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Abstract

This paper provides the basis for new methods of inference for max-stable
processes ξ on general spaces that admit a certain incremental representation,
which, in important cases, has a much simpler structure than the max-stable
process itself. A corresponding peaks-over-threshold approach will incorporate
all single events that are extreme in some sense and will therefore rely on a
substantially larger amount of data in comparison to estimation procedures
based on block maxima.
Conditioning a process η in the max-domain of attraction of ξ on being
extremal, several convergence results for the increments of η are proved. In
a similar way, the shape functions of mixed moving maxima (M3) processes
can be extracted from suitably conditioned single events η. Connecting the
two approaches, transformation formulae for processes that admit both an
incremental and an M3 representation are identified.
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process; mixed moving maxima; peaks-over-threshold; weak convergence on
function space

2010 Mathematics Subject Classification: Primary 60G70
Secondary 62G32; 62E20

1. Introduction

The joint extremal behavior at multiple locations of some random process
{η(t) : t ∈ T}, T an arbitrary index set, can be captured via its limiting max-
stable process, assuming the latter exists and is non-trivial everywhere. Then,
for independent copies ηi of η, i ∈ N, the functions bn : T → R, cn : T → (0,∞)
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can be chosen such that the convergence

ξ(t) = lim
n→∞

cn(t)
(

n
max
i=1

ηi(t)− bn(t)
)
, t ∈ T, (1)

holds in the sense of finite-dimensional distributions. The process ξ is said to
be max-stable and η is in its max-domain of attraction (MDA). The theory of
max-stable processes is mainly concerned with the dependence structure while
the marginals are usually assumed to be known. Even for finite-dimensional
max-stable distributions, the space of possible dependence structures is un-
countably infinite-dimensional and parametric models are required to find a
balance between flexibility and analytical tractability [7, 21].

A general construction principle for max-stable processes was provided by
[6, 26]: Let

∑
i∈N δ(Ui,Si) be a Poisson point process (PPP) on (0,∞)× S with

intensity measure u−2du · ν(ds), where (S,S) is an arbitrary measurable space
and ν a positive measure on S. Further, let f : S×T → [0,∞) be a non-negative
function with

∫
S f(s, t)ν(ds) = 1 for all t ∈ T . Then the process

ξ(t) = max
i∈N

Uif(Si, t), t ∈ T, (2)

is max-stable and has standard Fréchet margins with distribution function
exp(−1/x) for x ≥ 0. In this paper, we restrict to two specific choices for f and
(S,S, ν) and consider processes that admit one of the resulting representations.
First, let {W (t) : t ∈ T} be a non-negative stochastic process with EW (t) = 1,
t ∈ T , and W (t0) = 1 a.s. for some point t0 ∈ T . The latter condition means
thatW (t) simply describes the multiplicative increment ofW w.r.t. the location
t0. For (S,S, ν) being the canonical probability space for the sample paths of
W and with f(w, t) = w(t), w ∈ S, t ∈ T , we refer to

ξ(t) = max
i∈N

UiWi(t), t ∈ T, (3)

as the incremental representation of ξ, where {Wi}i∈N are independent copies
of W . Since T is an arbitrary index set, the above definition covers multivariate
extreme value distributions, i.e. T = {t1, . . . , tk}, as well as max-stable random
fields, i.e. T = R

d.
For the second specification, let {F (t) : t ∈ R

d} be a stochastic process with
sample paths in the space C(Rd) of non-negative continuous functions, such
that

E
∫
Rd F (t)dt = 1. (4)

With Si = (Ti, Fi), i ∈ N, in S = R
d × C(Rd), intensity measure ν(dt× dg) =

dtPF (dg) and f((t, g), s) = g(s − t), (t, g) ∈ S, we obtain the class of mixed
moving maxima (M3) processes

ξ(t) = max
i∈N

UiFi(t− Ti), t ∈ R
d. (5)
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These processes are max-stable and stationary on R
d (see for instance [27]).

The function F is called shape function of ξ and can also be deterministic (e.g.,
in case of the Smith process). In Smith’s “rainfall-storm” interpretation [26],
Ui and Ti are the strength and center point of the ith storm, respectively, and
UiFi(t − Ti) represents the corresponding amount of rainfall at location t. In
this case, ξ(t) is the process of extremal precipitation.

When i.i.d. realizations η1, . . . , ηn of η in the MDA of a max-stable process
ξ are observed, a classical approach for parametric inference on ξ is based on
generating (approximate) realizations of ξ out of the data η1, . . . , ηn via com-
ponentwise block maxima and applying maximum likelihood (ML) estimation
afterwards. A clear drawback of this method is that it ignores all information
on large values that is contained in the order statistics below the within-block
maximum. Further, ML estimation needs to evaluate the multivariate densities
while for many max-stable models only the bivariate densities are known in
closed form. Thus, composite likelihood approaches have been proposed [20, 5].
In univariate extreme-value theory, the second standard procedure estimates
parameters by fitting a certain PPP to the peaks-over-thresholds (POT), i.e.,
to the empirical process of exceedances over a certain critical value [18, 10]. Also
in the multivariate framework we can expect to profit from using all extremal
data via generalized POT methods instead of aggregated data. In contrast
to the ML approach, in this paper, we assume that ξ admits one of the two
representations (3) and (5) and we aim at extracting realizations of the processes
W and F , respectively, from single extreme events. Here, the specification of a
single extreme event will depend on the respective representation.
In [12], this concept is applied to derive estimators for the class of Brown-
Resnick processes [4, 17], which have the form (3) by construction. With a(n)
being a sequence of positive numbers with limn→∞ a(n) = ∞, the convergence
in distribution

(
η(t1)

η(t0)
, . . . ,

η(tk)

η(t0)

∣∣∣∣∣ η(t0) > a(n)

)
D−→
(
W (t1), . . . ,W (tk)

)
, (6)

t0, t1, . . . , tk ∈ T , k ∈ N, is established for η being in the MDA of a Brown-
Resnick process and with W being the corresponding log-Gaussian random
field. A similar approach exists in the theory of homogeneous discrete-time
Markov chains. For instance, [25] and [9] investigate the behavior of a Markov
chain {M(t) : t ∈ Z} conditional on the event that M(0) is large. The resulting
extremal process is coined the tail chain and turns out to be Markovian again.
In this paper, the convergence result (6) is generalized in different aspects.
Arbitrary non-negative processes {W (t) : t ∈ T} with EW (t) = 1, t ∈ T ,
are considered, and convergence of the conditional increments of η in the sense
of finite-dimensional distributions as well as weak convergence in continuous
function spaces is shown (Theorems 2.1 and 2.2). Moreover, in Section 3,
similar results are established for M3 processes (5) by considering realizations
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of η around their (local) maxima. Since one and the same max-stable process ξ
might admit both representations (3) and (5) we provide formulae for switching
between them in Section 4. Section 5 gives an exemplary outlook on how our
results can be applied for statistical inference.

2. Incremental representation

Throughout this section, we suppose that {ξ(t) : t ∈ T}, where T is an
arbitrary index set, is normalized to standard Fréchet margins and admits a
representation

ξ(t) = max
i∈N

UiVi(t), t ∈ T, (7)

where
∑

i∈N δUi
is a PPP on (0,∞) with intensity u−2du, which we call Fréchet

point process in the following. The {Vi}i∈N are independent copies of a non-
negative stochastic process {V (t) : t ∈ T} with EV (t) = 1, t ∈ T . Note
that (7) is slightly less restrictive than the representation (3) in that we do not
require that V (t0) = 1 a.s. for some t0 ∈ T . For any fixed t0 ∈ T , we have

ξ(t)
D

= max
i∈N

Ui

(
1Pi=0V

(1)
i (t) + 1Pi=1V

(2)
i (t)

)
, t ∈ T, (8)

where {Pi}i∈N are i.i.d. Bernoulli variables with parameter p = P(V (t0) = 0)

and the V
(1)
i and V

(2)
i are independent copies of the process {V (t) : t ∈ T},

conditioned on the events {V (t0) > 0} and {V (t0) = 0}, respectively.
Note that for k ∈ N, t0, . . . , tk ∈ T , the vector Ξ = (ξ(t0), . . . , ξ(tk)) follows

a (k+1)-variate extreme-value distribution and its distribution function G can
therefore be written as

G(x) = exp(−µ([0,x]C )), x ∈ R
k+1, (9)

where µ is a measure on E = [0,∞)k+1 \ {0}, the so-called exponent measure
of G [21, Prop. 5.8], and [0,x]C = E \ [0,x].

