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Abstract

Fiber graphs of Gröbner bases from contingency tables are impor-
tant in statistical hypothesis testing, where one studies random walks
on these graphs using the Metropolis-Hastings algorithm. The con-
nectivity of the graphs has implications on how fast the algorithm
converges. In this paper, we study a class of fiber graphs with ele-
mentary combinatorial techniques and provide results that support a
new, interesting conjecture: the connectivity is given by the minimum
vertex degree.

1 Introduction
We will study a class of graphs coming from Gröbner bases related to the two-
way n×n contingency tables with equal row and column sums. By summing
the entries of the tables both row-wise and column-wise, it is easy to see that
the n×n tables are the only ones that can satisfy this property. Let G(n, r) be
a graph whose vertices are the n×n-matrices of non-negative integers with all
row and column sums r. Two vertices are adjacent if one can move between
the corresponding matrices by adding one to two entries and subtracting one
from two others. The graph G(n, r) is a fiber graph of a Gröbner basis. See
the foundational paper [1] or the textbook [2] for an introduction to algebraic
statistics and how to construct fiber graphs from other Gröbner bases. As an
example, consider the graph G(3, 2), drawn in Figure 1.1. The vertices are
the 3×3-matrices of non-negative integers with row and column sums two.

To state our main result, we need to mention some definitions. The degree
d(v) of a vertex v in G is the number of edges at v. The minimum degree
δ(G) of a graph G is the smallest of the degrees in the graph. A graph G
is k-connected, k ∈ N, if |G| > k and G − X is connected for every set
X ⊆ V (G) with |X| < k. The connectivity κ(G) of a graph G is the largest
k such that G is k-connected.
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Figure 1.1: The graph G(3, 2).

The Metropolis-Hastings algorithm can be used for statistical tests for
contingency tables. The algorithm performs a random walk on the fiber graph
containing the contingency table we want to study [2]. The connectivity of
the fiber graphs affects the convergence of the algorithm: typically, the lower
the connectivity, the slower the convergence. Our main result is:

Theorem 2.11. The connectivity κ(G(n, r)) =
(
n
2

)
for r > 2.

For the first time, the following conjecture is confirmed for a large class
of fiber graphs of an important and common class of Gröbner bases.

Conjecture (Engström ’12, [4][5]). The connectivity of a fiber graph of a
reduced Gröbner basis of a lattice ideal is given by the minimum vertex degree
of the fiber graph.

We also prove several other statements regarding G(n, r).

1.1 Basic notation

Next, we define a number of basic notions for graphs following those in [3].
Let G be a graph, V (G) be the vertex set of G and |G| = |V (G)|. The
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degree d(v) of a vertex v in G is the number of edges at v. The minimum
degree δ(G) of a graph G is the smallest of the degrees in the graph and
the maximum degree ∆(G) the largest. We call a graph G k-connected,
k ∈ N, if |G| > k and G − X is connected for every set X ⊆ V (G) with
|X| < k. By Menger’s Theorem [3, p. 71], a graph is k-connected if and only
if it contains k independent (in other words, vertex-disjoint) paths between
any two vertices. We will use disjoint as a synonym of independent. The
connectivity κ(G) of a graph G is the largest k such that G is k-connected,
the distance dG(u, v) between two vertices u and v of G is the number of edges
in a shortest u− v path in G, and the diameter diam(G) of G is defined as
the largest distance in G. If G is r-regular, all its vertices have the same
degree r. If V (G) admits a partition into two classes such that the vertices
in the same class are not adjacent, G is called a bipartite graph. A matching
M in G is a set of independent edges and it is called perfect if every vertex
of G is incident to exactly one edge in M . A multigraph is a pair (V,E) of
disjoint sets together with a map E 7→ [V ]2 that assigns two vertices to each
edge. Here E denotes the set of edges. A multigraph differs from an ordinary
graph by allowing several edges between the same two vertices. As opposed
to the definition in [3], our definition does not allow self-loops, edges that
start from and end to the same vertex. The entry aij of the adjacency matrix
A of a multigraph is the number of edges from the vertex i to the vertex j.
We define the biadjacency matrix of a bipartite multigraph as the submatrix
of the adjacency matrix, where the columns correspond to the vertices in a
bipartition class of the vertex set and rows to the vertices in the other class.

