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Abstract

We derive the exact distribution of the largest eigenvaluefihite dimensions real

Wishart matrices and for the Gaussian Orthogonal Enserdidd=j. We compare the

exact distribution with the Tracy-Widom distribution whierises in many fields as the
limiting distribution of the largest eigenvalue of larged®m matrices. In this regard
we show that the Tracy-Widom distribution can be approxeddty a properly scaled
and shifted Gamma distribution, with great accuracy fondiees of common interest
in statistical applications.
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1. Introduction

The distribution of the largest eigenvalue of Wishart and$3&n random matrices
plays animportantrole in many fields of multivariate anaymcluding principal com-
ponent analysis, analysis of large data sets, communictigory and mathematical
physicsi[1| 2].

The exact distribution of the largest eigenvalue for finitmehsion uncorrelated
central complex Wishart matrices is givenlin [3]. The exien$o non-central uncor-
related complex Wishart is derived In [4], while the caseafelated central complex
Wishart matrices with arbitrary one-sided correlation barobtained by following the
approach in/[5,16,/7].

In this paper we derive a simple expression for the exadtibligion of the largest
eigenvalue for real Wishart matrices and for the GOE, whah lze used for arbitrary
dimensions.

Also, we compare the exact distribution with the Tracy-Widdistribution, which
arises in many fields as the limiting distribution of the ksgeigenvalue of large ran-
dom matrices, and whose applications include principalgmment analysis, analysis
of large data sets, communication theory and mathematioaips [8, 9/ 10, 11, 12,
13]. In this regard we show that the Tracy-Widom distribntéan be approximated by
a properly scaled and shifted Gamma distribution, with gaeauracy for the values of
common interest in statistical applications.
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2. Exact distribution of the eigenvalues for finite dimensims Wishart and Gaus-
sian symmetric matrices

We derive the exact distribution of the largest eigenvatuedal Wishart matrices
and for random symmetric Gaussian matrices. For complssewe also summarize
the analogous distributions for the complex case (Wishadit@aussian Unitary En-
semble).

2.1. Real random matrices: uncorrelated Wishart and the $3&an Orthogonal En-
semble (GOE)

Assume a Gaussian realx m matrix X with independent, identically distributed
(i.i.d.) columns, each with zero mean and covariaice I. Denotingnmin = min{m, p},
nmax = max{m, p}, the distribution of the (real) ordered eigenvalugs> X ... >
Anyy > 0 Of the real Wishart matrisv = XX is given by [14] 1]
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whereK is a normalizing constant given by
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with T, (a) = 7m=D/ATT™ T(a — (i —1)/2).
Denotingx = [z1, T2, - . . , Tn,, ], the probability distribution function (p.d.f.) ial(1)

can be written alternatively, in terms of the Vandermondé&imd/ (x) with elements
{271}, as
J

Mmin
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wherea £ (nmax — nmin — 1)/2 and| - | stands for determinant.

Similarly, for the Gaussian Orthogonal Ensemble the isteiein the distribution
of the (real) eigenvalues for reak n symmetric matrices whose entries are i.i.d. Gaus-
sian ' (0,1/2) on the upper-triangle, and i.i.v'(0,1) on the diagonal [13]. Their
joint p.d.f. is fx (21, .., Tny,) oc [Ty e #i/2 - [T0; (25 — 2;) [15,[13]. Then, by
following the same approach as for Wishart, the joint paf.the ordered eigenvalues
for these matrices can be written

n

fa(x) = Kgop [V(x)| [] e/ (4)

i=1

whereKcor = (2"/2 [, T'[i/2])~* is a normalizing constant. Note that the eigen-
values here are distributed over all the reals.



Theorem 1. The cumulative distribution function (CDF) of the largesenvalue of
the real Wishart matridW is

By, (71) =Pr{\ <1} = K/|A(z1)] (5)
where for evemmi, the elements of themin x nmin Skew-symmetric matriA (z,) are
a;j(z1) = 220 {7 (04 +1, %) v (04 + 7, %) -

I1/2 .
—2/ toT ety (a + j,t) dt (6)
0

fori,j = 1, .+« Mmin- Note thataiyj(arl) = —CLj_’i(.Il) anda“-(xl) =0.
Whennmi, is odd, the elements of tiemin+ 1) X (nmin+ 1) skew-symmetric matrix
A(z4) are as in(@), with the additional elements

i . I .
Qi1 (T1) = 27Ty (O‘ i ?) 2=1,.. Mimin
a’nmin“rl-,j (.fCl) = _ajynmin‘i’l (Il) .] = 17 -+« Nmin
anmin+17nmin+1 (.fCl ) = O

wherey(a,z) = [ t*~'e~'dt is the lower incomplete gamma function.