The following convergence result provides the theoretical foundation for sta-
tistical inference based on the incremental process V .

Theorem 2.1. Let {η(t) : t ∈ T} be non-negative and in the MDA of some
max-stable process ξ that admits a representation (7) and suppose that η is
normalized such that (1) holds with cn(t) = 1/n and bn(t) = 0 for n ∈ N and
t ∈ T . Let a(n) → ∞ as n → ∞. For k ∈ N and t0, . . . , tk ∈ T we have the
convergence in distribution on R

k+1

(
η(t0)

a(n)
,
η(t1)

η(t0)
, . . . ,

η(tk)

η(t0)

∣∣∣∣∣ η(t0) > a(n)

)
D−→
(
Z,∆Ṽ(1)

)
, n → ∞,

where the distribution of ∆Ṽ(1) is given by

P(∆Ṽ(1) ∈ dz) = (1− p) P(∆V(1) ∈ dz) E
(
V (1)(t0)

∣∣∆V(1) = z
)
, z ≥ 0.

(10)
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Here, ∆V(1) denotes the vector of increments
(
V (1)(t1)
V (1)(t0)

, . . . , V
(1)(tk)

V (1)(t0)

)
with respect

to t0, and Z is an independent Pareto variable.

Remark 2.1. Note that any process η that satisfies the convergence in (1) for
a process ξ with standard Fréchet margins can be normalized such that the
norming functions in (1) become cn(t) = 1/n and bn(t) = 0, n ∈ N, t ∈ T [21,
Prop. 5.10].

Proof of Theorem 2.1. For X = (η(t0), . . . , η(tk)), which is in the MDA of
the random vector Ξ = (ξ(t0), . . . , ξ(tk)), it follows from [21, Prop. 5.17] that

lim
m→∞

mP(X/m ∈ B) = µ(B), (11)

for all elements B of the Borel σ-algebra B(E) of E bounded away from {0} with
µ(∂B) = 0, where µ is defined by (9). For s0 > 0 and s = (s1, . . . , sk) ∈ [0,∞)k,
we consider the sets As0 = (s0,∞)× [0,∞)k, A = A1 and Bs = {x ∈ [0,∞)k+1 :
(x(1), . . . , x(k)) ≤ x(0)s} for s satisfying P(∆Ṽ(1) ∈ ∂[0, s]) = 0. Then
{
η(t0) > s0a(n),

(
η(t1)/η(t0), . . . , η(tk)/η(t0)

)
≤ s
}
= {X/a(n) ∈ Bs ∩As0},

since Bs is invariant under multiplication, i.e., Bs = cBs for any c > 0. Thus,
we obtain

P
(
η(t0) > s0a(n), (η(t1)/η(t0), . . . , η(tk)/η(t0)) ≤ s

∣∣∣ η(t0) > a(n)
)

=
a(n) P(X/a(n) ∈ Bs ∩A ∩As0)

a(n) P(X/a(n) ∈ A)

−→ µ(Bs ∩A ∩As0)

µ(A)
, (n → ∞), (12)

where the convergence follows from (11), as long as µ{∂(Bs ∩A ∩As0)} = 0.
Let

ξ(1)(t) = max
i∈N

U
(1)
i V

(1)
i (t), t ∈ T, (13)

where
∑

i∈N δU (1)
i

is a Poisson point process with intensity (1 − p)u−2du and

let µ(1) be the exponent measure of the associated max-stable random vector
(ξ(1)(t0), . . . , ξ

(1)(tk)). Then the choice A = (1,∞) × [0,∞)k guarantees that
µ(· ∩ A) = µ(1)(· ∩ A). Comparing the construction of ξ(1) in (13) with the
definition of the exponent measure, we see that µ(1) is the intensity measure of
the Poisson point process

∑
i∈N δ(U (1)

i V (1)
i (t0), ..., U

(1)
i V (1)

i (tk))
on E. Hence,

µ(A) =

∫ ∞

0
(1− p)u−2 P(uV (1)(t0) > 1)du

= (1− p)

∫ ∞

0
u−2

∫

[u−1,∞)
P(V (1)(t0) ∈ dy)du

= (1− p)

∫ ∞

0
yP(V (1)(t0) ∈ dy) = (1− p) E V (1)(t0) = 1, (14)
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where the last equality follows from EV (1)(t0) = EV (t0)/(1−p). Furthermore,
for s0 ≥ 1 and s ∈ [0,∞)k with P(∆Ṽ(1) ∈ ∂[0, s]) = 0,

µ(Bs ∩A ∩As0)/((1 − p)µ(A))

=

∫ ∞

0
u−2 P

(
uV (1)(t0) > s0,

(
uV (1)(t1), . . . , uV

(1)(tk)
)
≤ suV (1)(t0)

)
du

=

∫ ∞

0

∫

[s0u−1,∞)
u−2 P

(
V (1)(t0) ∈ dy

∣∣∣∆V(1) ≤ s
)
P(∆V(1) ≤ s)du

=

∫

[0,s]

∫

[0,∞)
ys−1

0 · P
(
V (1)(t0) ∈ dy

∣∣∣∆V(1) = z
)
P(∆V(1) ∈ dz)

= s−1
0

∫

[0,s]
E
(
V (1)(t0)

∣∣∣∆V(1) = z
)
P(∆V(1) ∈ dz). (15)

Equation (15) shows that the convergence in (12) holds for all continuity points
s ∈ [0,∞)k of the distribution function of ∆V(1). Since s0 ≥ 1 was arbitrary,
this concludes the proof.

Remark 2.2. 1. If V (1)(t0) is stochastically independent of the increments
∆V(1), we simply have P(∆Ṽ(1) ∈ dz) = P(∆V(1) ∈ dz).

2. If p = P(V (t0) = 0) = 0, the exponent measure µ of any finite-dimensional
vector Ξ = (ξ(t0), . . . , ξ(tk)), t0, . . . , tk ∈ T , k ∈ N, satisfies the condition
µ
(
{0} × [0,∞)k

)
= 0, and following Proposition 2.1, the incremental

representation of Ξ according to (3) is given by Ξ = maxi∈N Ui ·(1,∆Ṽi)
⊤,

where ∆Ṽi, i ∈ N, are independent copies of ∆Ṽ = ∆Ṽ(1).

3. If ξ admits a representation (3), we have P(∆Ṽ(1) ∈ dz) = P(∆V ∈ dz),
which shows that (6) is indeed a special case of Theorem 2.1.

Remark 2.3. In the above theorem, the sequence a(n) of thresholds is only
assumed to converge to ∞, as n → ∞, ensuring that {η(t0) > a(n)} becomes
a rare event. For statistical applications a(n) should also be chosen such that
the number of exceedances

N(n) =

n∑

i=1

1{ηi(t0) > a(n)}

converges to ∞ almost surely, where (ηi)i∈N is a sequence of independent
copies of η. By the Poisson limit theorem, this is equivalent to the additional
assumption that limn→∞ a(n)/n = 0, since in that case nP(η(t0) > a(n)) =
n/a(n) → ∞, as n → ∞.

Remark 2.4. [12] consider Hüsler-Reiss distributions [15, 16] and obtain their
limiting results by conditioning on certain extremal events A ⊂ E. They
show that various choices of A are sensible in the Hüsler-Reiss case, leading
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to different limiting distributions of the increments of η. In case ξ is a Brown-
Resnick process and A = (1,∞) × [0,∞)k the assertions of Theorem 2.1 and
[12, Thm. 3.3] coincide.

Example 2.1. (Extremal Gaussian process [23].) A commonly used class of
stationary yet non-ergodic max-stable processes on R

d is defined by

ξ(t) = max
i∈N

UiYi(t), t ∈ R
d, (16)

where
∑

i∈N δUi
is a Fréchet point process, Yi(t) = max(0, Ỹi(t)), i ∈ N, and the

Ỹi are i.i.d. stationary, centered Gaussian processes with E(max(0, Ỹi(t))) = 1
for all t ∈ R

d [23, 3]. Note that in general, a t0 ∈ R
d s.t. Yi(t0) = 1 a.s. does not

exist, i.e., the process admits representation (7) but not representation (3). In
particular, for the extremal Gaussian process we have p = P(V (t0) = 0) = 1/2
and the distribution of the increments in (10) becomes

P(∆Ṽ(1)∈ dz) =
1

2
E
[
Y (t0)

∣∣∣ (Y (t1)/Y (t0), . . . , Y (tk)/Y (t0)) = z, Y (t0) > 0
]

· P
((

Y (t1)/Y (t0), . . . , Y (tk)/Y (t0)
)
∈ dz

∣∣∣Y (t0) > 0
)
.