2 The fiber graphs
The first results are on the degree of the vertices of G(n, r).

Lemma 2.1. If v ∈ V (G(n, r)) has r as its only positive entries, then d(v) =(
n
2

)
.

Proof. We count the number of ways we can add 1 to two entries of v and
subtract 1 from two others. Since there are exactly n nonzero entries in v,
there are

(
n
2

)
pairs of entries from which we can subtract 1. For each such

choice (i1, j1) and (i2, j2), we must add 1 to the entries (i1, j2) and (i2, j1) to
keep the column and row sums of v equal to r. Thus, every pair of nonzero
entries in v corresponds to exactly one edge at v and d(v) =

(
n
2

)
. �

Lemma 2.2. If v ∈ V (G(n, r)) does not have r as its only positive entries,
then d(v) ≥ (n+2)(n−1)

2
=
(
n
2

)
+ n− 1.
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Proof. To get to this type of a vertex v from a vertex that has r as its
only positive entries, and therefore n positive entries, we subtract 1 from two
entries, and add 1 to two other entries. Now, because we must have r > 1, the
number of positive entries must grow by at least 2 in the process. Therefore,
there are at least n+ 2 ways to select the first entry from which to subtract.
The other entry cannot be from the same row or column, as we cannot add 2
to a column sum, and 1 to two row sums (or the other way) simultaneously.
However, there are n − 1 rows, and columns to select an entry from. The
n−1 rows must together contain at least n−1 positive entries such that they
are not in the same column as the first one selected, because the first one is
at least 1, so there cannot be any r-entries in the same column or row, which
leaves 1-entries to each of the other columns and rows. Any of those entries
can be chosen, since one can always do the corresponding additions by the
previous remarks. All this implies that there are at least (n+2)(n−1)

2
ways to

do the selections, because we do not want the take the order of the selections
into account. Each selection of two subtractions corresponds to exactly one
edge at v, and thus d(v) ≥ (n+2)(n−1)

2
. �

By Lemma 2.1 and Lemma 2.2, we have:

Corollary 2.3. If v ∈ V (G(n, r)) has r as its only positive entries, then
d(v) = δ(G(n, r)) =

(
n
2

)
.

Using the definition of connectivity, we get the following result as an
immediate implication of Corollary 2.3.

Proposition 2.4. The connectivity of G(n, r) satisfies κ(G(n, r)) ≤
(
n
2

)
.

Proposition 2.5. If V (G(n, r)) contains a vertex v that has 1 as its only
positive entries, then ∆(G(n, r)) = d(v) = nr(nr−2r+1)

2
.

Proof. The first one to subtract from can be chosen in nr ways, because
there are nr 1-entries. The second one cannot be in the same row or column
as the first one, and thus there are nr − 2r + 1 choices left. The addition
can then be done in only one way, which always works, because there are
no r-entries. Therefore, there are nr(nr−2r+1)

2
ways to do the selections when

we do not take the order selection into account. Now, by the definition
of G(n, r), d(v) = nr(nr−2r+1)

2
. Since other type of vertices have a lower

number of positive entries to choose from, ∆(G(n, r)) = nr(nr−2r+1)
2

. Thus,
d(v) = ∆(G(n, r)) = nr(nr−2r+1)

2
. �

Even though the maximum degree is not exactly that in some graphs
(G(n, r), where n < r), it is an upper bound. Thus, we know that,

(
n
2

)
≤
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d(G) ≤ nr(nr−2r+1)
2

. Now, having information on how the degree of the ver-
tices of G behaves, we try to find the connectivity κ(G(n, r)). First, we will
introduce a couple of auxiliary results:

Lemma 2.6. The number of common choices for a move M from u, v ∈
V (G(n, r)) with dG(u, v) ≤ 2 is at least

(
n
2

)
for r > 2.

