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Abstract

In this paper, we consider the problem of estimating multiple graphical models simultaneously
using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A mo-
tivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data.
Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network
for the patients with mild cognitive impairment (MCI), and a brain network for Alzheimer’s patients
(AD). We expect the two brain networks for NC and MCI to share common structures but not to be
identical to each other; similarly for the two brain networks for MCI and AD. The proposed formu-
lation can be solved using a blockwise coordinate descent method. Our key technical contribution
is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on
this key property, a simple screening rule is presented, which decomposes the large graphs into small
subgraphs and allows an efficient estimation of multiple independent (small) subgraphs, dramatically
reducing the computational cost. We perform experiments on both synthetic and real data; our
results demonstrate the effectiveness and efficiency of the proposed approach.

1 Introduction

Undirected graphical models explore the relationships among a set of random variables through their joint
distribution. The estimation of undirected graphical models has applications in many domains, such as
computer vision, biology, and medicine. An instance is the analysis of gene expression data. As shown
in many biological studies, genes tend to work in groups based on their biological functions, and there
exist some regulatory relationships between genes [1]. Such biological knowledge can be represented as
a graph, where nodes are the genes, and edges describe the regulatory relationships. Graphical models
provide a useful tool for modeling these relationships, and can be used to explore gene activities. One
of the most widely used graphical models is the Gaussian graphical model (GGM), which assumes the
variables to be Gaussian distributed [2]. In the framework of GGM, the problem of learning a graph
is equivalent to estimating the inverse of the covariance matrix (precision matrix), since the nonzero
off-diagonal elements of the precision matrix represent edges in the graph [2].

In recent years many research efforts have focused on estimating the precision matrix and the corre-
sponding graphical model. Meinshausen and Bühlmann [3] estimated edges for each node in the graph
by fitting a lasso problem [4] using the remaining variables as predictors. Yuan and Lin [5] and Banerjee
et al. [2] proposed a penalized maximum likelihood approach using ℓ1 regularization, and used interior
point optimization to estimate the sparse precision matrix. Friedman et al. [6] introduced a blockwise
coordinate descent method to solve the same problem, referred to as Graphical lasso (GLasso). Huang
et al. [7] derived the monotone property of GLasso. Liu et al. [8] introduced a stability-based method for
choosing the regularization parameters for GLasso. Although GLasso is faster than previous approaches,
it usually fails to converge with warm-starts. To resolve this issue, Mazumder and Hastie [9] proposed
a new algorithm called DP-GLasso, each step of which is a box-constrained QP problem. The main
challenge of estimating a sparse precision matrix is its intensive computation. Witten et al. [10] and
Mazumder and Hastie [11] independently derived a simple screening rule, achieving great computational
gain when the regularization parameter is large. However, these formulations assume that observations
are independently drawn from a single Gaussian distribution. In many applications the observations
may be drawn from multiple Gaussian distributions; in this case, multiple graphical models need to be
estimated.
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There is some recent work on the estimation of multiple precision matrices. Guo et al. [12] proposed a
method to jointly estimate multiple graphical models using a hierarchical penalty. However, this method
is not convex. Danaher et al. [13] estimated multiple precision matrices simultaneously using a pairwise
fused penalty and grouping penalty. The generalized gradient method was used to solve the problem, but
it required computing the inverse of precision matrices and checking the positive definiteness of precision
matrices at each iteration. A screening rule for the two graph case was also proposed in [13]. However,
it is not clear whether the screening rule can be extended to the more general case with more than two
graphs, which is the case in brain network modeling. Time-varying graphical models were also studied
by Zhu et al. [14], and Kolar et al. [15, 16].

In this paper, we consider the problem of estimating multiple graphical models by maximizing a
penalized log likelihood with ℓ1 and fused regularization as in [13]. The ℓ1 regularization yields a sparse
solution, and the fused regularization encourages adjacent graphs to be similar. A motivating example is
the modeling of brain networks for Alzheimer’s disease using neuroimaging data such as Positron emission
tomography (PET). In this case, we want to estimate graphical models for three groups: normal controls
(NC), patients of mild cognitive impairment (MCI), and Alzheimer’s patients (AD). These networks are
expected to share some common connections, but they are not identical. Furthermore, the networks are
expected to evolve over time, in the order of disease progression from NC to MCI to AD. Estimating
the graphical models separately fails to exploit the common structures among them. It is thus desirable
to jointly estimate the three networks (graphs). We employ the blockwise coordinate descent method to
solve the fused multiple graphical lasso (FMGL), where each step is solved by the accelerated gradient
method [17]. Our key technical contribution is to establish the necessary and sufficient condition for the
FMGL solution to be block diagonal. Based on this key property of FMGL, we develop a screening rule
which enables the efficient estimation of large multiple precision matrices. Specifically, we derive a set
of necessary conditions for the solution of FMGL to be block diagonal. We prove that these conditions
are sufficient when K ≤ 3 (K is the number of graphs to be estimated). Our simulation studies strongly
indicate that these conditions are also sufficient for any K > 3 as well. Our results significantly extend
the recent work presented in [13]. We conduct experiments on both synthetic and real data; our results
demonstrate the effectiveness and efficiency of the proposed approach.

The rest of the paper is organized as follows. We introduce the fused multiple graphical lasso formu-
lation in Section 2. The screening rule is presented in Section 3. The experimental results are shown in
Section 4. We conclude the paper in Section 5.