While the Hüsler-Reiss distribution is already given by the incremental rep-
resentation (3), cf. [16], other distributions can be suitably rewritten, provided
that the cumulative distribution function and hence the respective exponent
measure µ is known.

Proposition 2.1. Let Ξ = (ξ(t0), . . . , ξ(tk)) be a max-stable process on T =
{t0, . . . , tk} with standard Fréchet margins and suppose that its exponent mea-
sure µ is concentrated on (0,∞) × [0,∞)k. Define a random vector W =
(W (1), . . . ,W (k)) via its cumulative distribution function

P(W ≤ s) = µ(Bs ∩A), s ∈ [0,∞)k , (17)

where A = (1,∞)× [0,∞)k and Bs = {x ∈ [0,∞)k+1 : (x(1), . . . , x(k)) ≤ x(0)s}.
Then, Ξ allows for an incremental representation (3) with Wi, i ∈ N, being
independent copies of W.

Proof. First, we note that (17) indeed defines a valid cumulative distribution
function. To this end, consider the measurable transformation

T : (0,∞) × [0,∞)k → (0,∞) × [0,∞)k, (x0, . . . , xk) 7→
(
x0,

x1
x0

, . . . ,
xk
x0

)
.

Then, T (Bs ∩A) = (1,∞)× [0, s] and the measure µT (·) = µ(T−1((1,∞)× · ))
is a probability measure on [0,∞)k. Since

µ(Bs ∩A) = µ(T−1((1,∞) × [0, s])) = µT ([0, s]),
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the random vector W is well-defined and has law µT .
By definition of the exponent measure, we have Ξ

D

= maxi∈N Xi, where Π =∑
i∈N δXi

is a PPP on E with intensity measure µ. Then, the transformed point
process TΠ =

∑
i∈N δ(X(0)

i , X(1)
i /X(0)

i , ..., X(k)
i /X(0)

i ) has intensity measure

µ̃((c,∞) × [0, s]) = µ
(
T−1 ((c,∞)× [0, s])

)

= µ(Bs ∩ ((c,∞) × [0,∞)k)) = c−1µ(Bs ∩A)

for any c > 0, s ∈ [0,∞)k, where we use the fact that µ, as an exponent
measure, has the homogeneity property c−1µ(dx) = µ(d(cx)). Thus, TΠ has
the same intensity as

∑
i∈N δ(Ui,Wi), where

∑
i∈N δUi

is a Fréchet point process
and Wi, i ∈ N, are i.i.d. vectors with law P(W ≤ s) = µ(Bs ∩ A). Hence, we
have

Ξ
D

= max
i∈N

T−1
((

X
(0)
i ,X

(1)
i /X

(0)
i , . . . ,X

(k)
i /X

(0)
i

))

D
= max

i∈N
T−1

((
Ui,Wi

))
= max

i∈N
UiWi,

which completes the proof.

Example 2.2. (Symmetric logistic distribution, cf. [14].) For T = {t0, . . . , tk},
the symmetric logistic distribution is given by

P(ξ(t0) ≤ x0, . . . , ξ(tk) ≤ xk) = exp

[
−
(
x−q
0 + · · ·+ x−q

k

)1/q]
, (18)

for x0, . . . , xk > 0 and q > 1. Hence, the density of the exponent measure is

µ(dx0, . . . ,dxk) =

(
k∑

i=0

x−q
i

)1/q−(k+1)( k∏

i=1

(iq − 1)

)
k∏

i=0

x−q−1
i dx0 . . . dxk.

Applying Proposition 2.1, the incremental process W in the representation (3)
is given by

P(W (t1) ≤ s1, . . . W (tk) ≤ sk) =

(
1 +

k∑

i=1

s−q
i

)1/q−1

.

2.1. Continuous sample paths

In this subsection, we provide an analog result to Theorem 2.1, in which
convergence in the sense of finite-dimensional distributions is replaced by weak
convergence on function spaces. In the following, for a Borel set U ⊂ R

d, we
denote by C(U) and C+(U) the space of non-negative and strictly positive
continuous functions on U , respectively, equipped with the topology of uniform
convergence on compact sets.
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Theorem 2.2. Let K be a compact subset of R
d and {η(t) : t ∈ K} be a

process with positive and continuous sample paths in the MDA of a max-stable
process {ξ(t) : t ∈ K} as in (3) in the sense of weak convergence on C(K). In
particular, suppose that

1

n

n
max
i=1

ηi(·) D−→ ξ(·), n → ∞.

Let W be the incremental process from (3) and Z a Pareto random variable,
independent of W . Then, for any sequence a(n) of real numbers with a(n) → ∞,
we have the weak convergence on (0,∞) × C(K)

(
η(t0)

a(n)
,
η(·)
η(t0)

∣∣∣ η(t0) > a(n)

)
D−→ (Z,W (·)),

as n tends to ∞.

Remark 2.5. Analogously to [28, Thm. 5], weak convergence of a sequence of
probability measures Pn, n ∈ N, to some probability measure P on C(Rd) is
equivalent to weak convergence of Pnr

−1
j to Pr−1

j on C([−j, j]d) for all j ≥ 1,

where rj : C(Rd) → C([−j, j]d) denotes the restriction of a function to the cube
[−j, j]d. Hence the assertion of Theorem 2.2 remains valid if the compact set
K is replaced by R

d.

Proof of Theorem 2.2. As the process ξ is max-stable and η ∈ MDA(ξ),
similarly to the case of multivariate max-stable distributions (cf. Theorem 2.1),
we have that

lim
u→∞

uP(η/u ∈ B) = µ(B) (19)

for any Borel set B ⊂ C(K) bounded away from 0K , i.e., inf{sups∈K f(s) : f ∈
B} > 0, and with µ(∂B) = 0 [7, Cor. 9.3.2], where µ is the exponent measure
of ξ, defined by

P(ξ(s) ≤ xj , s ∈ Kj , j = 1, . . . ,m)

= exp
[
−µ
({

f ∈ C(K) : sups∈Kj
f(s) > xj for some j ∈ {1, . . . ,m}

})]

(20)

for xj ≥ 0, Kj ⊂ K compact. Thus, µ equals the intensity measure of the
Poisson point process

∑
i∈N δUiWi(·). For z > 0 and D ⊂ C(K) Borel, we

consider the sets

Az = {f ∈ C(K) : f(t0) > z}
BD = {f ∈ C(K) : f(·)/f(t0) ∈ D}

and A = A1. Note that BD is invariant w.r.t. multiplication by any positive
constant. Then, as W (t0) = 1 a.s., we have µ(Az) =

∫∞
z u−2 du = z−1 and for
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s0 ≥ 1 and any Borel set D ⊂ C(K) with P(W ∈ ∂D) = 0, by (19), we get

P
{
η(t0)/a(n) > s0, η(·)/η(t0) ∈ D

∣∣∣ η(t0) > a(n)
}

=
a(n) P

{
η(·)/a(n) ∈ As0 ∩BD ∩A

}

a(n) P
{
η(·)/a(n) ∈ A

}

n→∞−→ µ(BD ∩As0)

µ(A)

=

∫ ∞

s0

u−2 P
{
uW (·) ∈ BD

}
du

= s−1
0 P

{
W (·) ∈ D

}
,

which is the joint distribution of Z and W (·).
Example 2.3. (Brown-Resnick processes, cf. [4, 17].) For T = R

d, d ≥ 1, let
{Y (t) : t ∈ T} be a centered Gaussian process with stationary increments,
continuous sample paths and Y (t0) = 0 for some t0 ∈ R

d. Note that by [1,
Thm. 1.4.1] it is sufficient for the continuity of Y that there exist constants
C,α, δ > 0, such that

E |Y (s)− Y (t)|2 ≤ C

| log ‖s− t‖|1+α

for all s, t ∈ R
d with ‖s−t‖ < δ. Further let γ(t) = E(Y (t)−Y (0))2 and σ2(t) =

E(Y (t))2, t ∈ R
d, denote the variogram and the variance of Y , respectively.