Proof. Because dG(u, v) ≤ 2 and r > 2, the matrices u and v have at least n
positive entries in common. We want to know whether all pairs are selectable
for subtraction. The positive entries only u has have to be 1 or 2. Then,
because r > 2, there has to be entries ei satisfying 1 ≤ ei ≤ r−1, at least one
in the same column and one in the same row as such an entry. In general,
each of the columns not containing an ei has to contain a positive entry as
well. Having a positive entry in a particular column means that there cannot
be an r-entry in the same row. Thus, there is a positive entry not in this
row in each of the other columns. We can choose two subtractions in total in(
n
2

)
ways by first selecting one of the n columns and then one of the (n− 1)

columns. �

Theorem 2.7 (Kőnig, [6]). Every r-regular bipartite multigraph decomposes
into r perfect matchings.

Let En(i, j) be the n×n-matrix with all entries 0, except for that position
(i, j) is 1.

Lemma 2.8. Let u be a vertex of G(n, r) and (i1, j1), ..., (ik, jk) positions in
an n×n-matrix such that u ≥ En(i1, j1) + ... + En(ik, jk), and k ≤ r. Then
there is a decomposition of u into a sum of matrices u1 + ... + ur that are
vertices of G(n, 1) such that u1 + ...+ ul ≥ En(i1, j1) + ...+ En(il, jl) for all
1 ≤ l ≤ k.

Proof. The proof is by induction on k. For k = 0 we are done. According to
Theorem 2.7, every r-regular bipartite multigraph decomposes into r perfect
matchings. Interpreting u as the biadjacency matrix of an r-regular bipartite
multigraph, we get a decomposition into matrices u1 + ... + ur with row
and column sum 1. Assume that we have indexed the matrices such that
(u1)i1,j1 > 0. Let L be a maximal subset of {1, 2, .., k} with 1, such that
u1 ≥

∑
l∈LEn(il, jl). By induction we can find a decomposition of u − u1

admitting the conditions for {(il, jl) | l ∈ {1, 2, .., k}\L}, and then we extend
it. �

Proposition 2.9. The graph G(n, r) is connected.
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Proof. The graph G(n, r) is a fiber graph of a Gröbner basis, and therefore
connected [2]. �

Lemma 2.10 (Liu’s criterion, [7]). Let G be a connected graph and |V (G)| >
k. If for any two vertices u and v of G with distance dG(u, v) = 2 there are
k disjoint u− v paths in G, then G is k-connected.

A proof of Lemma 2.10 can be found in [8]. With these tools, we can set
out to prove our main result:

Theorem 2.11. The connectivity κ(G(n, r)) =
(
n
2

)
for r > 2.

Proof. By Proposition 2.4, κ(G(n, r)) ≤
(
n
2

)
. Therefore, our goal is to show

that G(n, r) is
(
n
2

)
-connected. We aim to achieve this by applying Proposi-

tion 2.9 and Lemma 2.10 as well as a technique of building a large number
of paths. We need to show that using the technique, we will in every case
get at least

(
n
2

)
independent paths. It turns out that the technique used will

not work in the cases r < 3. If n = 2,
(
n
2

)
= 1. By Proposition 2.9, G(n, r)

is connected and the case n = 2 is done. Thus, we assume from now on that
n ≥ 3.

We will start by setting up the machinery. By Proposition 2.9, we can
apply Lemma 2.10. Let u, v ∈ V (G(n, r)) with dG(u, v) = 2. Then there are
proper moves ∆1 and ∆2 such that u + ∆1 + ∆2 = v. Because dG(u, v) =
2, ∆1 + ∆2 does not correspond to a single move. Now, let us consider
the sequences M,∆1,∆2,−M , where M is an additional move, such that
u + M + ∆1 + ∆2 −M = v, as depicted in Figure 2.1. We want to show
that cM , the number of ways to select M so that we get disjoint paths is at
least

(
n
2

)
− 1. Then we would have in total

(
n
2

)
disjoint paths between u and

v when we count the original path of length two as well.

Figure 2.1: The types of paths considered in the proof with the directions
corresponding to the signs of the moves.

There are some remarks to be made:
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• We must haveM 6= ∆1, becauseM = ∆1 would lead to an intersection.
For the same reason, we need M 6= −∆2.

• If we can useM = ∆2 orM = −∆1, we have u+∆2+∆1 = v. However,
if we have both of them possible, we have to subtract one from cM .

• On the other hand, if the selection M = ∆2 is not possible, the path
using M = −∆1 does not connect u and v.