2 Fused multiple graphical lasso

Assume we are given K data sets, X(k) ∈ Rnk×p, k = 1, . . . ,K with K ≥ 2, where nk is the number
of samples, and p is the number of features. The p features are common for all K data sets, and all
∑K

k=1 nk samples are independent. Furthermore, the samples within each data set X(k) are identically
distributed with a p-variate Gaussian distribution with zero mean and positive definite covariance matrix
Σ(k), and there are many conditionally independent pairs of features, i.e. the precision matrix Θ(k) =
(Σ(k))−1 should be sparse. For notational simplicity, we assume that n1 = · · · = nK = n. Denote
the sample covariance matrix for each data set X(k) as S(k) such that S(k) = 1

n
(X(k))TX(k), and Θ =

{Θ(1), . . . ,Θ(K)}. Then the negative log likelihood for the data takes the form of

L(Θ) =

K
∑

k=1

(

− log det(Θ(k)) + tr(S(k)Θ(k))
)

. (1)

Minimizing Eq.(1) leads to the maximum likelihood estimate (MLE) Θ̂(k) = (S(k))−1. However, MLE
fails in the high-dimensional setting. In this setting, the sample size n is less than the number of features
p, thus S(k) is singular. Furthermore, the MLE is unlikely to be sparse. The ℓ1 regularization has been
employed to induce sparsity, resulting in the sparse inverse covariance estimation [2, 5, 6]. In this paper,
we employ both the ℓ1 regularization and the fused regularization for simultaneously estimating multiple
graphs. The ℓ1 regularization leads to a sparse solution, and the fused penalty encourages Θ(k) to be
similar to its neighbors. Mathematically, we solve the following formulation:

min
Θ(k)≻0,k=1...K

K
∑

k=1

(

− log det(Θ(k)) + tr(S(k)Θ(k))
)

+ P (Θ), (2)
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where

P (Θ) = λ1

K
∑

k=1

∑

i6=j

|θ
(k)
ij |+ λ2

K−1
∑

k=1

∑

i6=j

|θ
(k)
ij − θ

(k+1)
ij |,

λ1 and λ2 are nonnegative regularization parameters. The algorithm for solving Eq. (2) and the corre-
sponding complexity analysis are given in Appendix A.

3 The screening rule for fused multiple graphical lasso

Witten et al. [10] and Mazumder and Hastie [11] independently derived a necessary and sufficient condition
for the solution of a single graphical lasso to be block diagonal. A simple screening test can be used to
identify the blocks, thus the original graphical lasso problem can be decomposed into several smaller
problems. When the number of blocks is large, it can achieve massive computational gain. Danaher et
al. [13] developed a similar necessary and sufficient condition for fused graphical lasso with two graphs.
However, it remains a challenge to derive the necessary and sufficient condition for the solution of fused
multiple graphical lasso to be block diagonal for K > 2 graphs.

In this section, we first present a theorem demonstrating that FMGL can be decomposable once its
solution is block diagonal. Then we derive a set of necessary conditions for the solution of FMGL to be
block diagonal. We also prove that these conditions are sufficient when K = 3. We conjecture that these
conditions are sufficient for any K > 3 as well (see the discussion in Section 4.2.2).

Let C1, . . . , CL be a partition of the p features into L nonoverlapping sets, with Cl ∩ Cl′ = ∅, ∀l 6= l′

and
⋃L

l=1 Cl = {1, . . . , p}. Then we have the following result [13]:

Theorem 1. Suppose that the FMGL solution Θ̂ is block diagonal with L known blocks only consisting
of features in the set Cl, l = 1, . . . , L, i.e. each estimation precision matrix takes the form

Θ̂(k) =









Θ̂
(k)
1

. . .

Θ̂
(k)
L









, k = 1, . . . ,K,

then Eq. (2) can be solved by applying FMGL on just the corresponding set of features:

Θ̂l = arg min
Θl≻0

K
∑

k=1

(

− log det(Θ
(k)
l ) + tr(S

(k)
l Θ

(k)
l )

)

+ P (Θl), l = 1, . . . , L,

where Θ̂
(k)
l and S

(k)
l are the corresponding |Cl| × |Cl| symmetric submatrices of Θ̂(k) and Ŝ(k).

Theorem 1 can be directly derived from Eq.(2), since det(Θ̂(k)) =
∏L

l=1 det(Θ̂
(k)
l ), tr(S(k)Θ̂(k)) =

∑L

l=1 tr(S
(k)
l Θ̂

(k)
l ), and P (Θ̂) =

∑L

l=1 P (Θ̂l). The key is how to efficiently identify the block structures.
We address this problem in the remaining part of this section.

Theorem 2. The following set of conditions are necessary for the FMGL solution Θ̂(k), k = 1, . . . ,K to
be block diagonal with L known blocks Cl, l = 1, . . . , L:

|
t

∑

k=1

s
(k)
ij | ≤ tλ1 + λ2, 1 ≤ t ≤ K − 1,

|
t2
∑

k=t1

s
(k)
ij | ≤ (t2 − t1 + 1)λ1 + 2λ2, 2 ≤ t1 ≤ t2 ≤ K − 1,

|
K
∑

k=t

s
(k)
ij | ≤ (K − t+ 1)λ1 + λ2, 2 ≤ t ≤ K,

|
K
∑

k=1

s
(k)
ij | ≤ Kλ1,

(3)

for i ∈ Cl, j ∈ Cl′ , l 6= l′.
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Proof. Denote the inverse of Θ(k) as W(k), for k = 1, . . . ,K. For the diagonal elements of Θ(k), the
Karush-Kuhn-Tucker (KKT) optimality conditions [18] for Eq.(2) are

−w
(k)
ii + s

(k)
ii = 0, 1 ≤ k ≤ K.

