X

s
1 +Xs

2)I
∗

≤ o(n−2).

Furthermore, (85) follows from the bounds EIE ′
12
Y3R

∗
j = o(n−1), 1 ≤ j ≤ 4, see (35). We show

these bound using (29). For 1 ≤ j ≤ 3 the proof is obvious. For j = 4 we need to show that
EIE ′

12
Y 2
1 Y3 = o(1). For this purpose we write (using the inequality I1Y1 ≤ I1m

s/4)

IE ′
12
Y 2
1 Y3 = IE ′

12
Y 2
1 Y3(I1 + I1) ≤ ms/4

IE ′
12
Y1Y3I1 + Y 2

1 Y3I1

and note that the expected values of both summands in the right hand side tend to zero as
n → +∞. Finally, (86) follows from (29) and implies directly (87).
Now we derive (81) from (87). We observe that

k−1β−1a1EY1fk−1(β
−1a1Y1) = Efk(β

−1a1Y1) → Efk(z1Z)

(here we use the fact that the weak convergence of distributions (i) implies the convergence of
expectations of smooth functions). Furthermore, by (5), Efk(z1Z) = pk. Hence, (87) implies

Eτ4 ≃ n−2β−1ka1Efk(z1Z) = n−2β−1ka1pk.

Proof of (80). Introduce the event C = {D3 ∩ (D1 \D2) = ∅}, probability p̃ = P̃∗(E ′
23 ∩C ∩E13),

and random variable H = m̃−1(Y2 − 1)Y3. We obtain (80) in several steps. We show that

Eτ3 ≃ EIE ′
12
p̃I{d∗

1
=k} (88)

≃ EIE ′
12
HI{d∗

1
=k} (89)

≃ EIE ′
12
Hfk(β

−1a1Y1) (90)

≃ m̃−1EY1Y2Hfk(β
−1a1Y1) (91)

≃ m̃−2(a2 − a1)(k + 1)βpk+1. (92)
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We note that (88) is obtained by replacing IE23 by the product IE ′
23
IC in the formula defining τ3.

In order to bound the error of this replacement we apply the inequality

IE ′
23
IC ≤ IE23 ≤ IE ′

23
IC + IB3

. (93)

and invoke the bound EIE ′
12
IE13IB3

I{d′
1
=k} ≤ EIE ′

12
P̃∗(B3) = o(n−2), see the proof of (84) above.

We remark that the left hand side inequality of (93) is obvious. The right hand side inequality
holds because the event E23 implies (E ′

23 ∩ C) ∪ B3.
In (89) we replace p̃ by H. To prove (89) we show that

EIE ′
12
p̃I{d∗

1
=k} ≃ EIE ′

12
p̃I{d∗

1
=k}I1 ≃ EIE ′

12
HI{d∗

1
=k}I1 ≃ EIE ′

12
HI{d∗

1
=k}. (94)

We remark that the first and third relations follow from the simple bounds, see (29), (30),

EIE ′
12
p̃I{d∗

1
=k}I1 ≤ EIE ′

12
IE ′

23
I1 ≤ m̃−2EY1Y

2
2 Y3I1 = o(n−2),

EIE ′
12
|H|I{d∗

1
=k}I1 ≤ m̃−1EY1Y2|H|I1 = o(n−2).

In order to show the second relation of (94) we split

p̃ = P̃∗(E13|E ′
23 ∩ C) P̃∗(E ′

23|C) P̃∗(C) =: p̃1p̃2p̃3 (95)

and observe that p̃1 is the probability that the random subset D3 ∩ D2 (of size s) of D2 does
not match the subset D1 ∩D2 (we note that |D1 ∩D2| = s, since the event E ′

12 holds). Hence,
p̃1 = 1− Y −1

2 . Furthermore, from (25) we obtain

p̃3 = 1− P̃∗(D3 ∩ (D1 \D2) 6= ∅) ≥ 1− P̃∗(D3 ∩D1 6= ∅) ≥ 1−m−1X1X3. (96)

Finally, p̃2 is the probability that the random subset D3 of W \ (D1 \D2) intersects with D2 in
exactly s elements. Taking into account that the event E ′