Then, with a Fréchet point process
∑

i∈N δUi
and independent copies Yi of Y ,

i ∈ N, the process

ξ(t) = max
i∈N

Ui exp
(
Yi(t)− σ2(t)/2

)
, t ∈ R

d, (21)

is stationary and its distribution only depends on the variogram γ. Comparing
(21) with the incremental representation (3), the distribution of the increments
is given by the log-Gaussian random field W (t) = exp

(
Y (t)− σ2(t)/2

)
, t ∈ R

d,
and Theorem 2.2 applies.

3. Mixed moving maxima representation

A large and commonly used class of max-stable processes is the class of M3
processes (5). Let

Π0 =
∑

i∈N

δ(Ui.Ti,Fi) (22)

be the corresponding PPP on (0,∞)×R
d×C(Rd) with intensity u−2dudt PF (df).

In the sequel, M3 processes are denoted by

M(t) = max
i∈N

UiFi(t− Ti), t ∈ R
d.
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The marginal distributions of M are given by

P(M(t0) ≤ s0, . . . ,M(tk) ≤ sk)

= P

[
Π0

({
(u, t, f) :

k
max
l=0

uf(tl − t)/sl > 1

})
= 0

]

= exp

(
−
∫

C(Rd)

∫

Rd

k
max
l=0

(f(tl − t)/sl) dt PF (df)

)
, (23)

t0, . . . , tk ∈ R
d, s0, . . . , sk ≥ 0, k ∈ N.

In Section 2, we were interested in recovering the incremental processW from
processes in the MDA of a max-stable process with incremental representation.
In case of M3 processes, the object of interest is clearly the distribution of the
shape function F . Thus, in what follows, we provide the corresponding con-
vergence results for processes η in the MDA of an M3 process. We distinguish
between processes on R

d with continuous sample paths and processes on a grid
(Zd). The main idea is to consider η in the neighborhood of its own (local)
maximum, conditional on this maximum being large.

3.1. Continuous Case

Let {η(t) : t ∈ R
d} be strictly positive and in the MDA of a mixed moving

maxima process M in the sense of weak convergence in C(Rd). We assume that
η is normalized such that the norming functions in (1) are given by cn(t) = 1/n
and bn(t) = 0, for any n ∈ N and t ∈ R

d. Further suppose that the shape
function F of M is sample-continuous and satisfies

F (0) = λ a.s.,

F (t) ∈ [0, λ) ∀t ∈ R
d \ {0} a.s.

(24)

for some λ > 0 and
∫

Rd

E

{
max
t0∈K

F (t0 − t)

}
dt < ∞ (25)

for any compact set K ⊂ R
d. Under these assumptions, there is an analog

result to Theorem 2.2.

Theorem 3.1. Let Q,K ⊂ R
d be compact such that ∂Q is a Lebesgue null set

and let

τQ : C(Q) → R
d, f 7→ inf

(
argmax

t∈Q
f(t)

)
,

where “inf” is understood in the lexicographic sense. Then, under the above
assumptions, for any Borel set B ⊂ C(K) with P(F/λ ∈ ∂B) = 0, and any
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sequence a(n) with a(n) → ∞ as n → ∞, we have

lim
{0}∈LրR

d

compact

lim sup
n→∞

P
{
η
(
τQ(η|Q) + ·

)/
η(τQ(η|Q)) ∈ B

∣∣∣

max
t∈Q

η(t) = max
t∈Q⊕L

η(t), max
t∈Q

η(t) ≥ a(n)
}
= P

{
F (·)/λ ∈ B

}
,

where ⊕ denotes morphological dilation.
The same result holds true if we replace lim supn→∞ by lim infn→∞.

Proof. First, we consider a fixed compact set L ⊂ R
d large enough such that

K ∪ {0} ⊂ L and define

AL =

{
f ∈ C(Q⊕ L) : max

t∈Q
f(t) ≥ 1, max

t∈Q
f(t) = max

t∈Q⊕L
f(t)

}

and

CB =
{
f ∈ C(Q⊕ L) : f

(
τQ(f |Q) + ·

)/
f(τQ(f |Q)) ∈ B

}

for any Borel set B ⊂ C(K). Note that CB is invariant w.r.t. multiplication by
any positive constant. Thus, we get

P
{
η
(
τQ(η|Q) + ·

)/
η(τQ(η|Q)) ∈ B

∣∣∣ max
t∈Q

η(t) = max
t∈Q⊕L

η(t) ≥ a(n)
}

= P
{
η/a(n) ∈ CB

∣∣ η/a(n) ∈ AL

}

=
a(n) P

{
η/a(n) ∈ CB, η/a(n) ∈ AL

}

a(n) P
{
η/a(n) ∈ AL

} . (26)

By [8, Cor. 9.3.2] and [21, Prop. 3.12] we have

lim sup
u→∞

uP(η/u ∈ C) ≤ µ(C), C ⊂ C(Q⊕ L) closed,

lim inf
u→∞

uP(η/u ∈ O) ≥ µ(O), O ⊂ C(Q⊕ L) open,

where C and O are bounded away from 0K . Here, µ is the intensity measure of
the PPP

∑
i∈N δUiFi( · −Ti) restricted to C(Q⊕L). Thus, by adding or removing

the boundary, we see that all the limit points of Equation (26) lie in the interval
[
µ(CB ∩AL)− µ(∂(CB ∩AL))

µ(AL) + µ(∂AL)
,
µ(CB ∩AL) + µ(∂(CB ∩AL))

µ(AL)− µ(∂AL)

]
. (27)

We note that AL is closed and the set

A∗
L =

{
f ∈ C(Q⊕ L) :

τQ(f |Q) ∈ Qo, max
t∈Q

f(t) > max
{
1, f(t)

}
∀t ∈ Q⊕ L \ {τQ(f |Q)}

}
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is in the interior of AL (Lemma A.1). Hence, we can assess

µ(∂AL) ≤ µ({f ∈ C(Q⊕ L) : max
t∈Q

f(t) = 1})

+ µ

( (
{f ∈ C(Q⊕ L) : τQ(f |Q) ∈ ∂Q}

∪
{
f ∈ C(Q⊕ L) : argmax

t∈Q⊕L
f(t) is not unique

})

∩
{
f ∈ C(Q⊕ L) : max

t∈Q
f(t) = max

t∈Q⊕L
f(t) ≥ 1

})

≤ 0 +

∫

∂Q

∫ ∞

λ−1

u−2 dudt0

+

∫

Rd\(Q⊕L)

∫ ∞

λ−1

u−2 P

{
umax

t0∈Q
F (t0 − x) ≥ 1

}
dudx. (28)

Here, the equality µ({f ∈ C(Q ⊕ L) : maxt∈Q f(t) = 1}) = 0 holds as
maxt∈QM(t) is Fréchet distributed (cf. [8, Lemma 9.3.4]). Since ∂Q is a
Lebesgue null set, the second term on the right-hand side of (28) also vanishes.
Thus,

µ(∂AL) ≤
∫

Rd\(Q⊕L)

∫ ∞

λ−1

u−2 P

{
umax

t0∈Q
F (t0 − x) ≥ 1

}
dudx =: c(L). (29)

Now, let B ⊂ C(K) a be Borel set such that P(F/λ ∈ ∂B) = 0. For the set
CB, we obtain that the set

C∗
B =

{
f ∈ C(Q⊕ L) : argmax

f∈Q
f(t) is unique,

f
(
τQ(f |Q) + ·

)

f(τQ(f |Q))
∈ Bo

}

is in the interior of CB and that the closure of CB is a subset of

C∗
B ∪

{
f ∈ C(Q⊕ L) : argmax

t∈Q
f(t) is not unique

}

∪
{
f ∈ C(Q⊕ L) : f

(
τQ(f |Q) + ·

)/
f(τQ(f |Q)) ∈ ∂B

}

(Lemma A.2 and Lemma A.3). Thus, by (29), we can assess

µ(∂(CB ∩AL)) ≤ µ(∂AL) + µ(∂CB ∩AL)

≤ c(L) +

∫

Rd\(Q⊕L)

∫ ∞

λ−1

u−2 P

{
umax

t0∈Q
F (t0 − x) ≥ 1

}
dudx

+

∫

Q

∫ ∞

λ−1

u−2 P(F/λ ∈ ∂B) dudt = 2c(L). (30)
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Furthermore, we get

µ(CB ∩AL)

=

∫

Q

∫ ∞

λ−1

u−2 P
{
F (·)/λ ∈ B

}
dudt0

+

∫

Rd\(Q⊕L)

∫ ∞

λ−1

u−2 P

{
umax

t0∈Q
F (t0 − x) ≥ 1,

F
((

τQ(F (· − x)|Q)
)
+ · − x

)/
max
t0∈Q

F (t0 − x) ∈ B,

F (t− x)/max
t0∈Q

F (t0 − x) ≤ 1 ∀t ∈ Q⊕ L

}
dudx. (31)

The second term in (31) is positive and can be bounded from above by c(L).
Setting B = C(K), µ(AL) can be expressed in an analogous way. Now, we plug
in the results of (29), (30) and (31) into (27) to obtain that all the limit points
of (26) are in the interval

[
λ · |Q| · P

{
F (·)/λ ∈ B

}
− 2c(L)

λ · |Q|+ 2c(L)
,
λ · |Q| · P

{
F (·)/λ ∈ B

}
+ 3c(L)

λ · |Q| − c(L)

]
.