Thus, the optimal ŵ
(k)
ii can be directly computed as s

(k)
ii . For the off-diagonal elements of Θ(k), the KKT

conditions for Eq.(2) can be written as

− w
(1)
ij + s

(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0

− w
(k)
ij + s

(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, for 2 ≤ k ≤ K − 1 (4)

− w
(K)
ij + s

(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0,

where γ
(k)
ij is the subgradient of |θ

(k)
ij |: γ

(k)
ij = 1 if θ

(k)
ij > 0, γ

(k)
ij = −1 if θ

(k)
ij < 0, and γ

(k)
ij ∈ [−1, 1] if

θ
(k)
ij = 0; υ

(k,k+1)
ij is the subgradient of |θ

(k)
ij − θ

(k+1)
ij | with respect to θ

(k)
ij : υ

(k,k+1)
ij = 1 if θ

(k)
ij > θ

(k+1)
ij ,

υ
(k,k+1)
ij = −1 if θ

(k)
ij < θ

(k+1)
ij , and υ

(k,k+1)
ij ∈ [−1, 1] if θ

(k)
ij = θ

(k+1)
ij .

Note that Ŵ(k) has the same block diagonal structure as Θ̂(k), thus θ̂
(k)
ij = ŵ

(k)
ij = 0 for i ∈ Cl, j ∈

Cl′ , l 6= l′. Then Eq.(4) can be rewritten as

s
(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0

s
(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, for 2 ≤ k ≤ K − 1 (5)

s
(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0.

As a result, we have
∑t

k=1 s
(k)
ij = −λ1

∑t

k=1 γ
(t)
ij − λ2υ

(t,t+1)
ij , for 1 ≤ t ≤ K − 1, implying |

∑t

k=1 s
(k)
ij | ≤

tλ1 +λ2, for 1 ≤ t ≤ K − 1 since γ
(1)
ij , . . . , γ

(K)
ij , υ

(1,2)
ij , . . . , υ

(K−1,K)
ij ∈ [−1, 1]. Similarly, we can prove the

other three conditions.

Next, we show that the conditions (3) in Theorem 2 are also sufficient for K = 2, 3. Danaher et al. [13]
have proved the sufficiency when K = 2. We here give a more concise and simpler proof for K = 2. More
importantly, our proof can be easily extended to the case when K = 3. Before proving the sufficiency,
we first prove the following lemmas:

Lemma 1. Suppose |α + β| ≤ (t1 + 1)λ1, |α| ≤ λ1 + t2λ2, and |β| ≤ t1λ1 + t2λ2 with t1, t2 > 0, the
following three intervals intersect: (1) |a| ≤ t2λ2; (2) −λ1+α ≤ a ≤ λ1+α; (3) −t1λ1−β ≤ a ≤ t1λ1−β.

Proof. We first prove by contradiction that the first and second intervals intersect. If they do not intersect,
we must have |α| > λ1+t2λ2, which contradicts with the condition |α| ≤ λ1+t2λ2. Similarly, the first and
third intervals intersect. Since |α+β| ≤ (t1 +1)λ1, we have λ1 +α ≥ −t1λ1 −β and t1λ1−β ≥ −λ1+α,
indicating that the second and third intervals intersect. Thus, the three intervals intersect.

Lemma 2. Suppose |y1 + y2 + y3| ≤ 3λ1. Then the following region

max{−λ1 − y1,−2λ1 + y2 + y3} ≤ a1 ≤ min{λ1 − y1, 2λ1 + y2 + y3},

max{−λ1 + y3,−2λ1 − y1 − y2} ≤ a2 ≤ min{λ1 + y3, 2λ1 − y1 − y2}
(6)

is a square (a single point is considered as a special case of a square). Let B and C be the lower-left and
upper-right vertices of this square, then the diagonal BC belongs to the region

max{−λ1 + y2,−2λ1 − y1 − y3} ≤ a1 − a2 ≤ min{λ1 + y2, 2λ1 − y1 − y3}. (7)

The proof is given in Appendix B.

Lemma 3. Under the conditions (3) and K = 2, 3, the linear system in Eq.(5) has a solution such that

γ
(1)
ij , . . . , γ

(K)
ij , υ

(1,2)
ij , . . . , υ

(K−1,K)
ij ∈ [−1, 1].
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Proof. Eq.(5) can be rewritten as a matrix form Ax + y = 0, where A = [λ2HK , λ1IK×K ] , x =

[υ
(1,2)
ij , . . . , υ

(K−1,K)
ij , γ

(1)
ij , . . . , γ

(K)
ij ]T , y = [s

(1)
ij , . . . , s

(K)
ij ]T , and

HK =



















1
−1 1

−1
. . .

1
−1



















K×(K−1)

Note that one solution of Ax+ y = 0 is x∗ = [01×(K−1),−yT /λ1]
T , and the null space of A is

B = Null(A) =

(

I(K−1)×(K−1)

−λ2

λ1
HK

)

,

thus the general solution of Ax+ y = 0 takes the form of x̃ = Ba+ x∗ with an arbitrary a ∈ RK−1.
Next we need to show that there exists a solution x̂ such that ‖x̂‖∞ ≤ 1 under the conditions (3) when

K = 2, 3. For notational simplicity, we use yk to represent s
(k)
ij in the proof.

K=2: The solution x̃ takes the form of

x̃ =





a
−λ2a−y1

λ1
λ2a−y2

λ1



 .