12 holds we obtain (see (29), (33))

m̃−1
1 Y2Y3I2I3(1−m1/2/(m′ −X1)) ≤ p̃2 ≤ m̃−1

1 Y2Y3. (97)

Here we denote m̃1 :=
(m′

s

)

and m′ = |W \ (D1 \D2)| = m− (X1 − s). We remark that on the

event {X1 < m1/4} we have m′ = m−O(m3/4). Hence, for large m, (97) implies

m̃−1Y2Y3δ23I1 ≤ p̃2I1 ≤ m̃−1Y2Y3I1(1 +m−3/4(s+ o(1)). (98)

Now, collecting (96), (98), and the identity p̃1 = 1− Y −1
2 in (95) we obtain the inequalities

IE ′
12
I1δ23H(1−m−1X1X3) ≤ IE ′

12
I1p̃ ≤ IE ′

12
I1H(1 +O(m−3/4)) (99)

that imply the second relation of (94).
In the proof of (90), (91), (92) we apply the same argument as in (85), (86), (87) above.
Proof of (79). We write

p∗ = EIE12P̃∗(d
′
1 = k) = EP̃(E12)P̃∗(d

′
1 = k)

and in the integrand of the right hand side we replace P̃∗(d
′
1 = k) by fk(β

−1a1Y1) and P̃(E12)
by m̃−1Y1Y2 using (35) and (29), respectively.

16



4.2 Passive graph

Before the proof we introduce some more notation. Then we present auxiliary lemmas. After-
wards we prove Theorems 3, 4.
By Eij we denote the conditional expectation given the event Eij = {wi ∼ wj}. Furthermore,
we denote

pe = P(Eij), Dij = Di ∩Dj , Xij = |Dij |, xi = EXi
1, yi = E(X1)i, ui = E(Z)i.

For w ∈ W , we denote Ii(w) = I{w∈Di} and Ii(w) = 1− Ii(w), and introduce random variables

L(w) =
∑

1≤i≤n

li(w), li(w) = Ii(w)(Xi − 1),

Q(w) =
∑

1≤i<j≤n

qij(w), qij(w) = Ii(w)Ij(w)(Xij − 1),

S1 =
∑

1≤i≤n

si, S2 =
∑

1≤i<j≤n

sisj, si = Ii(w1)Ii(w2).

We say that two vertices wi, wj ∈ W are linked by Dk if wi, wj ∈ Dk. In particular, a set Dk

defines
(Xk

2

)

links between its elements. We note that Lt = L(wt) counts the number of links
incident to wt. Similarly, Qt = Q(wt) counts the number of different parallel links incident to wt

(a parallel link between w′ and w′′ is realized by a pair of sets Di,Dj such that w′, w′′ ∈ Di∩Dj).
Furthermore, S1 counts the number of links connecting w1 and w2 and S2 counts the number of
different pairs of links connecting w1 and w2. We denote the degree dt = d(wt) and introduce
event Lt = {Lt = dt}.
Lemma 7. The factorial moments δ∗i = E(d∗∗)i and ui = E(Z)i satisfy the identities

δ∗1 = β−1u2, δ∗2 = β−2u22 + β−1u3, δ∗3 = β−3u32 + 3β−2u2u3 + β−1u4. (100)

Proof of Lemma 7. We only show the third identity of (100). The proof of the first and second
identities is similar, but simpler. We color z = z1+ · · ·+ zr distinct balls using r different colors
so that zi balls receive i-th color. The number of triples of balls

(z
3

)

=
∑

i∈[r]

(zi
3

)

+
∑

i∈[r]

(zi
2

)

∑

j∈[r]\{i}

zj +
∑

{i,j,k}⊂[r]

zizjzk. (101)

Here the first sum counts triples of the same color, the second sum counts triples having two
different colors, etc. We apply (101) to the random variable

(d∗∗
3

)

, where d∗∗ = Z̃1 + · · · + Z̃Λ.
We obtain, by the symmetry property,

E
(d∗∗

3

)

= EΛE
(Z̃1

3

)

+E(Λ)2E
(Z̃1

2

)

EZ̃1 +E
(Λ
3

)

(EZ̃1)
3.