Finally, we note that c(L) can be bounded from above by
∫

Rd\(Q⊕L)
E
{
max
t0∈Q

F (t0 − x)
}
dx,

which vanishes for L ր R
d because of assumption (25). This yields the assertion

of the theorem.

We conclude the treatment of the continuous case with an example of a
process η that allows for an application of Theorem 3.1. As η will be composed
of a (locally) finite number of shape functions from the M3 construction in (5),
η may directly model rainfall data and has therefore the potential for various
practical applications.

Example 3.1. Let {F (t) : t ∈ R
d} be a random shape function as defined in

(4). For c, ǫ > 0 let Πc,ǫ =
∑

i∈N δ(Ui.Ti,Fi) be a PPP on (0,∞) × R
d × C(Rd)

with intensity

c1{u≥ǫ}u
−2dudt PF (df).

and, for κ > 0, define a process M̃ = M̃c,ǫ,κ by

M̃(·) = κ ∨ max
(u,t,f)∈Πc,ǫ

uf( · − t).

Then, the following statements hold.
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1. M̃ is in the MDA of the M3 process M associated to F in the sense of
finite-dimensional distributions.

2. If F satisfies (25), then M̃ is in the MDA of M in the sense of weak
convergence on C(Rd).

For a proof of this example, the reader is referred to Appendix B.

3.2. Discrete Case

Theorem 3.1 allows for estimation of F if the complete sample paths of
η are known, at least on a large set Q ⊕ L ⊂ R

d. For many applications,
this assumption might be too restrictive. Therefore, we seek after a weaker
assumption that only requires to know η on a grid. This needs a modification
of the underlying model leading to a discretized mixed moving maxima process.

Let {F (t) : t ∈ Z
d} be a measurable stochastic process with values in [0,∞)

and
∑

t∈Zd

EF (t) = 1. (32)

Further, let Π0,discr =
∑

i∈N δ(Ui.Ti,Fi) be a Poisson point process on (0,∞) ×
Z
d × [0,∞)Z

d

with intensity u−2du δZd(dt) PF (df). Then, the discrete mixed
moving maxima process Mdiscr is defined by

Mdiscr(t) = max
i∈N

UiFi(t− Ti), t ∈ Z
d. (33)

The process Mdiscr is max-stable and stationary on Z
d and has standard Fréchet

margins.

Let {η(t), t ∈ Z
d} be in the MDA of a discrete mixed moving maxima

process Mdiscr in the sense of convergence of finite-dimensional distributions
with norming functions cn(t) = 1/n and bn(t) = 0 in (1), n ∈ N and t ∈ Z

d.
Furthermore, we assume that the shape function F satisfies (24) with R

d being
replaced by Z

d. Then, analogously to Theorem 3.1, the following convergence
result can be shown.

Theorem 3.2. Under the above assumptions, for any k ∈ N, k + 1 distinct
points t0, . . . , tk ∈ Z

d, any Borel sets B1, . . . , Bk ⊂ [0,∞) such that

P
{
(F (t1)/λ, . . . , F (tk)/λ) ∈ ∂(B1 × · · · ×Bk)

}
= 0,

and any sequence a(n) with a(n) → ∞ as n → ∞, it holds

lim
{0}∈LրZ

d

compact

lim
n→∞

P
{
η(t0 + ti)/η(t0) ∈ Bi, i = 1, . . . , k

∣∣

η(t0) = max
t∈L

η(t0 + t), η(t0) ≥ a(n)
}

=P
{
F (ti)/λ ∈ Bi, i = 1, . . . , k

}
.
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4. Switching between the different representations

In the previous sections we analyzed processes that admit the incremental
representations (3) or (7) and, on the other hand, processes of M3 type as in (5).
We show that under certain assumptions, we can switch from one representation
to the other.

4.1. Incremental representation of mixed moving maxima processes

We distinguish between M3 processes with strictly positive shape functions,
for which we can find an incremental representation (3), and general non-
negative shape functions, for which only the weaker representation (7) can
be obtained.

4.1.1. Mixed moving maxima processes with positive shape functions

Theorem 4.1. Let M be an M3 process on R
d as in (5) with a shape function

F with F (t) > 0 for all t ∈ R
d. Then M admits a representation (3) with

t0 = 0 and incremental process W given by

P(W ∈ L) =

∫

C+(Rd)

∫

Rd

1{f(·−t)/f(−t)∈L}f(−t) dt PF (df), L ∈ B(C+(Rd)).

(34)

Proof. We consider the two Poisson point processes on (0,∞) × C+(Rd)

Π1 =
∑

i∈N

δ(UiFi(−Ti),Fi(·−Ti)/Fi(−Ti)), (35)

as a transformation of Π0 in (22), and

Π2 =
∑

i∈N

δ(U ′

i ,Wi(·)), (36)

with Wi, i ∈ N, being independent copies of W , and with
∑

i∈N δU ′

i
being a

Fréchet point process. Then the intensity measures of Π1 and Π2 satisfy

EΠ1([z,∞) × L)

=

∫

C+(Rd)

∫

Rd

∫ ∞

0
u−21{uf(−t)≥z}1{f(·−t)/f(−t)∈L} dudt PF (df)

= z−1

∫

C+(Rd)

∫

Rd

1{f(·−t)/f(−t)∈L}f(−t) dt PF (df)

= z−1 P(W ∈ L)

= EΠ2([z,∞) × L),

L ∈ B(C+(Rd)), z > 0, and hence Π1
D

= Π2. The assertion follows from the fact
that M is uniquely determined by Π1 via the relation M(t) = max(v,g)∈Π1

vg(t),

t ∈ R
d.
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While the definition of W in (34) is rather implicit, in the following, we
provide an explicit construction of the incremental process W , which can also
be used for simulation. To this end, let

∑
i∈N δU ′′

i
be a Fréchet point process

and let the distribution of (S,G) ∈ C+(Rd)× R
d be given by

P
(
(S,G) ∈ (B × L)

)
(37)

=

∫

C+(Rd)

∫

Rd

1s∈B1f∈L
f(−s)∫
f(r)dr

ds

(∫
f(r)dr

)
PF (df)

=

∫

C+(Rd)

∫

Rd

1s∈B1f∈Lf(−s) ds PF (df),

B ∈ Bd, L ∈ B(C+(Rd)). In other words, PG(df) = (
∫
f(r) dr) PF (df) and,

conditional on {G = f}, the density function of the shift S is proportional to
f(−·). PuttingW (·) = G(·−S)/G(−S), equation (34) is satisfied and with i.i.d.
copies Wi, i ∈ N, of W , we get that maxi∈N U ′′

i Wi(·) is indeed an incremental
representation (3) of the mixed moving maxima process M .

Remark 4.1. (M3 representation of Brown-Resnick processes, cf. [17].) We
consider the following two special cases of mixed moving maxima processes:

1. Let Σ ∈ R
d×d be a positive definite matrix and let the shape function

be given by F (t) = (2π)−d/2|Σ|−1/2 exp
{
−1

2t
⊤Σ−1t

}
, t ∈ R

d. Then, M
becomes the well-known Smith process. At the same time, by (37), S ∼
N(0,Σ) and G ≡ F . Thus

Y (t) = exp
{
−1

2(t− S)⊤Σ−1(t− S) + 1
2S

⊤Σ−1S
}

= exp
{
−1

2t
⊤Σ−1t+ t⊤Σ−1S

}
.

Since E(t⊤Σ−1S)2 = t⊤Σ−1t, M is equivalent to the Brown-Resnick pro-
cess in (21) with variogram γ(h) = h⊤Σ−1h.