Proof 1. We start by writing

Fy, (z1) =Pr{\ <z} = / /fA Wy« ey Wiy ) AW @)

11)

with D(z1) = {w1, ..., wny,, : 1 > w1 > W ... > Wy, > 0}.
Then we have

[ [t wniw =5 [ [ Vi |7ﬁ”5wz ®)

D(Il) D(xl

where¢(z) = e~/22. To evaluate this integral we recall that for a genenicx m
matrix ®(w) with elements{q) wj;)} the following identity holds [16, 17]

[+ el —pia) ©)

b>wi >ws...2wm>a

where P{A) = /|A| is the Pfaffian, and the skew-symmetric mafkixs m x m for
m even, andm + 1) x (m + 1) for m odd, with

a;j = / / sgny — )@, (x)®; (y)dxdy ,j=1,...,m. (10)

For m odd the additional elements aeg ,,+1 = —am+1,;i = f O, (x)dx, i =
1,....m, andam+1,m+1 = 0.

Using @) in @) with a = 0,b = =1, ®;(z) = ' te~*/22* with some simple
manipulations gives Theordrh 1.



Theorem 2. The CDF of the largest eigenvalue for the Gaussian Orthoggnaemble
(GOE) matrices is

F)\l (xl) = PI‘ {)\1 S 5171} = KGOE‘ |A(£C1)| (11)

where for evem the elements of the x n skew-symmetric matriA.(x;) are

aij(w1) = (i, 21)9(jf, 21) — 2/ 1 e 20 (5, ) dt (12)
and . |
vlia) 2217 (sarta)s (5.5 ) - e (3))
fori,j=1,...,n.

Whenn is odd, the elements of thie 4+ 1) x (n+ 1) skew-symmetric matriA (z;)
are as in(12), with the additional elements

Qing1(x1) = (i, 1) i=1,...,n
any1j(r1) = —ajnp1(21) ji=1,....,n
antint1(z1) = 0.

Proof 2. Starting from(4) the proof is similar to that for Theore 1.

2.2. Complex random matrices: uncorrelated Wishart andGlagissian Unitary En-
semble (GUE)

Assume now a Gaussian complex m matrix X with i.i.d. columns, each with
zero mean and covarian&2 The distribution of the (real) ordered eigenvalues of the
complex Wishart matri®W = XX is known since many years from [14] in terms of
hypergeometric functions of matrix arguments. Unfortehathe expressions given in
[14] are not easy to use, due to the difficulties in evaluatimgal polynomials. The first
expression of practical usage for the joint distributiortaf eigenvalues of a complex
Wishart matrix with correlation has been givenlin [5] by eegsing the hypergeometric
function of matrix arguments as product of determinants afrives. More recently,
that approach has been expanded to cover the case ¥heeeigenvalues of arbitrary
multiplicity, and to find several statistics regarding tharginal eigenvalues distribu-
tion [€,/7,.18]. By using these approaches, the exact statisf an arbitrary subset of
the ordered eigenvalues can be evaluated easily for finitemsion complex quadratic
forms and Wishart (uncorrelated and correlated) matrices.

Regarding the largest eigenvalue statistic, below we tep&nown result for the
particular case of uncorrelated complex Wishart matrices for % = I).

Theorem 3. The CDF of the largest eigenvalue of the uncorrelated comyleshart
matrix W is [3]
F>\1($1) :Pr{/\l le} :K0|A(1‘1)| (13)

where the elements of thgn X nmin Matrix A (x;) are

] . .
i j (xl) _ / tnmax*nmin+l+372eftdt =7 (nmax— Nemin + i +j _ 1’ Il) (14)
0
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and K¢ is a normalizing constant given by

W”min(nmin_ 1)
Ke == = (15)
- (nmax)]‘—‘nmin (nmin)

with T, (n) = 7™(M=D/2T™  (n —d)!.

The following is a similar result for complex hermitian ramd matrices with i.i.d.
CN(0,1/2) entries on the upper-triangle, and(0, 1/2) on the diagonal. These ma-
trices constitute the so called Gaussian Unitary Ensen@ili) [13].