Now invoking the simple identities E(Λ)i = (EΛ)i = (u1β
−1)i and E(Z̃1)i = ui+1u

−1
1 we obtain

the third identity of (100).

Lemma 8. We have

ES1 = n−1β−2
n y2 +R′

1, (102)

EL1S1 = n−1β−2
n (y2 + y3) + n−1β−3

n y22 +R′
2, (103)

EL1L1S1 = n−1β−2
n (y2 + 3y3 + y4) + 3n−1β−3

n y2(y2 + y3) + n−1β−4
n y32 +R′

3, (104)

EL1L2S1 = n−1β−2
n (y4 + 3y3 + y2) + 2n−1β−3

n y2(y3 + y2) + n−1β−4
n y32 +R′

4. (105)
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where, for some absolute constant c > 0, we have |R′
1| ≤ cn−2β−3

n x2 and

|R′
2| ≤ cn−2(β−3

n + β−4
n )x4,

|R′
j | ≤ cn−2β−3

n (1 + β−1
n + x2 + β−2

n x2)x4, j = 3, 4.

Proof of Lemma 8. We only show (105). The proof of remaining identities is similar or simpler.
We write, for t = 1, 2, Lt = L(wt) = l1(wt) + L′

t and denote τ j = Ẽsj = (m)−1
2 (Xj)2. We have,

by the symmetry property,

EL1L2S1 = nEs1L1L2, (106)

Es1L1L2 = Es1l1(w1)l1(w2) + 2Es1l1(w1)L
′
2 +Es1L

′
1L

′
2,

Es1L
′
1L

′
2 = (n − 1)Es1l2(w1)l2(w2) + (n− 1)2Es1l2(w1)l3(w2),

Es1l1(w1)L
′
2 = (n − 1)Es1l1(w1)l2(w2).

A straightforward calculation shows that

Ẽs1l1(w1)l1(w2) = (X1 − 1)2τ1 = (m)−1
2 ((X1)4 + 3(X1)3 + (X1)2) ,

Ẽs1l1(w1)l2(w2) = m−1(X1 − 1)(X2 − 1)X2τ1 = m−1(m)−1
2 ((X1)3 + (X1)2) (X2)2,

Ẽs1l2(w1)l2(w2) = (X2 − 1)2τ1τ2 = (m)−2
2 (X1)2 ((X2)4 + 3(X2)3 + (X2)2) ,

Ẽs1l2(w1)l3(w2) = m−2(X2)2(X3)2τ1 = m−2(m)−1
2 (X1)2(X2)2(X3)2.

Invoking these expressions in the identity Es1li(wt)lj(wu) = EẼs1li(wt)lj(wu) we obtain expres-
sions for the moments Es1li(wt)lj(wu). Substituting them in (106) we obtain (105).

Lemma 9. We have

ES2 ≤ 0.5n−2β−4
n x22, (107)

EL1S2 ≤ n−2β−4
n x2x3 + 0.5n−2β−5

n x32, (108)

EQ1S1 ≤ n−2β−4
n x2x3 + 0.5n−2β−5

n x32, (109)

EL1Q2S1 = EL2Q1S1 ≤ n−2β−4
n (2x2x4 + 1.5β−1

n x22x3 + 0.5β−2
n x42) + n−3β−6

n x22x4, (110)

EL1Q1S1 ≤ n−2β−4
n (x23 + x2x4) + 2.5n−2β−5

n x22x3 + 0.5n−2β−6
n x42, (111)

EL1L1S2 ≤ n−2β−4
n (x23 + x2x4) + 2.5n−2β−5

n x22x3 + 0.5n−2β−6
n x42, (112)

EL1L2S2 ≤ n−2β−4
n (x2x4 + x23 + 2β−1

n x22x3 + 0.5β−2
n x42) + n−30.5β−6

n x22x4, (113)

EQ1I1(w1)(X1 − 1)2 ≤ 4n−2β−3
n y2(y3 + y4 + β−1y2y3). (114)

Proof of Lemma 9. We only prove (110). The proof of remaining inequalities is similar or sim-
pler. In the proof we use the shorthand notation li = li(w1) and qij = qij(w2).
To prove (110) we write, by the symmetry property,