‖x̃‖∞ ≤ 1 can be expressed as |a| ≤ 1, −λ1−y1

λ2
≤ a ≤ λ1−y1

λ2
, and −λ1+y2

λ2
≤ a ≤ λ1+y2

λ2
. If these three

intervals intersect, there exists x̂ such that ‖x̂‖∞ ≤ 1. The problem of finding the desired x̂ is therefore
transformed to identifying the intersection of the above set of conditions. According to Lemma 1, these
three intervals intersect.

K=3: Following the same idea, we can obtain the conditions for K = 3:

|a1| ≤ 1, |a2| ≤ 1, (8)

and

−
λ1 + y1

λ2
≤ a1 ≤

λ1 − y1
λ2

(9)

−λ1 + y2
λ2

≤ a1 − a2 ≤
λ1 + y2

λ2
(10)

−λ1 + y3
λ2

≤ a2 ≤
λ1 + y3

λ2
. (11)

Consider the summation of Eqs.(10) and (11), we can obtain

−2λ1 + y2 + y3
λ2

≤ a1 ≤
2λ1 + y2 + y3

λ2
. (12)

The refined feasible region of a1 by combining Eqs.(9) with (12) is given by

max{−λ1 − y1,−2λ1 + y2 + y3}

λ2
≤ a1 ≤

min{λ1 − y1, 2λ1 + y2 + y3}

λ2
. (13)

Based on |y1| ≤ λ1 + λ2, |y2 + y3| ≤ 2λ1 +λ2, |y1 + y2 + y3| ≤ 3λ1 as well as Lemma 1, we can show that
Eqs.(9), (12), and |a1| ≤ 1 intersect. Thus, Eq. (13) also intersects with |a1| ≤ 1.

Similarly, we can also obtain the refined feasible region of a2 that intersects with |a2| ≤ 1

max{−λ1 + y3,−2λ1 − y1 − y2}

λ2
≤ a2 ≤

min{λ1 + y3, 2λ1 − y1 − y2}

λ2
, (14)

and the refined feasible region of a1 − a2,

max{−λ1 + y2,−2λ1 − y1 − y3}

λ2
≤ a1 − a2 ≤

min{λ1 + y2, 2λ1 − y1 − y3}

λ2
, (15)
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Figure 1: Illustration of the regions A,B, and C: Red square (A), black square (B), the band between
blues lines (C), and the blue region (A ∩ B ∩ C).

which intersects with the region of |a1| ≤ 1, |a2| ≤ 1.
Let A represent the feasible region of Eq. (8), B be the feasible region of Eqs.(13) and (14), and C be

the feasible region of Eq.(15) (see Figure 1 for illustration). We have shown that A∩B 6= ∅ and A∩C 6= ∅.
Next, we will show A ∩ B ∩ C 6= ∅.

According to Lemma 2, B is a square. Let B and C be the lower-left and upper-right vertices of B,
then the diagonal BC of B belongs to C. Denote a∗ as the closest point in A to the diagonal BC. a∗

belongs to B, since A∩B 6= ∅. We can easily prove that a∗ ∈ A∩B∩C. If a∗ is in the diagonal BC, then
a∗ ∈ C (see Figure 1(a)). If not, we prove it by contradiction. Suppose a∗ /∈ C, there exists one closest
point â ∈ A ∩ C to the diagonal BC. The distance from â to the diagonal must be less than that of a∗,
which contradicts with the condition that a∗ is the closest point to the diagonal BC (see Figure 1(b)).

Thus, we have proved that A ∩ B ∩ C 6= ∅, and there exists a solution x̂ such that ‖x̂‖∞ ≤ 1.

Now we are ready to prove the sufficiency, stated in the following theorem:

Theorem 3. The conditions (3) are sufficient for the FMGL solution Θ̂(k), k = 1, . . . ,K to be block
diagonal with L known blocks Cl, l = 1, . . . , L when K = 2, 3.

Proof. We construct matrices Θ̂(k) with the block diagonal structure Cl, l = 1, . . . , L based on the condi-

tions (3), and show that they are a solution to FMGL. The l-th block diagonal elements Θ̂
(k)
l , k = 1, . . . ,K

are obtained by performing FMGL on S
(k)
l . According to Theorem 1, the solution Θ̂

(k)
l , k = 1, . . . ,K

satisfies the KKT condition. According to Lemma 3, the linear system in Eq. (5) has a solution x̂ such

that ‖x̂‖∞ ≤ 1 for i ∈ Cl, j ∈ Cl′ , l 6= l′ under the conditions (3). Obviously, the choice ŵ
(k)
ij = θ̂

(k)
ij = 0

for i ∈ Cl, j ∈ Cl′ , l 6= l′ satisfies the KKT condition. Hence, Θ̂(k), k = 1, . . . ,K form a solution to
FMGL.

According to Theorem 2 and Theorem 3, the conditions (3) can be used as screening rule to identify the
block structure of the FMGL solution. The steps about how to use the conditions (3) are standard [10, 11]:

1. Construct an adjacency matrix E = Ip×p. Set Eij = Eji = 0 if s
(k)
ij , k = 1, . . . ,K satisfy the

conditions (3). Otherwise, set Eij = Eji = 1.

2. Identify the connected components of E. Note that the connected components are the partition of
the p features into nonoverlapping sets.

An obvious consequence of Theorem 2 and Theorem 3 is that the off-diagonal elements in the i-th

row and column are zeros, if s
(k)
ii , k = 1, 2, 3 satisfy the conditions (3). In addition, θ

(k)
ii and w

(k)
ii can be

directly computed as 1/s
(k)
ii and s

(k)
ii .