• If r = 1, the entries ∆1 subtracts from are not usable by M . By
Corollary 2.3, in that case each of the vertices have the degree

(
n
2

)
, and

thus this method does not apply, because we will not get enough ways
of choosing M .

• If r = 2,M,∆1 and ∆2 cannot have even one same entry where they
subtract from, again problematic in the cases where we start from a
vertex with the degree

(
n
2

)
. Then we cannot get the desired result using

solely this procedure. For simplicity, assume r ≥ 3.

The basic case. Let us first assume that M can use the same entries as ∆1

and ∆2. Consider ∆1 = ∆2.

• We have at least
(
n
2

)
−1 ways of choosingM such thatM 6= ∆1, because

d(u) ≥
(
n
2

)
by Corollary 2.3.

• If it is even possible to select M = −∆1, some nonzero-entries of U are
not r, and by Lemma 2.2, the degree of the vertex we are at is at least(
n
2

)
+n−1. Therefore, after subtracting the disallowed moves M = ∆1

and M = −∆1, we have cM ≥
(
n
2

)
+ n − 3 ≥

(
n
2

)
in this case, because

n ≥ 3.

However, we also have to take the case ∆1 6= ∆2 into account.

• If M = ∆2 is possible, but d(u) =
(
n
2

)
, M = −∆2 is not possible.

Therefore, the previous results hold in this case as well.

• If also M = −∆1 is possible as well as M = −∆2, by the earlier
analysis we get cM ≥

(
n
2

)
− 1, because with our assumption n ≥ 3,(

n
2

)
+ n− 4 ≥

(
n
2

)
− 1.

• If on the other handM = ∆2 is not possible, we want to know whether
the possibility M = −∆2 is included in d(u). If the number of prob-
lematic entries in ∆2 is at least two, ∆1 must be −∆2, because ∆2 will
then subtract from entries zero in u ∆1 adds to. However, there is no
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point in this. Therefore, consider that ∆2 has only one problematic
entry. Then ∆2 subtracts from an entry zero in u, which implies that
∆1 has to add to that entry, but then −∆1 would subtract from the
entry. Thus, M = −∆1 is not included in d(u). If M = −∆2 is to be
possible, by Lemma 2.2, we need to be at u with d(u) ≥

(
n
2

)
+ n − 1,

because otherwise we would subtract from an r-entry with ∆2, but then
we would add to a zero-entry. Then cM ≥

(
n
2

)
+ n − 3 ≥

(
n
2

)
. Other-

wise we only need to avoid M = ∆1 and have cM ≥
(
n
2

)
− 1, because

d(u) ≥
(
n
2

)
by Lemma 2.1.

Problematic entries. Let us now move on to the cases where M cannot use
all the entries ∆1 and ∆2 use. Then, the moves ∆1 and ∆2 subtract from
entries smaller than two in u. The number of problematic entries can range
from one to four. By Lemma 2.6, u and v must have at least

(
n
2

)
common

choices for M .

• First, say that ∆1 + ∆2 subtracts from either four or three one-entries
or two or one two-entry. Then the choices at v do not include ∆1 or
∆2. We have to avoid −∆2, and thus cM ≥

(
n
2

)
− 1.

• If ∆1 and ∆2 subtract from three one-entries in total, but the sum
∆1+∆2 does not, there are six different cases: either ∆1 or ∆2 subtracts
from two one-entries, and ∆1, ∆2 or both add to an entry the other
subtracts from. If ∆1 subtracts from two one-entries, the moves ∆1

and ∆2 are clearly not possible at v. Then we have cM ≥
(
n
2

)
− 1. The

same thing happens when ∆2 subtracts from two one-entries and ∆2

does not add to an entry ∆1 subtracts from. In the two cases left, we
cannot rely on Lemma 2.6.

• If ∆1 and ∆2 subtract from a total number of two one-entries, we either
have the other one subtracting from two or both subtracting from one.
In the latter case, if neither of them or only ∆1 adds to an entry the
other subtracts from, ∆1 and ∆2 are not possible at v. Hence, in this
case as well, we have cM ≥

(
n
2

)
− 1.