EQ2L1S1 =
(

n
2

)

Eq12L1S1

Eq12L1S1 = 2Eq12l1S1 + (n− 2)Eq12l3S1,

Eq12l1S1 = Eq12l1s1 +Eq12l1s2 + (n− 2)Eq12l1s3,

Eq12l3S1 = Eq12l3s1 +Eq12l3s2 +Eq12l3s3 + (n− 3)Eq12l3s4

and invoke the inequalities

Eq12l1sj ≤ m−4x2x4, Eq12l3sj ≤ m−5x22x3, j = 1, 2,

Eq12l1s3 ≤ m−6x22x4, Eq12l3s3 ≤ m−5x22x3, Eq12l3s4 ≤ m−6x42.
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These inequalities follow from the identity Eq12lisj = EẼq12lisj and the upper bounds for the
conditional expectations Ẽq12lisj constructed below.
For i = 1 and j = 1, 2, we have

Ẽq12l1sj ≤ Ẽq12l1 = (X1 − 1)Ẽq12I1(w1) ≤ m−4X4
1X

2
2 . (115)

In the first inequality we use sj ≤ 1. In the second inequality we use the inequality

Ẽq12I1(w1) = ηξ ≤ m−4X3
1X

2
2 . (116)

Here η = Ẽ
(

X12 − 1
∣

∣I1(w1)I1(w2)I2(w2) = 1
)

and ξ = P̃ (I1(w1)I1(w2)I2(w2) = 1). We note
that given X1,X2,D1, the random variable η evaluates the expected number of elements of
D1 \ {w2} that belong to the random subset D2 \ {w2} (of size X2 − 1). Hence, we have
η = (m− 1)−1(X1 − 1)(X2 − 1). Furthermore, the probability

ξ = P̃(w1, w2 ∈ D1)× P̃(w2 ∈ D2) =

(X1

2

)

(m
2

) × X2

m
.

Combining obtained expressions for η and ξ we easily obtain (116).
For i = 1 and j = 3, we write, by the independence of D1,D2 and D3,

Ẽq12l1s3 = (Ẽq12l1)(Ẽs3) ≤ m−6X4
1X

2
2X

2
3 .

In the last step we used Ẽs3 = (X3)2(m)−1
2 and Ẽq12l1 ≤ m−4X4

1X
2
2 , see (115).

For i = 3 and j = 1, 2, we write Ẽq12l3sj = (Ẽq12Ij(w1))(Ẽl3), by the independence of D1,D2

and D3. Invoking the inequalities

Ẽl3 = (X3 − 1)P̃(w1 ∈ D3) ≤ m−1X2
3 , Ẽq12I1(w1) = ηξ ≤ m−4X3

1X
2
2 ,

see (116), we obtain Ẽq12l3s1 ≤ m−5X3
1X

2
2X

2
3 . Similarly, Ẽq12l3s2 ≤ m−5X2

1X
3
2X

2
3 .

For i, j = 3, we split Ẽ(q12l3s3) = (Ẽq12)(Ẽl3s3) and write Ẽq12 = η1ξ1. Here

η1 = Ẽ(X12 − 1|I1(w2)I2(w2) = 1), ξ1 = P̃(I1(w2)I2(w2) = 1).

Invoking the identities η1 = (m− 1)−1(X1 − 1)(X2 − 1) and ξ1 = m−2X1X2 we obtain

Ẽq12 = η1ξ1 ≤ m−3X2
1X

2
2 . (117)

Combining (117) with the identities Ẽl3s3 = (X3 − 1)Ẽs3 = (X3 − 1)(X3)2(m)−1
2 we obtain the

inequality Ẽq12l3s3 ≤ m−5X2
1X

2
2X

3
3 .

For i = 3 and j = 4 we write by the independence of D1,D2,D3,D4, and (117)

Ẽq12l3s4 =
(

Ẽq12

)(

Ẽl3

)(

Ẽs4

)

≤
(

m−3X2
1X

2
2

) (

m−1X2
3

) (

m−2X2
4

)

= m−6X2
1X

2
2X

2
3X

2
4 .