4 Experimental results

In this section, we evaluate the proposed algorithm and screening rule on synthetic datasets and two
real datasets: ADHD-200 [19] and FDG-PET images [20]. The experiments are performed on a PC with
dual-core Intel 3.0GHz CPU and 4GB memory. The code is written in C.
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4.1 Convergence

To examine the convergence rate of the proposed method, we randomly generate 3 graphs with 10%
sparsity and p = 500. The matrices S̃(k), k = 1, 2, 3 are constructed in the following way: the diago-
nal elements of S̃(k) are set to 0.65, the off-diagonal elements are selectively set to 0.65 based on the
corresponding graphs, and the remaining ones are set to 0. A noise term 0.35(Q(k))TQ(k) is added to
S̃(k), where Q(k) is a p × p matrix with standard Gaussian distribution. The sample covariance matrix
S(k) = S̃(k)+0.35(Q(k))TQ(k). Q(k) is standardized so that the diagonal elements of S(k) are 1. λ1 varies
from 0.25 to 0.45 with a step size of 0.1, and λ2 is set to 0.1. From Figure 2, we can observe that FMGL
usually converges within 20 rounds (update all p columns/rows). When the regularization parameter
value is small, FMGL needs more rounds to converge.
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Figure 2: Convergence curves of FMGL. λ1 is set to 0.25,0.35,0.45, and λ2 is set to 0.1.

4.2 Simulation

4.2.1 Screening rule

The synthetic covariance matrices are generated as follows. A block diagonal matrix S̃ with L blocks is
created, and each block is of size (p/L)×(p/L) with all ones. The sample covariance matrices are generated
as S(k) = 0.5S̃+ 0.5(Q(k))TQ(k), where Q(k) is a p× p matrix with standard Gaussian distribution. To
make sure that the solution has L blocks, we vary λ1 from 0.2 to 0.5 with a step size of 0.05, and fix
λ2 to 0.2. The convergence criterion is set to 1e-5, and the maximal iteration number is set to 1000.
We use the speedup rate to/ts and the error |fo − fs| to measure the performance of the screening rule,
where to, ts are the computational times without and with the screening rule, and fo, fs are the objective
values without and with the screening rule. The results with varying p are shown in Figure 3. As shown
in Figure 3, the screening rule can achieve great computational gain. Since the complexity of FMGL is
O(Kp3), the speedup rate for a FMGL solution with L same size blocks is O(L2). It can be observed
that the speedup rate varies from 10 to 55 for L = 5, and from 25 to 320 for L = 10. We can also find
that the speedup rate decreases when sparsity increases, and increases when p increases.
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Figure 3: The speedup rate and the error without and with the screening rule.
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4.2.2 Sufficiency when K ≥ 3

We conduct simulations to examine whether the conditions (3) can guarantee that there exists a solution
to the constrained linear system Ax+ y = 0, s.t. ‖x‖∞ ≤ 1 when K ≥ 3. The first and last elements
of y are uniformly drawn from [−λ1 − λ2, λ1 + λ2], and the remaining ones are uniformly drawn from
[−λ1 − 2λ2, λ1 + 2λ2]. If the error ‖Ax+ y‖2 >1e-8, a counterexample is found. We perform 2 million
replications for K = 3, 4, . . . , 10, 15, 20 respectively. About half of the replications give a y satisfying the
conditions (3). For these y, we minimize ‖Ax+ y‖2 subject to the constraint using the gradient method.
No counterexample is found, implying that the conditions (3) are likely sufficient for any K > 3.

4.2.3 Stability

We conduct experiments to demonstrate the effectiveness of FMGL. The synthetic sparse precision matri-
ces are generated in the following way: we set the first precision matrix Θ(1) as 0.25Ip×p, where p = 100.

When adding an edge (i, j) in the graph, we add σ to θ
(1)
ii and θ

(1)
jj , and subtract σ from θ

(1)
ij and θ

(1)
ji

to keep the positive definiteness of Θ(1), where σ is uniformly drawn from [0.1, 0.3]. When deleting an

edge (i, j) from the graph, we reverse the above steps with σ = θ
(1)
ij . We randomly assign 200 edges for

Θ(1). Θ(2) is obtained by adding 25 edges and deleting 25 different edges from Θ(1). Θ(3) is obtained
from Θ(2) in the same way. For each precision matrix, we randomly draw n samples from the Gaussian
distribution with the corresponding precision matrix, where n varies from 40 to 200 with a step of 20.
We perform 500 replications for each n. For each n, λ2 is fixed to 0.08, and λ1 is adjusted to make sure
that the edge number is about 200. The accuracy nd/ng is used to measure the performance of FMGL
and GLasso, where nd is the number of true edges detected by FGML and GLasso, and ng is the number
of true edges. The results are shown in Figure 4. We can see from the figure that FMGL achieves higher
accuracies, demonstrating the effectiveness of FMGL for learning multiple graphical models.
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Figure 4: Comparison of FMGL and GLasso in detecting true edges.