Theorem 4. The CDF of the largest eigenvalue for the GUE is
F>\1 (Il) =Pr {/\1 S xl} = KGUE' |A(:Z?1)| (16)

where the elements of thex n matrix A (z;) are

o 1 -1 o -
a;j(r1) = / 26~ dt = 3 [W (H—JT#U%) sgn(z) 7 4 (=1)"
N (17)
andKgpp = 2"~ Y/2(z7/2 [T T'[i])~* is a normalizing constant.

Proof 3. For the GUE the joint distribution of the ordered eigenvaduwan be written
as [13

n

fax) = Kaup V)P ] e (18)
=1
Then, by using [6, Th. 7] with = —00,b = 21, ¥;(z;) = ®;(z;) = 221, &(x) =
e we get immediately the result.

These thorems can be used for finite dimensional randomaaataf limited di-
mensions in the uncorrelated case. For the extension off&hg® to correlated com-
plex Wishart see [18, 6] 7] and references therein.

We remark that the previous theorems can be used to obtdinieggpressions for
the distribution of the largest eigenvalue. In fagtq, ) can be written as combina-
tions of exponentials and powers.ofvhena is an integer, and as the combination of
exponentials, powers af, and erfz) whena is a multiple ofl /2. Thus, we can write
explicit expressions for the CDF and p.d.f.)af for all previous theorems.

For example, by expandingl(5) we derived the following expiens for the CDF
of the largest eigenvalue for real Wishart matrices.

Fornmin = nmax = 2:

Fy(x1) = ”%6711/2&.”’ / % +e -1

(19)



Fornmm = NMmax — 3.

Py (z1) = e 3%/2 (eI/Q(em—x—l)erf\/g—\/%(em(x—l)—i—l))

(20)
Fornmm = NMmax — 4.
—2x
Fy, (x1) eﬁ (\/5 (4e** — e* (2° + 22 + 22 + 8) + 2(z + 2)) +
—/mre®!? (e” (z* —da +6) —2(z + 3)) erf\/g)
(21)

Similar expressions can be derived for the p.d.f., for cexpVishart, for GOE
and for GUE. These expressions becomes cumbersome fomfexigiees.

3. Limiting behavior for large random matrices: the Tracy-W idom distribution

The pioneering works [8,/ 9] and_[11] have shown the importaotthe Tracy-
Widom distribution, which arises in many fields as the limitidistribution of the
largest eigenvalue of large random matrices. This didioby originally derived in
the study of the Gaussian unitary ensemble, has been shdvenrtdated to many ar-
eas concerned with large random matrices. Applicationsidtecprincipal component
analysis, analysis of large data sets, combinatorics, ammuation theory, representa-
tion theory, probability, statistics and mathematicalgiby [10] 11, 19, 12, 13, 20].

For example, it has been shownlin|[11, 12] for principal cormgyd analysis (PCA)
that if X is ann x p matrix whose entries are i.i.d. standard Gaussian)and the
largest eigenvalue & X, then forn, p — oo

M= fnp D TWs (22)

Unp
where7 Wy denotes a random variable (r.v.) with Tracy-Widom distiiwol of order
B, for 5 = 1,2, 4. In the previous expressigh= 1 when the entries oX are standard
real Gaussian, anl = 2 when the entries are standard complex Gaussian. We recall
that a random variabl¢ is said to have a standard complex Gaussian distribution
(denotedCAN(0,1)) if Z = (Z1 + iZ,), whereZ; and Z; are i.i.d. real Gaussian
N(0,1/2). The scaling and centering parameter$in (22)lare [11, 12]

oy = (Vita+vpTa) (23)
1 1 1/3
n = n + 24
7 V“”(wwal \/p+az) (24)
where the best adjustment parameters:, are known to ber; = a; = —1/2 for

real Wishart 3 = 1) anda; = a2 = 0 for complex Wishart § = 2). A similar



behavior can be proved for more general conditions when tivées of X are not

Gaussian [19, 21]. Due to the simplicity of this result, thacly-Widom distribution is

of extreme usefulness for problems involving PCA with ladgaensional matrices.
The Tracy-Widom CDFs are given by [8,19, 13]

Fy(z) = exp {—% /OO q(y) + (y — I)qz(y)dy} (25)
Fy(x) = exp {— / Oo(y - x)qQ(y)dy} (26)
ri () =con s [T awar} vEG (27)
whereg(y) is the unique solution to the Painvalé Il differential etjoi
q¢"(y) = yd'(y) + 2¢°(y) (28)

satisfying the condition
q(y) ~ Ai(y)  y— o0 (29)

andAi(y) denotes the Airy function.
The functionFy(x) can be derived from the other two. In fact, from](25)(26) and
(232) we can write

Fi(e) = (Fl (22) + %) (30)

and

wherefs(z) = dF(z)/dx is the p.d.f.. So in the following we will mainly focus on
Fy (I) andFQ(I).