Proof of Theorem 3. In order to show (15) we write

r =
E12d1d2 − (E12d1)

2

E12d
2
1 − (E12d1)2

=
peEd1d2IE12 − (Ed1IE12)

2

peEd21IE12 − (Ed1IE12)
2

(118)
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and invoke the expressions

pe = ES1 +O(n−2β−4
n ), (119)

Ed1IE12 = EL1S1 +O(n−2β−4
n (1 + β−1

n )),

Ed21IE12 = EL2
1S1 +O(n−2β−4

n (1 + β−2
n )),

Ed1d2IE12 = EL1L2S1 +O(n−2β−4
n (1 + β−2

n )).

Now the identities of Lemma 8 complete the proof of (15).
Let us prove (119). We first write, by the inclusion-exclusion,

S1 − S2 ≤ IE12 ≤ S1, (120)

Lt −Qt ≤ dt ≤ Lt. (121)

Then we derive from (121) the inequalities

0 ≤ L1L2 − d1d2 ≤ L1Q2 + L2Q1 and 0 ≤ L2
1 − d21 ≤ 2L1Q1, (122)

which, in combination with (120) and (121), imply the inequalities

0 ≤ L1S1 − d1IE12 ≤ L1S2 +Q1S1, (123)

0 ≤ L2
1S1 − d21IE12 ≤ L2

1S2 + 2L1Q1S1,

0 ≤ L1L2S1 − d1d2IE12 ≤ L1L2S2 + L1Q2S1 + L2Q1S1.

Finally, invoking the upper bounds for the expected values of the quantities in the right hand
sides of (123) shown in Lemma 9, we obtain (119).
Now we derive (16) from (15). Firstly, using the fact that (iii), (v) imply the convergence of
moments E(X1)i → E(Z)i, for i = 2, 3, 4, we replace the moments yi by ui = E(Z)i in (15).
Secondly, we replace ui by their expressions via δ∗i. For this purpose we solve for u2, u3, u4
from (100) and invoke the identities

δ∗1 = δ∗1, δ∗2 = δ∗2 − δ∗1, δ∗3 = δ∗3 − 3δ∗2 + 2δ∗1. (124)

For βn → +∞ relation (15) remains valid and it implies r = 1 + o(1).
For βn → 0 the condition nβ3

n → +∞ on the rate of decay of βn ensures that the remainder
terms of (119) and Lemma 8 are negligibly small. In particular, we derive (15) using the same
argument as above. Letting βn → 0 in (15) we obtain the bound r = o(1).

Proof of Theorem 4. Before the proof we introduce some notation. We denote

H =
∑

1≤i≤n

Ii(w1)(Xi − 1)2, pke = P(w2 ∼ w1, d1 = k).

Given wi, wj ∈ W we write dij = d(wi, wj). A common neighbour w of wi and wj is called
black if {w,wi, wj} ⊂ Dr for some 1 ≤ r ≤ n, otherwise it is called red. Let d′ij and d′′ij denote
the numbers of black and red common neighbours, so that d′ij + d′′ij = dij. Let w∗ be a vertex
drawn uniformly at random from the set W ′ = W \{w1}. By d′1∗ we denote the number of black
common neighbours of w1 and w∗. By E1∗ we denote the event {w1 ∼ w∗}. We assume that w∗

is independent of the collection of random sets D1 . . . ,Dn defining the adjacency relation of our
graph.

20



In the proof we use the identity, which follows from (102), (119),

pe = n−1β−2
n y2 +O(n−2). (125)

We also use the identities, which follow from (100) and (124)

1 + β−1u2 + u−1
2 u3 = δ∗2δ

−1
∗1 , β−1u2 = δ∗1. (126)

We remark that (126) in combination with relations yi → ui as n,m → +∞, imply the right
hand side relations of (18), (19) and (21).
Now we prove the left hand side relations of (18), (19) and (21), and the relation (20).
In order to show (18) we write b = p−1

e Ed1IE12 and invoke identities (119), (103) and (125).
Proof of (19). We write h = p−1

e Ed12IE12 and evaluate

Ed12IE12 = n−1β−2
n y3 +O(n−2). (127)