4.3 Real data

4.3.1 ADHD-200

The Attention Deficit Hyperactivity Disorder (ADHD) affects at least 5-10% of school-age children with
annual costs exceeding 36 billion/year in the United States. The ADHD-200 project has released resting-
state functional magnetic resonance images (fMRI) of 491 typically developing children and 285 ADHD
children, aiming to encourage the research on ADHD. The data used in this experiment is the preprocessed
data using the NIAK pipeline downloaded from neurobureau [21]. More details about the preprocessing
strategy can be found in the same website. The dataset we choose includes 116 typically developing
children (TDC), 29 ADHD-Combined (ADHD-C), and 49 ADHD-Inattentive (ADHD-I). There are 231
time series and 2834 brain regions for each subject. We want to estimate the graphs of the three groups
simultaneously. The sample covariance matrix is computed using all data from the same group. Since
the number of brain regions p is 2834, obtaining the precision matrices is computationally intensive. We
use this data to test the effectiveness of the proposed screening rule. λ1 and λ2 are set to 0.6 and 0.015.
The convergence criterion is 1e-5. The computational time is about 4.13 hours without screening, and
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172 seconds with screening, demonstrating the superiority of the screening rule. The obtained solution
has 1443 blocks. The largest one including 634 features is given in Appendix C.

The block structures of the FMGL solution are the same as those identified by the screening rule. The
screening rule can be used to analyze the rough structures of the graphs. The cost of identifying blocks
using the screening rule is negligible compared to that of estimating the graphs. For high-dimensional
data such as ADHD-200, it is practical to use the screening rule to identify the block structure before
estimating the large graphs. We use the screening rule to identify block structures on ADHD-200 data
with varying λ1 and λ2. The size distribution is shown in Figure 5. We can observe that the number of
blocks increases, and the size of blocks deceases when the regularization parameter value increases.
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Figure 5: The size distribution of blocks (in logarithmic scale) identified by the proposed screening rule.
The color represents the number of blocks of a specified size. (a): λ1 varies from 0.5 to 0.95 with λ2 fixed
to 0.015. (b): λ2 varies from 0 to 0.2 with λ1 fixed to 0.55.

4.3.2 FDG-PET

In this experiment, we use FDG-PET images from 74 Alzheimer’s disease (AD), 172 mild cognitive
impairment (MCI), and 81 normal control (NC) subjects downloaded from the Alzheimer’s disease neu-
roimaging initiative (ADNI) database. The different regions of the whole brain volume can be represented
by 116 anatomical volumes of interest (AVOI), defined by Automated Anatomical Labeling (AAL) [22].
Then we extracted data from each of the 116 AVOIs, and derived the average of each AVOI for each
subject. The 116 AVOIs can be categorized into 10 groups: prefrontal lobe, other parts of the frontal lobe,
parietal lobe, occipital lobe, thalamus, insula, temporal lobe, corpus striatum, cerebellum, and vermis.
More details about the categories can be found in [23, 22]. We remove two small groups (thalamus and
insula) containing only 4 AVOIs in our experiments.

To examine whether FMGL can effectively utilize the information of common structures, we randomly
select g percent samples from each group, where g varies from 20 to 100 with a step size of 10. For each
g, λ2 is fixed to 0.1, and λ1 is adjusted to make sure the number of edges in each group is about the
same. We perform 500 replications for each g. The edges with probability larger than 0.85 are considered
as stable edges. The results showing the numbers of stable edges are summarized in Figure 6. We can
observe that FMGL is more stable than GLasso. When the sample size is too small (say 20%), there are
only 20 stable edges in the graph of NC obtained by GLasso. But the graph of NC obtained by FMGL
still has about 140 edges, illustrating the superiority of FMGL in stability.

The brain connectivity models obtained by FMGL are shown in Figure 7. We can see that the number
of connections within the prefrontal lobe significantly increases, and the number of connections within the
temporal lobe significantly decreases from NC to AD, which are supported by previous literatures [24, 25].
The connections between the prefrontal and occipital lobes increase from NC to AD, and connections
within cerebellum decrease. We can also find that the adjacent graphs are similar, indicating that FMGL
can identify the common structures, but also keep the meaningful differences.

5 Conclusion

In this paper, we consider simultaneously estimating multiple graphical models by maximizing a fused
penalized log likelihood. The blockwise coordinate descent method is employed to solve the fused multiple

9



20 60 100
0

50

100

150

200

250

300

Percent(%)

N
um

be
r 

of
 E

dg
es

NC

 

 

GLasso
FMGL

20 60 100
120

140

160

180

200

220

240

260

280

Percent(%)

N
um

be
r 

of
 E

dg
es

MCI

 

 

GLasso
FMGL

20 60 100
50

100

150

200

250

300

Percent(%)

N
um

be
r 

of
 E

dg
es

AD

 

 

GLasso
FMGL

Figure 6: The number of stable edges in NC, MCI, and AD.
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Figure 7: Brain connection models with 265 edges: NC, MCI, and AD. In each figure, the diagonal
blocks are prefrontal lobe, other parts of frontal lobe, parietal lobe, occipital lobe, temporal lobe, corpus
striatum, cerebellum, and vermis respectively.

graphical lasso. We have derived a set of necessary conditions for the FMGL solution to be block
diagonal, and prove that they are also sufficient in the case of three graphs, extending the recent work
in [13]. A screening rule has been developed to enable the efficient estimation of large multiple graphs.
Numerical experiments on synthetic and real data demonstrate the effectiveness of the proposed method
and screening rule. Based on our extensive simulation studies, we conjecture that the proposed necessary
conditions are also sufficient for the general case with more than 3. A future direction is to prove the
necessary and sufficient conditions in the general case.
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Appendix

A. Optimization

We solve the problem in Eq.(2) by the blockwise coordinate descent method. Consider the partition of Θ(k)

Θ
(k) =

(

Θ
(k)
11 θ

(k)
12

θ
(k)
21 θ

(k)
22

)

