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Abstract— We derive a probability distribution, confidence
intervals and statistics of the quality (Q) factor of an arbitrarily
shaped mode-stirred reverberation chamber, based on ensemble
distributions of the idealized random cavity field with assumed
perfect stir efficiency. It is shown that Q exhibits a Fisher–
Snedecor F-distribution whose degrees of freedom are governed
by the number of simultaneously excited cavity modes per stir
state. The most probable value ofQ is between a fraction2/9
and 1 of its mean value, and between a fraction4/9 and 1 of its
asymptotic (compositeQ) value. The arithmetic mean value is
found to always exceed the values of all other theoretical metrics
for centrality of Q. For a rectangular cavity, we retrieve the
known asymptotic Q in the limit of highly overmoded regime.

I. I NTRODUCTION

To date, the study of mode-tuned or mode-stirred rever-
beration chambers (MT/MSRCs) – i.e., multi-mode cavity
resonators furnished with a ’stirring’ mechanism that produces
time-varying excitation and/or boundary conditions – has
mainly focused on the properties of the random electromag-
netic (EM) field. Probability density functions (PDFs) for
idealized and imperfect fields, including EM boundary-value
problems [1], [2], were calculated and compared with mea-
surements or simulations. A natural extension is the stochastic
characterization ofintrinsic EM parametersof instrumentation
and devices subjected to random fields, e.g., wave and input
impedances [3]–[6], antenna parameters [7], [8], etc.

One of the fundamental parameters of a MT/MSRC is its
quality (Q-) factor [8]–[21]. In the simplest model,Q is
defined by a constant single value, as the ratio of the stir-
averaged1 stored energy〈U〉 to the averaged dissipated power

1The fact that the total energies stored and dissipated vary with changing stir
state has been validated by experiments, which show that themeasurement of
S11 at a fixed frequency and source powerPs exhibits random fluctuations
with changing stir state. Therefore, the net forward powerPTx = (1 −
|S11|2)Ps injected into the MT/MSRC fluctuates accordingly.

〈Pd〉, multiplied by the excitation frequency2 ω [10]–[13]:

Qeff(ω)
∆
= ω

〈U(ω)〉
〈Pd(ω)〉

. (1)

The definition of this so-called ‘effective’ or ‘composite’
quality factor is inspired by the corresponding notion of modal
Q for a single eigenmode of a static resonant cavity, i.e.,

Qmnp(ωmnp)
∆
= ωmnp

Umnp(ωmnp)

Pd,mnp(ωmnp)
, (2)

in which ωmnp, Umnp and Pd,mnp take constant values for
a selected mode specified by modal indicesm, n, p. In a
MT/MSRC, however,U andPd fluctuate quasi-randomly as a
function of stir stateτ . Hence, defining an instantaneous value
of Q at eachτ as

Q(ω, τ)
∆
= ω(τ)

U(ω, τ)

Pd(ω, τ)
, (3)

this Q is now arandomly fluctuatingquantity with an associ-
ated PDFfQ(q), correlation functions, etc., when considered
across allτ . For simplicity of notation, we shall further omit
indicating the dependencies onω andτ in (3).

Compared to (1), the definition (3) is closer in spirit to
the original concept ofQmnp. Firstly, (3) involves a ratio
of quantities that exist physically at eachτ , as opposed to
the formal ratio of mean values in (1) that exist only in a
τ -averaged, i.e., mathematical sense. Secondly, because of
propagation of uncertainties, any disregard for the random
fluctuations ofU and Pd results in an underestimate of the
level of fluctuation of other stochastic EM quantities that
depend explicitly or implicitly onQ, in particular the standard
deviations of the EM fieldsσ

E
′(′)
α

andσ
H

′(′)
α

(cf. (27)), which
are of fundamental importance.

2In general, the spectral power densityg(ω) and, hence, the spectrally
averaged angular centre frequencyω0 =

∫

∞

0
ωg(ω)dω/

∫

∞

0
g(ω)dω vary

as a function of stir state [22]. Therefore, spectral and ensemble averagings
are strictly needed to replaceω in (1) by 〈ω0〉. For narrowband excitation
or nondispersiveg(ω), the fluctuations ofω0 are usually negligibly small,
whence ensemble and spectral averaging ofω can then be omitted.
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An alternative but more restrictive approach to quantifying
the uncertainty ofQ was developed previously in [20]. There,
second-order statistical characterization ofQ was performed
based on spectral and ensemble averaging ofQmnp for TE and
TM eigenmodes. This permitted a calculation of the meanµQ

and standard deviationσQ for a rectangular cavity in which
wall stirring causes modal perturbations.