Combining (125) with (127) we obtain (19). Let us show (127). Using the identity

d12 = d′12 + d′′12 = d′12IL1
+ d′12IL1

+ d′′12 (128)

we write
Ed12IE12 = Ed′12IE12IL1

+R1 +R2, (129)

where R1 = Ed′′12IE12 and R2 = EIL1
d′12IE12 . Next, we observe that EIL1

d′12IE12 = EIL1
d′1jIE1j ,

for 2 ≤ j ≤ n, and write

EIL1
d′12IE12 = EIL1

d′1∗IE1∗ = EIL1
H(m− 1)−1. (130)

We explain the second identity of (130). We observe that H(m− 1)−1 is the conditional expec-
tation of d′1∗IE1∗ given D1, . . . ,Dn. Indeed, any pair of sets Di,Dj containing w1 intersects in
the single point w1, since the event L1 holds. Consequently, each Di containing w1 produces
Xi − 2 black common neighbours provided that w∗ hits Di. Since the probability that w∗ hits
Di equals (Xi − 1)/(m− 1), the set Di contributes (on average) (m− 1)−1

Ii(w1)(Xi − 1)2 black
vertices to d′1∗.
Now, by the symmetry property, we write the right-hand side of (130) in the form

n

m− 1
EIL1

I1(w1)(X1 − 1)2 =
n

m− 1
EI1(w1)(X1 − 1)2 −R3 =

n

(m)2
y3 −R3, (131)

where, R3 =
n

m−1EIL1
I1(w1)(X1 − 1)2. Finally, we observe that (127) follows from (129), (130),

(131) and the bounds Ri = O(n−2), i = 1, 2, 3, which are proved below.
In order to bound Ri, i = 1, 2, we use the inequalities

d′12 ≤ d1 ≤ L1, IE12 ≤ S1, IL1
= I{L1 6=d1} = I{Q1≥1} ≤ Q1 (132)

and write R2 ≤ EQ1L1S1 and R3 ≤ n(m− 1)−1EQ1I1(w1)(X1 − 1)2. Then we apply (111) and
(114). In order to bound R1 we observe, that the number of red common neighbours of w1, w2

produced by the pair of sets Di, Dj is

aij =
(

Ii(w1)Ij(w2)Ij(w1)Ii(w2) + Ij(w1)Ii(w2)Ii(w1)Ij(w2)
)

Xij.

Hence, on the event w1, w2 ∈ D1 we have d′′12 ≤ ∑

2≤i<j≤n aij, since elements of D1 \ {w1, w2}
are black common neighbours of w1, w2. ¿From this inequality and the inequality IE12 ≤ S1 we
obtain

R1 ≤ Ed′′12S1 = nEd′′12s1 ≤ n
(

n−1
2

)

Es1a23. (133)
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Furthermore, invoking in (133) identities

E(s1a23) = EẼ(s1a23) = E
(

Ẽs1

)(

Ẽa23

)

, Ẽs1 = (X1)2/(m)2

and inequalities

Ẽa23 = 2EI2(w1)I3(w2)I3(w1)I2(w2)X23 ≤ 2
X2

m

X3

m

(X2 − 1)(X3 − 1)

m− 2

we obtain R1 = O(n−2).
Proof of (20). In the proof we use the fact that the random vector (H,L1) converges in distri-
bution to (d2∗, d∗∗) as n → +∞. We recall that H is described after (130). The proof of this
fact is similar to that of the convergence in distribution of L1 =

∑

1≤i≤n Ii(w1)(Xi − 1) to the
random variable d∗∗, see Theorems 5 and 7 of [6]. We note that the convergence in distribution
of (H,L1) implies the convergence in distribution of HI{L1=k} to d2∗I{d∗∗=k}. Furthermore, since
under condition (v) the first moment EH is uniformly bounded as n → +∞ and Ed2∗ < ∞, we
obtain the convergence of moments

EHI{L1=k} → Ed2∗I{d∗∗=k} as n → ∞. (134)

In order to prove (20) we write

hk = E(d12|w1 ∼ w2, d1 = k) = p−1
ke Ed12IE12I{d1=k}

and show that

pke = km−1P(d∗∗ = k) + o(n−1), (135)

Ed12IE12I{d1=k} = m−1EHI{L1=k} + o(n−1). (136)

We remark that (134) in combination with (135) and (136) implies (20).
Let us show (135). In view of the identities pke = P(wi ∼ w1, d1 = k), 2 ≤ i ≤ n, we can write

pke = P(w∗ ∼ w1, d1 = k) = P(w∗ ∼ w1|d1 = k)P(d1 = k).