, k = 1, . . . ,K (16)

where Θ
(k)
11 is (p− 1)× (p− 1), θ

(k)
12 is (p− 1)× 1, and θ

(k)
22 is scalar. We solve θ

(k)
12 and θ

(k)
22 , k = 1, . . . ,K at each

iteration while fixing the rest. Then Eq.(2) is equivalent to the following problem:

min
θ12,θ22

K
∑

i=1

(

− log(θ
(k)
22 − (θ

(k)
12 )T (Θ

(k)
11 )−1

θ
(k)
12 ) + s

(k)
22 θ

(k)
22 + 2(s

(k)
12 )Tθ

(k)
12

)

+ 2P (θ12). (17)

where

P (θ12) = λ1

K
∑

k=1

‖θ(k)
12 ‖1 + λ2

K−1
∑

k=1

‖θ(k)
12 − θ

(k+1)
12 ‖1,

θ12 = {θ(1)
12 , . . . ,θ

(K)
12 }, and θ22 = {θ(1)22 , . . . , θ

(K)
22 }.
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Optimizing Eq.(17) with respect to θ
(k)
22 yields

θ̂
(k)
22 =

1

s
(k)
22

+ (θ
(k)
12 )T (Θ

(k)
11 )−1

θ
(k)
12 , k = 1, . . . ,K. (18)

Plugging θ̂
(k)
22 into Eq.(17), we can get the following optimization problem

θ̂12 = argmin
θ12

K
∑

i=1

(

s
(k)
22 (θ

(k)
12 )T (Θ

(k)
11 )−1

θ
(k)
12 ) + 2(s

(k)
12 )Tθ

(k)
12

)

+ 2P (θ12). (19)

The objective in Eq. (19) consists of a smooth convex term and a nonsmooth convex penalty term. Many
algorithms can be applied to solve Eq. (19) . In this paper, we employ the accelerated gradient method [17] and

the fused lasso signal approximator [26]. From θ̂
(k)
12 , it is easy to obtain θ̂

(k)
22 based on Eq.(18).

A.1 Accelerated gradient method

Denote Y = [θ
(1)
12 , . . . ,θ

(K)
12 ] ∈ R(p−1)×K , and U = [s

(1)
12 , . . . , s

(K)
12 ] ∈ R(p−1)×K , then Eq. (19) can be equivalently

written as
min
Y

h(Y) := f(Y) + P (Y) (20)

where f(Y) =
∑K

i=1

(

1
2
s
(k)
22 (θ

(k)
12 )T (Θ

(k)
11 )−1

θ
(k)
12 ) + (s

(k)
12 )Tθ

(k)
12

)

. Note that f(Y) is quadratic, whose gradient is

Lipschitz continuous with constant L, i.e.

‖∇f(Y1)−∇f(Y2)‖F ≤ L‖Y1 −Y2‖F ,∀Y1,Y2 ∈ R(p−1)×K

where ‖ · ‖F denotes the Frobenius norm.
We use the Nesterov’s method [17] to solve Eq. (20). The Nesterov’s method is based on two sequences {Yi}

and {Vi} in which {Yi} is the sequence of approximate solutions, {Vi} is the sequence of search points, and i
represents the i-th iteration. The search point Vi is the affine combination of Yi−1 and Yi as

Vi = Yi + βi(Yi −Yi−1),

where βi is a properly chosen coefficient. The approximate solution Yi+1 is computed as the minimizer of the
linearized function of h(Y) at Vi:

Yi+1 = argmin
Z

hLi,Vi
(Z) := f(Vi) + 〈Z−Vi,∇f(Vi)〉+ P (Z) +

Li

2
‖Z−Vi‖2F

where Li is determined by line search so that Li should be appropriate for the search point Vi. By ignoring the
terms that do not depend on Z, the above equation can be expressed equivalently as

Yi+1 = argmin
Z

Li

2
‖Z− (Vi −

1

Li

∇f(Vi))‖2F + P (Z). (21)

Eq. (21) is well decoupled, and each row of Yi+1 can be separately computed by the fused lasso signal approxi-
mator [26, 27], i.e.

y
j = argmin

z

1

2
‖z− t

i‖2 + λ1

Li

‖z‖1 +
λ2

Li

K−1
∑

k=1

|zk − zk+1|,

where yj is the j-th row of Yi+1, and tj is the j-th row of Vi − 1/Li∇f(Vi).
The key steps of the accelerated gradient method to solve Eq. (19) are summarized in Algorithm 1.

Algorithm 1: Accelerated Gradient Method

Input: U, λ1, λ2,Y0, L0

Output: Y, L
Initialization: Y1 = Y0, α−1 = 0, α0 = 1, and L = L0;
while Not Converged do

Set βi =
αi−2−1
αi−1

, Vi = Yi + βi(Yi −Yi−1).

Find the smallest L = Li−1, 2Li−1, . . . such that h(Yi+1) ≤ hL,Vi
(Yi+1) where Yi+1 is

computed using Eq. (21).