2. For the one-dimensional Brown-Resnick process ξ in (21) with variogram
γ(h) = |h|, i.e., Y is the exponential of a standard Brownian motion with
drift −|t|/2, [11] recently showed that the M3 representation is given by
{F (t) : t ∈ R} = {Y (t) | Y (s) ≤ 0 ∀s ∈ R : t ∈ R}, i.e., the shape
function is the exponential of a conditionally negative drifted Brownian
motion. Having these two representations, it follows that the law of the
conditional Brownian motion F , re-weighted by

∫
F (t)dt and randomly

shifted with density F (−·)/
∫
F (t)dt, coincides with the law of Y .

4.1.2. Mixed moving maxima processes with finitely supported shape functions

Let M be an M3 process on R
d as in (5). In contrast to Section 4.1.1, where

the shape functions are required to take positive values, here, we allow for
arbitrary shape functions with values in [0,∞).



18 S. Engelke, A. Malinowski, M. Oesting, M. Schlather

Theorem 4.2. The M3 process M as in (5) allows for an incremental repre-
sentation of the form (7), with incremental processes Vi given by

Vi(·) = Fi(· −Ri)/g(Ri).

Here Ri, i ∈ N, are i.i.d. copies of a random vector R with arbitrary density g
satisfying g(t) > 0 for all t ∈ R

d, and Fi, i ∈ N, are i.i.d. copies of the random
shape function F .

Proof. With
∑

i∈N δUi
being a Fréchet point process, we consider the process

M̃(t) = max
i∈N

UiFi(t−Ri)/g(Ri), t ∈ R
d,

which clearly is of the form (7). Then,

P(M̃(t0) ≤ s0, . . . , M̃ (tk) ≤ sk)

= exp

(
−
∫

C(Rd)

∫

Rd

k
max
l=0

(f(tl − t)/(g(t)sl))g(t) dt PF (df)

)

= exp

(
−
∫

C(Rd)

∫

Rd

k
max
l=0

(f(tl − t)/sl)) dt PF (df)

)
.

The right-hand side coincides with the marginal distribution of M , which is
given by (23). This concludes the proof.

Decomposing V as in (8) with t0 = 0, we obtain the equality in distribution

V (1)(·) D

=
(
F (· −R)/g(R)

∣∣−R ∈ supp(F )
)
.

Applying Theorem 2.1 yields

P
(
∆Ṽ(1) ∈ dz

)

= P
(
F (−R)/g(R) > 0

)
·
∫ ∞

0
yP
(
V (1)(0) ∈ dy, ∆V(1) ∈ dz

)

=

∫

C(Rd)

∫

− supp(f)
g(s) ds PF (df)

·
∫ ∞

0
y

∫

C(Rd)

∫

− supp(f)
1f(−t)/g(t)∈dy1(f(tl−t)/f(−t))kl=1∈dz

· g(t)
(∫

− supp(f) g(s)ds
)−1

dt PF (df) dy

=

∫

C(Rd)

∫

supp(f)
g(−s) dsPF (df)

·
∫

C(Rd)

∫

supp(f)
f(t)1(f(tl+t)/f(t))kl=1∈dz

(∫
supp(f) g(−s)ds

)−1
dt PF (df).

(38)
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If the shape function F is deterministic, the right-hand side of (38) simplifies to∫
supp(f) f(t)1(f(tl+t)/f(t))kl=1∈dz

dt, i.e., the asymptotic conditional increments of

η ∈ MDA(M) can be seen as a convolution of the shape function’s increments
with a random shift, whose density is given by the shape function itself. Note
in particular, that this distribution is independent of the choice of the density
g in Theorem 4.2.

Remark 4.2. Section 4.1.1 considers the subclass of M3 processes with strictly
positive shape functions and provides an incremental representation as in (3),
which is nicely related to the conditional increments of η due to the property
W (0) = 1. Section 4.1.2 applies to arbitrary M3 processes but only yields an
incremental representation as in (7), for which the incremental process V does
not directly represent the conditional increments of η.

4.2. Mixed moving maxima representation of the incremental construction

Theorem 4.3. Let
∑

i∈N δUi
be a Fréchet point process and let Wi, i ∈ N, be

independent copies of a non-negative, sample-continuous process {W (t), t ∈
R
d}, satisfying

lim
||t||→∞

W (t) = 0 a.s.,

EW (t) = 1 for all t ∈ R
d,

and E {maxt∈K W (t)} < ∞ for any compact set K ⊂ R
d.

Furthermore, let W be Brown-Resnick stationary, i.e., the process ξ, defined by

ξ(t) = max
i∈N

UiWi(t), t ∈ R
d,

is stationary with standard Fréchet margins. Then, the following assertions
hold:

1. The random variables

τi = inf

{
arg sup
t∈Rd

Wi(t)

}
and γi = sup

t∈Rd

Wi(t)

are well-defined. Furthermore,
∑

i∈N δ(Uiγi,τi,Wi(·+τi)/γi) is a Poisson point

process on (0,∞) × R
d × C(Rd) with intensity measure Ψ(du,dt,df) =

cu−2 du dt PF̃ (df) for some c > 0 and some probability measure PF̃ .

2. ξ has an M3 representation with PF (df) = PF̃ (cdf) being the probability
measure of the shape function F . The constant c > 0 is given by

c =

(∫

Rd

∫

C(Rd)
f(t) PF̃ (df) dt

)−1

(39)
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and the probability measure PF̃ is defined by

PF̃ (A) =

∫∞
0 yP(W (·+ τ)/y ∈ A, τ ∈ K | γ = y) Pγ(dy)∫∞

0 yP(τ ∈ K | γ = y) Pγ(dy)

for any Borel set A ⊂ C(Rd) and any compact set K ⊂ R
d, where τ and

γ are defined as τi and γi, respectively, replacing Wi by W , and Pγ is the
probability measure belonging to γ.

Proof. 1. Analogously to the proof of [17, Thm. 14].

2. From the first part it follows that

Φ0 =
∑

i∈N

δ(Uiγi/c, τi, c·Wi(·+τi)/γi)

is a PPP with intensity measure Ψ0(du,dt,df) = u−2 du × dt × PF (df)
where PF (df) = PF̃ (cdf). Hence, Φ0 is of the same type as Π0 from the
beginning of Section 3 and

ξ(t) = max
(y,s,f)∈Φ0

yf(· − s), t ∈ R
d,

is a mixed moving maxima representation. The integrability condition (4)
follows from the fact that ξ has standard Fréchet marginals. Thus,

∫

Rd

∫

C(Rd)
cf(t) PF̃ (df) dt = 1,

which implies (39). In order to calculate PF̃ , let A ∈ B(C(Rd)) and

K ∈ Bd be compact. The first part of this Theorem implies that

Ψ([1,∞) ×K ×A) = c · |K| · PF̃ (A).

Therefore,

PF̃ (A) =
Ψ([1,∞) ×K ×A)

Ψ([1,∞) ×K × C(Rd))
, (40)

and both the enumerator and the denominator are finite. For the enumer-
ator, we get

Ψ([1,∞) ×K ×A)

=

∫ ∞

0
u−2

∫ ∞

u−1

P(W (·+ τ)/γ ∈ A, τ ∈ K | γ = y) Pγ(dy) du

=

∫ ∞

0

∫ ∞

y−1

u−2 du · P(W (·+ τ)/y ∈ A, τ ∈ K | γ = y) Pγ(dy)

=

∫ ∞

0
yP(W (·+ τ)/y ∈ A, τ ∈ K | γ = y) Pγ(dy).



Representations of max-stable processes based on single extreme events 21

Thus, by (40),

PF̃ (A) =

∫∞
0 yP(W (·+ τ)/y ∈ A, τ ∈ K | γ = y) Pγ(dy)∫∞

0 yP(τ ∈ K | γ = y) Pγ(dy)
,

which completes the proof.

5. Outlook: Statistical applications

In univariate extreme value theory, a standard method for estimating the
extreme value parameters fits all data exceeding a high threshold to a certain
Poisson point process. This peaks-over-threshold approach has been generalized
in [22] to the multivariate setting. Therein, generalized multivariate Pareto
distributions are obtained as the max-limit of some multivariate random vector
in the MDA of an extreme value distribution by conditioning on the event that
at least one of the components is large. Conditioning on the same extremal
events, the recent contribution [13] analyzes the asymptotic distribution of
exceedance counts of stationary sequences.
Here, we have suggested conditioning a stochastic process η(t) : t ∈ T} in
the MDA of a max-stable process {ξ(t) : t ∈ T} such that it converges to
the incremental processes W in (3) or the shape functions F in (5). In this
section we provide several examples how these theoretical results can be used
for statistical inference. The approach is based on a multivariate peaks-over-
threshold method for max-stable processes, though the definition of extreme
events differs from that in [22, 13].
In the sequel, suppose that η1, . . . , ηn, n ∈ N, are independent observations of
the random process η, already normalized to standard Pareto margins.