The cases left are: only ∆1 or ∆2 subtracts from one-entries; ∆1 subtracts
from one one-entry, while ∆2 subtracts from at least one different one-entry
but adds to the one-entry ∆1 subtracts from.

• If ∆1 subtracts from one one-entry, u ≥ En(i, j) where (i, j) is the
position of that particular one-entry. Following Lemma 2.8, decompose
u: u = u1+...+ur = u1+u

′, where u1 ≥ En(i, j) and u′ ∈ V (G(n, r−1)).
The one-entry in the position (i, j) in u is now zero in u′. Because u
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has one one-entry, it must have at least another. The second one-entry
can either be in u1 or u′. If it is in u1, d(u′) ≥

(
n
2

)
, and if it is in

u′, d(u′) ≥
(
n
2

)
+ n − 1 by Lemma 2.2. In the former case we get

cM ≥
(
n
2

)
+ (n− 2)− 2 ≥

(
n
2

)
− 1, where

(
n
2

)
comes from the moves for

u′ and (n−2) from the moves using the one entry not problematic in u
now in u1. In the latter case we have cM ≥=

(
n
2

)
+(n−1)−2 ≥

(
n
2

)
. We

subtract two in both cases to avoid countingM = −∆1 andM = −∆2.

• If ∆1 subtracts from two one-entries at positions (i1, j1) and (i2, j2),
u ≥ En(i1, j1) + En(i2, j2), and we decompose u = u1 + u2 + u′, where
u′ ∈ V (G(n, r − 2)) and u1 + u2 ≥ En(i1, j1) + En(i2, j2). Thus, the
problematic entries are zero in u′, and therefore also the move ∆1 is
not possible from u′. If d(u′) =

(
n
2

)
, −∆1 is not included in d(u′), and

we have cM =
(
n
2

)
−1. Otherwise d(u′) >

(
n
2

)
, and we get cM ≥

(
n
2

)
−1.

• If ∆2 subtracts from one-entries some of which are also in u, the case is
treated exactly the same way as the two previous ones. If the particular
one-entries are not in u, M cannot use them and thus there is nothing
to avoid.

• The case where ∆1 subtracts from one one-entry and ∆2 subtracts
from one or two different one-entries, but ∆2 adds to the one-entry ∆1

subtracts from and at most one of the one-entries ∆2 subtracts from
is present in u already, is treated exactly same way as the previous
ones, because we have to avoid one or two problematic one-entries.
If there are two problematic entries both already in u, they can be
avoided the same way as before. If there are three of them, all present
in u at positions (i1, j1), (i2, j2) and (i3, j3), we have u ≥ En(i1, j1) +
En(i2, j2) + En(i3, j3). Say that the two first are the ones used by ∆2.
They can be put in the same u1 in the proof of Lemma 2.8. Then we
have u = u1 + u2 + u′, where u′ ∈ V (G(n, r − 2)). The problematic
entries are zero in u′ and the moves ∆1 and ∆2 are not possible from
u′. Then d(u′) ≥

(
n
2

)
only includes the disallowed choice M = −∆2.

Thus cM ≥
(
n
2

)
− 1.

Intersections. The last question is what if different paths M + ∆1 + ∆2 −
M and M ′ + ∆1 + ∆2 − M ′ intersect. By symmetry and straightforward
calculations, the number of cases reduces to three: M ′−M = ∆1; M ′−M =
∆2; M ′ −M = ∆1 + ∆2. The different types are drawn in Figure 2.2:

The last case is the easiest to handle. Assume that we only have inter-
sections of this type. An intersection can happen in two different ways.

9



Figure 2.2: The possible types of intersection.

• The moves ∆1 and ∆2 share one entry the other adds to and the other
subtracts from. This sum can be written in two ways, one being the
original, because M and M ′ have to be proper moves and both have to
use three of the operations in ∆1 + ∆2. Therefore, this case amounts
to one intersection. Let us a write an example to illustrate this:

∆1 + ∆2 =

 1 −1 0
−1 1 0

0 0 0

+

 0 0 0
0 −1 1
0 1 −1


=

 1 −1 0
−1 0 1

0 1 −1

 =

 0 0 0
−1 0 1

1 0 −1

+

 1 −1 0
0 0 0
−1 1 0

 .