Set Li = L and αi+1 = 1+
√
1+4α2

2 .

end

return Yi+1, Li;
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A.2 Computing (Θ
(k)
11 )−1

Eq. (19) involves the inverse of Θ
(k)
11 that can be efficiently computed. Let the covariance matrix W(k) =

(Θ(k))−1, k = 1, . . . ,K. Consider the same partition of W(k)

W
(k) =

(

W
(k)
11 w

(k)
12

w
(k)
21 w

(k)
22

)

, k = 1, . . . ,K,

we have

W
(k)
11 = (Θ

(k)
11 )−1 + s

(k)
22 (Θ

(k)
11 )−1

θ
(k)
12 (θ

(k)
12 )T (Θ

(k)
11 )−1,

w
(k)
12 = −s

(k)
22 (Θ

(k)
11 )−1

θ
(k)
12 , w

(k)
22 = s

(k)
22 (22)

since s
(k)
22 = 1/(θ

(k)
22 − (θ

(k)
12 )T (Θ

(k)
11 )−1

θ
(k)
12 ). Thus, we can obtain (Θ

(k)
11 )−1 by W(k)

(Θ
(k)
11 )−1 = W

(k)
11 −w

(k)
12 (w

(k)
12 )T /w

(k)
22 , (23)

which only needs O(p2) operations.
The outline of FMGL is shown in Algorithm 2.

Algorithm 2: Fused Multiple Graphical Lasso (FMGL)

Input: S(k), k = 1, . . . ,K, λ1, λ2

Output: Θ(k),W(k), k = 1, . . . ,K
Initialization: W(k) = diag(S(k)) and Θ(k) = (W(k))−1;
for j = 1, 2, . . . , p, 1, 2, . . . , p, . . .

Compute (Θ
(k)
11 )−1, k = 1, . . . ,K according to Eq.(23).

Solve Eq.(19) using results from the previous round as warm-start. Update θ
(k)
12 and θ

(k)
22 using

Eq.(18).
Update Θ(k) and W(k) using Eq.(22) so that Θ(k)W(k) = Ip×p.

Until Convergence;

return Θ(k),W(k), k = 1, . . . ,K;

A.3 Computational complexity

For each iteration, we compute (Θ
(k)
11 )−1 and update W(k), which involves rank-one operations with total cost

of O(Kp2) for K graphs. Each iteration of the accelerated gradient method involves computation of the gradient
and the computation of p − 1 fused lasso signal approximators. The complexity of computing the gradient is
O(Kp2). The fused lasso signal approximator usually takes less than 10 iterations to converge [26]. The number
of iterations in the accelerated gradient method to obtain an ǫ solution is O(1/

√
ǫ). Thus, the total complexity

of each iteration is O(Kp2/
√
ǫ), and the complexity of each round (update all p columns/rows) of Algorithm 2 is

O(Kp3/
√
ǫ).

B. Proof of Lemma 2

We split the problem into three cases.

• Case 1: −3λ1 ≤ y1 + y2 + y3 ≤ −λ1

Eq.(6) can be rewritten as

−λ1 − y1 ≤ a1 ≤ 2λ1 + y2 + y3,−2λ1 − y1 − y2 ≤ a2 ≤ λ1 + y3. (24)

Eq.(7) can be written as
−2λ1 − y1 − y3 ≤ a1 − a2 ≤ λ1 + y2. (25)

Based on Eq.(24), we have

−2λ1 − y1 − y3 ≤ a1 − a2 ≤ 4λ1 + y1 + 2y2 + y3. (26)

From Eq.(24), we can see that the region of Eq. (24) is a square since 2λ1 + y2 + y3 + (λ1 + y1) =
λ1+y3+(2λ1+y1+y2). Since 4λ1+y1+2y2+y3 ≥ λ1+y2 and −2λ1−y1−y3 = −2λ1−y1−y3, Eqs. (25)
and (26) intersect. Moreover, the region of Eq.(25) belongs to that of Eq.(26), and the width of the region
of Eq.(25) is half of that of Eq.(26), which means that the diagonal BC belongs to the region of Eq.(26).
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• Case 2: −λ1 ≤ y1 + y2 + y3 ≤ λ1

Eq.(6) can be rewritten as

−λ1 − y1 ≤ a1 ≤ λ1 − y1,−λ1 + y3 ≤ a2 ≤ λ1 + y3. (27)

Eq.(7) can be written as
−λ1 + y2 ≤ a1 − a2 ≤ λ1 + y2. (28)

Based on Eq.(27), we have
−2λ1 − y1 − y3 ≤ a1 − a2 ≤ 2λ1 − y1 − y3. (29)

Similar to Case 1, we can obtain the same conclusion as in Case 1.

• Case 3: λ1 ≤ y1 + y2 + y3 ≤ 3λ1

Eq.(6) can be rewritten as

−2λ1 + y2 + y3 ≤ a1 ≤ λ1 − y1,−λ1 + y3 ≤ a2 ≤ 2λ1 − y1 − y2. (30)

Eq.(7) can be written as
−λ1 + y2 ≤ a1 − a2 ≤ 2λ1 − y1 − y3. (31)

Based on Eq.(30), we have

−4λ1 + y1 + 2y2 + y3 ≤ a1 − a2 ≤ 2λ1 − y1 − y3. (32)

Similar to Case 1, we can obtain the same conclusion as in Case 1.

C. Graph of ADHD-200

Figure 8 shows a subgraph of ADHD-200 identified by FMGL with the screening rule.

Figure 8: A subgraph of ADHD-200 identified by FMGL with the proposed screening rule. The grey
edges are common edges among the three graphs; the red, green, and blue edges are the specific edges
for TDC, ADHD-I, and ADHD-C respectively.

14


	1 Introduction
	2 Fused multiple graphical lasso
	3 The screening rule for fused multiple graphical lasso
	4 Experimental results
	4.1 Convergence
	4.2 Simulation
	4.2.1 Screening rule
	4.2.2 Sufficiency when K3
	4.2.3 Stability

	4.3 Real data
	4.3.1 ADHD-200
	4.3.2 FDG-PET


	5 Conclusion