5.1. Incremental representation

For a max-stable process ξ that admits an incremental representation

ξ(t) = max
i∈N

UiWi(t), t ∈ T, (41)

as in (3), the statistical merit of the convergence results in Theorem 2.1 and
Theorem 2.2 is the “deconvolution” of U and W which allows to substitute
estimation of ξ by estimation of the process W . As only the single extreme
events converge to W , we define the index set of extremal observations as

I1(n) =
{
i ∈ {1, . . . n} : ηi(t0) > a(n)

}
,

for some fixed t0 ∈ T . The set {ηi(·)/ηi(t0) : i ∈ I1(n)} then represents
a collection of independent random variables that approximately follow the
distribution of W . Thus, once the representation in (41) is known, both
parametric and non-parametric estimation for the process W is feasible. For
statistical inference it is necessary that the number of extremal observations
|I1(n)| converges to ∞, as n → ∞. This is achieved by choosing the sequence
of thresholds a(n) according to Remark 2.3.
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Example 5.1. (Symmetric logistic distribution, cf. Example 2.2.) The de-
pendence parameter q ≥ 1 of the symmetric logistic distribution (18) can
be estimated by perceiving the conditional increments of η in the MDA as
realizations of W and maximizing the likelihood

P
(
W (t1) ∈ ds1, . . .W (tk) ∈ dsk

∣∣ q
)

=
(
1 +

∑k
i=1 s

−q
i

)1/q−(k+1) (∏k
i=1(iq − 1)

)∏k
i=0 s

−q−1
i ds1 . . . dsk.

Example 5.2. (Brown-Resnick processes.) Recall that the Brown-Resnick pro-
cesses in Example 2.3 admit a representation (3) with log-Gaussian incremental
process W (t) = exp

{
Y (t)− σ2(t)/2

}
, t ∈ R

d. Hence, standard estimation pro-
cedures for Gaussian vectors or processes can be applied for statistical inference.
[12] explicitly construct several new estimators of the variogram γ based on the
incremental representation, which also covers Hüsler-Reiss distributions, and
they provide some basic performance analyses.

5.2. Mixed moving maxima representation

Similarly, in case of the mixed moving maxima representation

M(t) = max
i∈N

UiFi(t− Si), t ∈ R
d, (42)

the convergence results of Theorem 3.1 can be used to estimate F (or F1 = F/λ)
on some compact domain K instead of estimating M directly. Here, the index
set T of the observed processes {ηi(t) : t ∈ T}, i = 1, . . . , n, can be identified
with Q⊕L from Theorem 3.1. The set L should be sufficiently large such that it
is reasonable to assume that the components {UiFi(·−Si) : Si /∈ Q⊕L} hardly
affect the process M on Q⊕K (that is, µ(CB ∩AL)/µ(AL) ≈ P(F (·)− λ ∈ B)
in the proof of Theorem 3.1). At the same time, a large set Q leads to a rich

set of usable observations F̃
(i)
1 = ηi(τQ(ηi) + ·)/ηi(τQ(ηi)), i ∈ I2(n), where

I2(n) =

{
i ∈ {1, . . . , n} : max

t∈Q
ηi(t) = max

t∈Q⊕L
ηi(t) ≥ a(n)

}
.

The resulting processes F̃
(i)
1 , i ∈ I2(n), can be interpreted as independent

samples from an approximation to F1. This approach can be expected to be
particularly promising in case of F having a simple distribution or even being
deterministic.

Example 5.3. (M3 processes with deterministic shape functions.) Some ex-
amples of mixed moving maxima processes have already been analyzed for
statistical inference by [8] who use normal, exponential and t densities as shape
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functions. More precisely, they consider M3 models with

F1(t) = exp

{
−β2t2

2

}
, λ =

β√
2π

, (43)

F1(t) = exp {−β|t|} , λ =
β

2
, (44)

and F1(t) =

(
1 +

β2t2

ν

)− ν+1

2

, λ =
βΓ
(
ν+1
2

)
√
πνΓ

(
ν
2

) ν > 0, (45)

all parametrized by β > 0. [8] introduce consistent and asymptotically normal
estimators based on the interpretation of β as a dependence parameter. From

the samples F̃
(i)
1 , i ∈ I2(n), we get a new estimator

F̂1 =
1

|I2(n)|
∑

i∈I2

F̃
(i)
1

for F1. Applying this estimator, β can be estimated by a least squares fit of
(43)–(45) to F̂1 at some locations t1, . . . tm ∈ K. Note that in case of the
normal model (43) and the exponential model (44), the logarithm of the shape

function F1 depends linearly on β2 and β, respectively, and log F̂1 can be fitted
by ordinary least squares.

Example 5.4. (Brown-Resnick processes.) The mixed moving maxima rep-
resentation can also be employed for estimation of Brown-Resnick processes
although the distribution of F is much more sophisticated than the one of W
in the incremental representation (cf. [11, 19]). A relation between the shape
function F and the variogram γ of the Brown-Resnick process can be obtained
via the extremal coefficient function θ(·). For a stationary, max-stable process
ξ with identically distributed marginals, [24] defined the extremal coefficient
function θ via the relation

P(ξ(0) ≤ u, ξ(h) ≤ u) = P(ξ(0) ≤ u)θ(h), h ∈ R
d.

For mixed moving maxima processes, we have

θ(h) = E

∫

Rd

{F (t) ∨ F (t+ h)}dt = E
∫
Rd{F1(t) ∨ F1(t+ h)}dt

E
∫
Rd F1(t) dt

(46)

and, at the same time, for Brown-Resnick processes [17],

θ(h) = 2Φ
(√

γ(h)/2
)
, (47)
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where Φ is the standard Gaussian distribution function. Identifying (46) with

(47) and plugging in the samples F̃
(i)
1 , i ∈ I2(n), we get the variogram estimator

γ̂(h) =




2Φ−1




∑

i∈I2(n)

∫

K̃
F̃

(i)
1 (t) ∨ F̃

(i)
1 (t+ h) dt

2
∑

i∈I2(n)

∫

K̃
F̃

(i)
1 (t) dt








2

,

where K̃ is a large set such that K̃, K̃ + h ⊂ K.

Appendix A. Auxiliary Results for the Proof of Theorem 3.1

Lemma A.1. AL is closed. The set A∗
L is in the interior of AL.

Proof. The first assertion is obvious. For the second one, let f∗ ∈ A∗
L.

Then, we have f∗(τQ(f
∗|Q)) =: α > 1. Furthermore, there is δ > 0 such that

Bδ(τQ(f
∗|Q)) = {t ∈ R

d : ||t− τQ(f |Q)|| < δ} ∈ Qo and we have

β := sup
t∈Q⊕L\Bδ(τQ(f∗|Q))

f∗(t)−max
t∈Q

f∗(t) < 0. (48)

Now, we choose ε < min{α−1
2 , |β|2 } and show that Bε(f

∗) = {f ∈ C(Q ⊕ L) :
||f − f∗||∞ < ε} ⊂ AL. This holds, as for any f ∈ Bε(f

∗), we have

f(τQ(f |Q)) ≥ f(τQ(f
∗|Q)) > α− ε >

1 + α

2
> 1

and max
t∈Q

f(t) ≤ max
t∈Q⊕L

f(t) = max

{
max

t∈Q⊕L\Qo
f(t), max

t∈Q
f(t)

}

≤ max

{
β + α+ ε, max

t∈Q
f(t)

}
≤ max

{
α− ε, max

t∈Q
f(t)

}
= max

t∈Q
f(t),

which means equality.

Lemma A.2. The set C∗
B is in the interior of CB.