These distributions can be evaluated numerically by sgltfie Painlevé Il differ-
ential equation{28) or the corresponding Fredholm deteamnti[8, 11| 12, 22, 13, 23].

In this paper we propose a very simple approximation for tteey-Widom dis-
tribution, to avoid the need for numerical solution of diffatial equations of Fred-
holm determinants. The approximation is shown to be extheraecurate for val-
ues of the CDF or of the complementary complementary cuiiweldistribution func-
tion (CCDF) of practical uses.

! [m ﬁHﬁ(w@ﬂ(xﬁ)—Fmﬁ)fl(xm] (31)

4. A simple approximation of the Tracy-Widom distribution b ased on the gamma
distribution

It is known that the exact distribution of the largest eigdne of a complex Wishart
matrix is a mixture of gamma distributions, i.e., its p.c&c&n be expressed as the



Table 1: Parameters for ApproximatifighV g with T'[k, 6] — o

[ TW1 | TWy | TWy
k || 46.446 | 79.6595] 146.021
6 || 0.186054] 0.101037| 0.0595445
o || 9.84801 | 9.81961 | 11.0016

weighted sum of terms®e—"* (see [3] for the uncorrelated case and. [6, 18] for one-
sided correlated Wishart matrices). For finite dimensioagites, it can be shown that
the exact distribution is very well approximated by a (s#)glamma distribution, with
proper parameters chosen to match the first moments of taeistribution.

Based on these observations, we propose the approximation

TWs~G—a (32)

wherea is a constant, ang ~ I'(k, #) denotes a Gamma r.v. with shape paramkter
and scale parametér Thus the CDF and p.d.f. 6f Wy are approximated as:

1 T+ a
Fp(z) ~ my <k, T) , x> —« (33)

zt+a

(z4+a) e, x> —a (34)

1
fa(x) ~ TTH0"
wherel'[ ] is the Gamma function, and(k, z) = [ t*~'e'dt is the lower incom-
plete Gamma function.

The parameters, 6, o should be suitably chosen according to some criterion. For
example, we have chosen to get, o for matching the first three moments of the
distributions7 Wg. To this aim we recall that for the Gammar r.v. the meds {§/} =
k6, the variance is va{G} = k6? and the skewness is Skd@} = % If g, 03, Sp
are the mean, variance and skewness of the Tracy-Widom (el 2]), matching the
first three moments gives:

4
k= — 35
5 (39)
0 = 0[3% (36)
a = kb —pg (37)

The parameters for the approximatiénl(33)l (34) obtainenhftilese equations are re-
ported in Tabl¢1L.

The comparison with pre-calculated p.d.f. values from j28hown in Fig[lL.Since
in linear scale the exact and approximated distributiorspaactically indistinguish-
able, in Fig.[2 we report the CDF and CCDF in logarithmic sé¢atelracy-Widom 2
(similar for the others). It can be seen that the approxioma in general very good



for all values of the CDF of practical interest. In partiaulaere is an excellent agree-
ment between the exact and approximate distributions ®rithht tail. The left tail
is less accurate but still of small relative error for valoéshe CDF of practical sta-
tistical uses. Note that, differently from the true distion which goes to zero only
asymptotically, the left tail is exactly zero fer< —a.

pdf(x)
0.5¢

Figure 1: Comparison between the exact (continuous lind)agproximated (dashed) PDF for the Tracy-
Widom 1 and Tracy-Widom 2. The exact and approximated cuavepractically indistinguishable on this
scale.

CDF(x), CCDHXx)
1

0.01

104

106

108

Figure 2: Comparison between the exact (continuous lind)a@proximated (dashed) CDF, CCDF, Tracy-
Widom 7 W2, log scale. The two CCDF are practically indistinguishable

Some specific values are given in Table 2 Ahd 3 where it can te=lrtbat, for
values of common use, the relative error is small.