• The other possibility, disjoint from the previous one, is that ∆1 and ∆2

are on the same two rows or columns. Then there are two ways, the
original and another with swapped rows, to write the sum ∆1 + ∆2.
Also this gives one intersection. Again, let us do a basic example:

∆1 + ∆2 =


1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
−1 1 0 0

1 −1 0 0



=


0 0 0 0
−1 1 0 0

0 0 0 0
1 −1 0 0

+


1 −1 0 0
0 0 0 0
−1 1 0 0

0 0 0 0

 .

To analyse how these affect the earlier calculations, we have to first note
that the entries ∆1 + ∆2 subtracts from must be at least two, because we
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want to subtract from the same entries with M and M ′. Only one of the two
types is possible at a time.

• In the former case, if −∆2 (or −∆1 if the order of the moves is switched)
is to be included in d(u), we must have d(u) >

(
n
2

)
+n−1, because there

has to be at least three positive entries in one column, and therefore
cM >

(
n
2

)
+n− 1− 4 ≥

(
n
2

)
− 2, where −4 comes from three disallowed

moves and one intersection – if not, the degree is at least
(
n
2

)
+ n − 1

by Lemma 2.2, which means we have cM ≥
(
n
2

)
+ n− 4 ≥

(
n
2

)
− 1.

• In the latter case, d(u) must be at least
(
n
2

)
+ n − 1 by Lemma 2.2,

and we have cM ≥
(
n
2

)
+ n − 1 − 4 ≥

(
n
2

)
− 1, because we must have

n ≥ 4. We subtract four, because there are at most three disallowed
moves and one intersection.

In the two other cases we have M ′ and M sharing one row or column,
which disappears in the sum M ′ + (−M). An example is presented below:

∆ =


1 −1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

 =


0 0 0 0
−1 1 0 0

0 0 0 0
1 −1 0 0

+


1 −1 0 0
0 0 0 0
0 0 0 0
−1 1 0 0



=


1 0 −1 0
−1 0 1 0

0 0 0 0
0 0 0 0

+


0 −1 1 0
0 1 −1 0
0 0 0 0
0 0 0 0

 = M ′ + (−M).

We assume that either ∆1 or ∆2 causes intersections, and denote the one
causing them with ∆. Let the other one be ∆′. Because M ′ and −M share
one row with ∆, ∆ also adds to a positive entry, becauseM needs to subtract
from that. Let the position of that entry be (i1, j1).

• Assume that at least one of the entries ei ∆′ subtracts from satisfies
1 ≤ ei ≤ r − 1. Then there must be at least one positive entry in the
same column and one in the same row. If they are both in the row
i1 and column j1, ei is in the position (i1, j1). Otherwise, we can find
1-entries that do not use the row i1 and the column j1 for each ei ∆′

subtracts from satisfying 1 ≤ ei ≤ r− 1. Denote them with (i2, j2) and
(i3, j3). It might be that (i3, j3) does not exist or (i2, j2) = (i3, j3). We
have u ≥ En(i1, j1) +En(i2, j2) +En(i3, j3). They can all be put in the
same u1 ∈ V (G(n, 1)) in the construction of the proof of Lemma 2.8.
Thus, by Lemma 2.8, we have u = u1 + u′, where u1 is such that it
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does not contain the entries at most r − 1 ∆ or ∆′ subtract from.
Because d(u1) =

(
n
2

)
, and the choices M = ∆1 and M = ∆2 as well as

intersections are avoided in u1, we have cM ≥
(
n
2

)
− 1.

• Now, assume that both of the entries ∆′ subtracts from are r. As
before, decompose u = u1 + u′ using Lemma 2.8. This time, we cannot
avoid the entries used by ∆′, but they will surely be large enough to be
usable by M . Again, u1 does not contain the entries subtracted from
by ∆. Hence, we cannot have intersections of the other type occuring
with moves from u1 and have to only avoid M = −∆1, because ∆2

adds to zero-entries, and thus M = −∆2 is not included in d(u1). We
have cM ≥

(
n
2

)
− 1.