Now, from the simple identity P(w∗ ∼ w1|d1 = k) = k(m − 1)−1 and the approximation
P(d1 = k) = P(d∗∗ = k) + o(1), see [6], we obtain (135).
Let us show (136). Using (128) we obtain, cf. (129),

Ed12IE12I{d1=k} = Ed′12IE12I{d1=k}IL1
+O(n−2). (137)

Furthermore, proceeding as in (130), we obtain

Ed′12IE12I{d1=k}IL1
= Ed′1∗IE1∗I{d1=k}IL1

= (m− 1)−1EHI{d1=k}IL1
. (138)

Next, we invoke identity EHI{d1=k}IL1
= EHI{L1=k}IL1

and approximate, cf. (131),

(m− 1)−1EHI{L1=k}IL1
= (m− 1)−1EHI{L1=k} +O(n−2). (139)

Combining (137), (138) and (139) we obtain (136).
Proof of (21). Let d12 denote the number of neighbours of w1, which are not adjacent to w2,
and let hk = E(d12|w1 ∼ w2, d2 = k). We obtain (21) from the identity

bk = E(d1|w1 ∼ w2, d2 = k) = 1 + hk + hk
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and the relation hk = β−1
n y2 + o(1). In order to prove this relation we write

hk = p−1
ke τ, where τ = Ed12IE12I{d2=k},

and combine (135) with the identity

τ = km−1β−1
n y2P(d∗∗ = k) + o(n−1). (140)

It remains to prove (140). In the proof we use the shorthand notation

ηi = Ii(w1)Ii(w2)(Xi − 1), η′i = ηiIE12I{d2=k}IL1
, η′′i = ηiIE12I{d2=k}.

Let us prove (140). Using the identity 1 = IL1
+ IL1

we write

τ = Ed12IE12I{d2=k}IL1
+R4, R4 = Ed12IE12I{d2=k}IL1

.

Next, assuming that the event L1 holds, we invoke the identity d12 =
∑

1≤i≤n ηi and obtain

Ed12IE12I{d2=k}IL1
= E

∑

1≤i≤n

η′i = nEη′1.

In the last step we used the symmetry property. Furthermore, from the identity

Eη′1 = Eη′′1 −R5, R5 = Eη1IE12I{d2=k}IL1
,

we obtain τ = nEη′′1 +R4 − nR5. We note that inequalities d12 ≤ d1 ≤ L1 and (132) imply

R4 ≤ EL1S1Q1, R5 ≤ EI1(w1)(X1 − 1)S1Q1 = n−1EL1S1Q1.

Now, from (111) we obtain R4 = O(n−2) and R5 = O(n−3). Hence, we have τ = nEη′′1+O(n−2).
Finally, invoking the relation

Eη′′1 = km−2y2P(d∗∗ = k) + o(n−2), (141)

we obtain (140). To show (141) we write

Eη′′1 = Eη1κ, κ = E
(

IE12I{d2=k}

∣

∣D1

)

, (142)

and observe that on the event w2 /∈ D1 the quantity κ evaluates the probability of the event
{w1 ∼ w2, d2 = k} in the passive random intersection graph defined by the sets D2, . . . ,D3

(i.e., the random graph G∗
1(n − 1,m, P )). We then apply (135) to the graph G∗

1(n − 1,m, P )
and obtain κ = km−1P(d∗∗ = k) + o(n−1). Here the remainder term does not depend on D1.
Substitution of this identity in (142) gives

Eη′′1 =
(

km−1P(d∗∗ = k) + o(n−1)
)

Eη1.

The following identities complete the proof of (141)

Eη1 = EI1(w1)(X1 − 1)−EI1(w1)I1(w2)(X1 − 1)

= m−1y2 − (m)−1
2 (y3 + y2).
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