Table 2: Precision of the approximation: CDFBIV; vs.T'[k, 8] — « for some percentiles.

x Target CDF CDF CDF
CDF [22]  approximation rel. error (%)
-4.64 0.001 0.0011 0.0009 -17.40
-3.90 0.010 0.0099 0.0095 -4.02
-3.18 0.050 0.0500 0.0501 0.16
-2.78 0.100 0.1004 0.1010 0.65
-1.91 0.300 0.3001 0.3011 0.32
-1.27 0.500 0.4995 0.4995 -0.01
-0.59 0.700 0.7006 0.6998 -0.12
0.45 0.900 0.9000 0.8996 -0.04
0.98 0.950 0.9500 0.9500 -0.00
2.02 0.990 0.9899 0.9901 0.02
3.24 0.999 0.9989 0.9990 0.01

5. Numerical results

The calculation of the exact distribution of the largesegieplue is easy by using
Theorems 1-4 for not too large random matrices. For exammeshow in Fig[ B and
Fig.[ the distribution of the largest eigenvalue for real anmplex Wishart matrices,
with differentnmin, nmax. In the figure we report the exact distributions given By (5),
(@I3) and the centered and scaled Tracy-Widom distrioul@) (here we can use the
exact Tracy-Widom or the approximatiofis{33) which are nistirtuishable in this
scale).

In Fig.[H and Fig[ b we report the exact distribution for GO&. (1)) and for GUE
(eq. [I6)), forn = 2,5, 10, 15, 20, 25. In the same figures we report the approximation
based on the Tracy-Widom distribution, which in these c&sf19,.13]:

)\ _ /
2 2T, (38)

with 11/, = 209y/n — a1 ando’, = oo(n — az)~ /5, wheres? = 1/2 is the variance

of the off-diagonal elements in the ensembles in our nomattin. In the previous
expression we must uge= 1 andg = 2 for the GOE and GUE, respectively. While
[13] indicatesa; = a2 = 0, we have observed that the approximations are better
for smalln if we choose the adjusting parametess= a> = 1/2 for the GOE and

a1 = 0,ao = 1 for the GUE.

We note that, for large dimension problems, the asymptasicidutions predicted
by the Tracy-Widom laws converge soon to the exact. In paeicfor GOE and GUE
the properly scaled and centered Tracy-Widom laws aredyreery close to the exact
for very small matricesi{ = 2). Also, we remark that the simple approximatidng (33),
(34) can be used instead of the pre-calculated tables forramy-Widom distribution
for values of practical interest in statistic.
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Table 3: Precision of the approximation: CDFBIV, vs.T'[k, ] — « for some percentiles.

x Target CDF CDF CDF
CDF [22]  approximation rel. error (%)
-4.29 0.001 0.0010 0.0009 -8.89
-3.72 0.010 0.0102 0.0100 -1.77
-3.19 0.050 0.0505 0.0506 0.16
-2.90 0.100 0.1003 0.1006 0.35
-2.26  0.300 0.3025 0.3029 0.14
-1.80 0.500 0.5022 0.5021 -0.02
-1.32 0.700 0.7018 0.7014 -0.06
-0.59 0.900 0.9012 0.9011 -0.02
-0.23 0.950 0.9503 0.9503 0.00
0.48 0.990 0.9901 0.9901 0.01
1.31 0.999 0.9990 0.9990 0.00
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Figure 3: CDF of the largest eigenvalue, real Wishart mattip, = 5, nmax = 5, 10, 15,20. Comparison
between the exact distributionl (5) (continuous line) aredbaled and centergdV; as in [22) (dotted).
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Figure 4: CDF of the largest eigenvalue, complex Wishartimatmin = 5, nmax = 5, 10, 15, 20, 25, 30.
Comparison between the exact distributibnl (13) (contisuine) and the scaled and centefEdV- as in

22) (dotted).
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CDF

Figure 5: CDF of the largest eigenvalue, GOE. From left thrig = 2, 5, 10, 15, 20. Comparison between
the exact distributior{{11) (continuous lines) and theestaind centered WV, as in [38) (dotted lines).

T

Figure 6: CDF of the largest eigenvalue, GUE. From left thttig» = 2,5, 10, 15, 20,25. Comparison
between the exact distribution {16) (continuous lines) tiedscaled and centerddV- as in [38) (dotted
lines).
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