Proof. Let f∗ ∈ C∗
B . Then, t∗ = argmaxt∈Q f∗(t) is well-defined and neces-

sarily, as f ≥ 0,
α := f∗(t∗) ∈ (0, ||f∗||∞]. (49)

Since f∗(t∗ + ·)/f∗(t∗) ∈ Bo, there is some ε > 0 such that
{
f ∈ C(K) :

∣∣∣
∣∣∣f∗(t∗ + ·)

/
f∗(t∗)− f

∣∣∣
∣∣∣
∞

< ε
}
⊂ B. (50)

Furthermore, f∗ is uniformly continuous on the compact set Q ⊕ L, i.e. there
exists some δ > 0 such that

sup
s,t∈Q⊕L, ||s−t||<δ

|f∗(s)− f∗(t)| < ε

3
α. (51)
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Then, as argmaxt∈Q f∗(t) is unique, we have that

β := max
t∈Q\{t∈Rd: ||t−t∗||<δ}

f∗(t)− f∗(t∗) ∈ [−α, 0). (52)

Choose ε∗ < min
{

|β|
2α ,

ε
6

α
||f∗||∞

}
. We will show that Bε∗α(f

∗) = {f ∈ C(Q⊕L) :

||f − f∗||∞ < ε∗α} ⊂ CB. To this end, let f0 ∈ Bε∗α(f
∗). Then, because of

Equation (52) and ε∗α < |β|
2 , we have that ||t0 − t∗|| ≤ δ for t0 = τQ(f0|Q).

Therefore,

sup
t∈K

∣∣∣∣
f∗(t∗ + ·)
f∗(t∗)

− f0(t0 + ·)
f0(t0)

∣∣∣∣

≤ sup
t∈K

∣∣∣∣
f∗(t∗ + ·)
f∗(t∗)

− f∗(t0 + ·)
f∗(t∗)

∣∣∣∣+ sup
t∈K

∣∣∣∣
f∗(t0 + ·)
f∗(t∗)

− f∗(t0 + ·)
f0(t0)

∣∣∣∣

+ sup
t∈K

∣∣∣∣
f∗(t0 + ·)
f0(t0)

− f0(t0 + ·)
f0(t0)

∣∣∣∣ ≤ ε

3
+

ε∗

1− ε∗
||f∗||∞

α
+

ε∗

1− ε∗
,

(53)

where we used Equation (51) and the fact that f0 ∈ Bε∗α(f
∗). Equations (49)

and (52) and the choice of ε∗ yield that ε∗/(1− ε∗) ≤ (ε∗||f∗||∞)/((1− ε∗)α) ≤
2ε∗||f∗||∞/α < ε/3, i.e. each summand on the right-hand side of (53) is smaller
than ε/3. Thus, f0(t0 + ·)/f0(t0) ∈ {f ∈ C(K) : ||f∗(t∗ + ·)/f∗(t∗) − f ||∞ <
ε} ⊂ B by Equation (50) and f0 ∈ CB .

Lemma A.3. The closure of CB is a subset of

B∗ ∪
{
f ∈ C(Q⊕ L) : argmax

t∈Q
f(t) is not unique

}

∪
{
f ∈ C(Q⊕ L) : f(τQ(f |Q) + ·)

/
f(τQ(f |Q)) ∈ ∂B

}
.

Proof. Let {fn} ⊂ CB be a sequence converging uniformly to some f∗ ∈
C(Q ⊕ L). We have to verify that f∗(τQ(f

∗|Q) + ·)/f∗(τQ(f
∗|Q)) ∈ B ∪ ∂B

if argmaxt∈Q f∗(t) is unique. Analogously to the proof of Lemma A.2 we can
show that for any ε2 > 0 there is some ε1 > 0 such that

||f − f∗||∞,Q⊕L < ε1

=⇒
∣∣∣∣
∣∣∣∣
f(τQ(f |Q) + ·)
f(τQ(f |Q))

− f∗(τQ(f
∗|Q) + ·)

f∗(τQ(f∗|Q))

∣∣∣∣
∣∣∣∣
∞,K

< ε2.

Thus, fn(τQ(fn|Q)+·)/fn(τQ(fn|Q)) converges to f∗(τQ(f
∗|Q)+·)/f∗(τQ(f

∗|Q))
in C(K). Hence, as B ∪∂B is closed, f∗(τQ(f

∗|Q)+ ·)/f∗(τQ(f
∗|Q)) ∈ B∪∂B.
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Appendix B. Proof of Example 3.1

Proof of Example 3.1. Let M̃j, j ∈ N, be independent copies of the process

M̃ and consider

Mn(·) =
1

cn

n
max
i=1

M̃i(·).

Further, suppose that L ⊂ R
d is an arbitrary compact set. Note that by Remark

2.5 it suffices to show weak convergence of Mn
D−→ M , n → ∞, on C(L).

To prove the first assertion, note that, for t0, . . . , tk ∈ R
d, s0, . . . , sk ≥ 0,

k ∈ N, we have

P(Mn(t0) ≤ s0, . . . ,Mn(tk) ≤ sk)

=

[
1κ≤mink

l=0 cnsl
· P
{
Πc,ǫ

({
(u, t, f) :

k
max
l=0

uf(tl − t)/(cnsl) > 1

})
= 0

}]n

= 1κ≤mink
l=0 cnsl

· exp
(
−n

∫

C(Rd)

∫

Rd

min

{
1

ǫ
,

k
max
l=0

f(tl − t)

cnsl

}
cdt PF (df)

)

−→ exp

(
−
∫

C(Rd)

∫

Rd

k
max
l=0

(f(tl − t)/sl) dt PF (df)

)
, (54)

as n → ∞, where the convergence holds due to monotone convergence. The
right-hand side of (54) coincides with the marginal distribution of M (cf. (23)).

For convergence of Mn to M in the sense of weak convergence in C+(L)
endowed with the topology of uniform convergence, it remains to show that the
sequence of restricted processes {Mn|L : n ∈ N} is tight. To this end, by [2,
Thm. 7.3], it suffices to verify that for any ε > 0, η ∈ (0, 1), there exist δ > 0,
n0 ∈ N such that

P

{
sup

||s−t||<δ
|Mn(s)−Mn(t)| ≥ ε

}
≤ η, n ≥ n0.

By Equation (25), we can choose R > 0 such that

∫

Rd\(L⊕BR(0))
E

(
sup
t∈L

F (t− s)

)
ds <

εη

2
, (55)

where BR(0) = {x ∈ R
d : ||x|| ≤ R}. Furthermore, (25) implies that

E (supt∈K F (s)) < ∞ for any compact set K ⊂ R
d. Therefore, as each realiza-

tion of F is uniformly continuous on BR+d(L)(0), where d(L) = sups1,s2∈L ||s1−
s2|| denotes the diameter of L, dominated convergence yields

lim
δց0

E

(
sup

s,t∈BR+d(L)(0), ||s−t||<δ
|F (s)− F (t)|

)
= 0.
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In particular, we can choose δ > 0 such that

E

(
sup

s1,s2∈BR+d(L)(0), ||s1−s2||<δ
|F (s1)− F (s2)|

)
<

εη

2|L⊕BR(0)|
. (56)

Then, we get

P

{
sup

||s1−s2||<δ, s1,s2∈L
|Mn(s1)−Mn(s2)| ≥ ε

}

≤ nP

{
sup

||s1−s2||<δ, s1,s2∈L
|M̃n(s1)− M̃n(s2)| ≥ cnε

}

≤ n

(
P

{
Π

({
(u, t, f) : t ∈ L⊕BR(0),

sup
s1,s2∈BR+d(L)(0),

||s1−s2||<δ

|f(s1)− f(s2)| >
cnε

u

})
> 0

}

+ P

{
Π

({
(u, t, f) : t ∈ R

d \ (L⊕BR(0)), sup
s∈L

|f(s− t)| > cnε

u

})
> 0

})

≤ n

(
1− exp

{
−
∫

L⊕BR(0)

∫ ∞

ǫ
u−2

· P
(

sup
s1,s2∈BR+d(L)(0),

||s1−s2||<δ

|F (s1)− F (s2)| >
cnε

u

)
du cdt

}

+ 1− exp

{
−
∫

Rd\(L⊕BR(0))

∫ ∞

ǫ
u−2 P

(
sup
s∈L

|F (s − t)| > cnε

u

)
du cdt

})

≤ n

(
1− exp

(
− |L⊕BR(0)|

nε
E

{
sup

s1,s2∈BR+d(L)(0),
||s1−s2||<δ

|F (s1)− F (s2)|
})

+ 1− exp

(
− 1

nε

∫

R\(L⊕BR(0))
E

{
sup
s∈L

|F (s− t)|
}
dt

))

≤ n
(
1− exp

(
− η

2n

)
+ 1− exp

(
− η

2n

))
≤ η,

where we used Equation (56) and (55). Thus, the sequence of processes {Mn|L :
n ∈ N} is tight.
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