In the latter case, ∆′ cannot cause intersections because of the assumption
that ∆′ subtracts from r-entries, but in the former case it could. Because the
entries ∆′ subtracts from are in u′, the calculations hold even if intersections
of the type M ′ −M = ∆′ are assumed possible. �

The last result in this paper concerns the diameter of G(n, r):

Proposition 2.12. The diameter of G(n, r) is (n− 1)r.

Proof. Every row sum is r, and each of the positive entries can be selected to
be subtracted from. Therefore, r changes are enough to transform a row to
any other. The n:th row must be correct at least after changing the (n−1):th
row, because otherwise we would have to change an already correct row to
incorrect. The maximal number of changes needed is then (n − 1)r, and
diam(G(n, r)) ≤ (n− 1)r.

Now, it suffices to show that diam(G(n, r)) ≥ (n−1)r. Take the diagonal
matrix

A =


r 0 · · · 0
0 r · · · 0
...

... . . . ...
0 0 · · · r

 .

The coordinates of the nonzero-entries are of the form (i, i), i ∈ N∩ [1, n].
Consider permuting the rows so that (i, i) 7→ (i, i − 1), i 6= 1, and (1, 1) 7→
(1, n). The result is

A′ =


0 0 · · · r
r 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,
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and the permutation matrix

P =


0 0 · · · 1
1 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

On the other hand, A = rI. If p is the number of operations needed to
change 1

r
A′ = P to I, the number of operations needed to change A′ to A is

clearly pr.
Consider this procedure: start from the row i = 1. Find the row which

has its 1-entry in the column i, in this case the second row, and swap the
rows. Repeat this for each of the rows except for the n:th one. Before the
(n− 1):th row is swapped for the second time, it will have its 1-entry in the
n:th column, so by interchanging it with the n:th row we will get to I.

In our procedure, each of the swaps corrects the place of one one-entry
except for the last one which corrects two. However, we might be able to use
more swaps that correct two positions. These kind of interchanges require
pairs of one-entries to be in positions of the form (i, j) and (j, i). Say that
we swap (i, j) with (i′, j′) to get (i′, j) and (i, j′). Assume i > i′. If i′ < j
and i < j′, j′ > i′. Thus, the number of entries in a position of the form
(j, i), i > j increases by at most one with each swap. There are n−1 positive
entries in positions of the form (i, j), i > j in P . To interchange the positions
of two of n−2 entries (the entries not in the positions (1, n) and some other)
correcting both, we would then need at least one extra swap. Thus, the best
possible result we could get this way is still n− 1 swaps.

Each swap consists of one operation. Thus, p = n − 1, and therefore we
need (n−1)r operations to make A′ from A. Hence, diam(G(n, r)) ≥ (n−1)r,
but because also diam(G(n, r)) ≤ (n− 1)r, diam(G(n, r)) = (n− 1)r. �

References
[1] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling

from conditional distributions. Ann. Statist. 26 (1998), no. 1, 363–397.

[2] Mathias Drton, Bernd Sturmfels and Seth Sullivant. Lectures on Algebraic
Statistics. Oberwolfach Seminars, Vol. 39. Birkhäuser, Basel, 2009. 172
pp.

[3] Reinhard Diestel. Graph theory. Fourth edition. Graduate Texts in Math-
ematics, 173. Springer, Heidelberg, 2010. 437 pp.

13



[4] Alexander Engström. Private communication, June 2012.

[5] Samu Potka. Connectivity, in "Problem book for Sannäs workshop, Au-
gust 9-10, 2012", edited by Alexander Engström, 2012.

[6] Dénes Kőnig. Über Graphen und ihre Anwendung auf Determinantenthe-
orie und Mengenlehre. Math. Ann. 77 (1916), 453–465.

[7] Gui Zhen Liu. Proof of a conjecture on matroid base graphs. Sci. China
Ser. A 33 (1990), no. 11, 1329–1337.

[8] Anders Björner and Kathrin Vorwerk. Connectivity of chamber graphs of
buildings and related complexes. European J. Combin. 31 (2010), no. 8,
2149–2160.

Samu Potka
Aalto University
Department of Mathematics and Systems Analysis
PO Box 11100
FI-00076 Aalto
Finland
e-mail: samu.potka@aalto.fi

14