In the present paper, the use of sampled instantaneous (as
opposed to averaged) values ofQ allows for the calculation of
the complete PDFfQ(q). This provides a more comprehensive
characterization compared to mere first- and second-order
moments. For simplicity, the analysis is based onensemble
distributions of U and Pd for ideal Gaussian EM fields,
as opposed to their sampling distributions [23], [24]. This
implicitly assumes that a sufficiently large and theoretically
infinite number (N ) of statistically independent stir states for
the field is generated by the stir process (N → +∞). It
will be found thatfQ(q) then satisfies a Fisher–Snedecor F-
distribution, whose two numbers of degrees of freedom (DoF)
both depend on the number (M ) of simultaneously excited
cavity modes per stir state. WhenM increases,fQ(q) evolves
from a positively skewed PDF for lowM toward a Gaussian
(normal) PDF, accompanied by a reduction in mean value and
absolute or relative spread ofQ.

The results apply generally to cavities with arbitrary ge-
ometries, including irregular shapes, but will be illustrated
with explicit expressions for simple (integrable) rectangular
cavities. Except in Sec. III-D, we do not distinguish between
mode-tuned and mode-stirred methods of operation, insofar
as only quasi-static fields are considered. Anexp(jωt) time
dependence is assumed and suppressed throughout. Different
types of averaging will be performed: we shall use the
notations 〈·〉V , 〈·〉S and 〈·〉 to represent spatial averaging
with respect to the volumeV , surface areaS, and ensemble
averaging with respect to cavity stir statesτ , respectively. The
ensemble average assumes equalV and S throughout, as a
prerequisite for constant average spectral mode density, and
only involves perturbations of shape or aspect ratio(s) across
different realizations.

II. U NSTIRRED CHAMBERS WITH SINGLE-MODE

EXCITATION : DETERMINISTIC U AND Pd

For the purpose of establishing definitions and extending
the analysis later to stirred multi-mode cavities, we briefly
review some basic results for theQ of a single eigenmode
in a static (unstirred) cavity at its fixed angular resonance
frequencyωmnp. In this case, the modalQmnp is single-
valued. In an unstirred cavity, the local electric and magnetic
modal amplitudesE0 andH0 at any locationr insideV are
time invariant. For a lossless linear time-invariant isotropic
homogeneous medium filling the cavity interior,D = ǫ0E and
B = µ0H , whence the electric and magnetic stored energies
Ue andUm are proportional to the spatial integrals of the local
intensities|E(r)|2 and |H(r)|2, respectively. For steady state
excitation,Ue = Um to first approximation at sufficiently high
frequencies. The total stored energyU = Ue + Um can thus

be expressed as

U =
1

2

∫

V

[

E(r) · ∂D
∗(r)

∂t
+H(r) · ∂B

∗(r)

∂t

]

dV

=
1

2

∫

V

[ǫ0
2
|E(r)|2 + µ0

2
|H(r)|2

]

dV

=
µ0

2

∫

V

|H(r)|2dV ∆
=

µ0 V

2
〈|H |2〉V , (4)

where an asterisk denotes complex conjugation.
To obtain a corresponding expression forPd, the relevant

quantity is the tangential magnetic fieldHt at a location
rS on the cavity’s interior boundary surfaceS = ∂V with
unit local inward surface normal1n(rS). Conduction loss
in the wall yields a nonvanishing tangential electric field
Et = Rw(Ht × 1n) 6= 0 at S that can be envisaged as
a surface layer of magnetic current produced byHt as an
equivalent boundary source and dissipated byS, in addition
to the sheet of surface charge produced by the normal electric
field in a lossless cavity. The time-averaged absorbed energy
is the spatially integrated real part of the normal component
of the local Poynting vector,Sn = Re[1n · (E ×H∗)]/2, i.e.,

Pd =
Rw

2

∫

S

|1n(rS)×H(rS)|2 dS

=
1

2σwδw

∫

S

|Ht(rS)|2 dS
∆
=

S

2σwδw
〈|Ht|2〉S , (5)

in which Rw
∆
= 1/(σwδw) =

√

ωµw/(2σw) represents the
per-unit area surface resistance of the interior cavity wall,
δw

∆
=
√

2/(ωµwσw) is its skin depth, and whereµw = µw,rµ0

and σw are its permeability and conductivity, respectively.
Substituting (4) and (5) into (3) yields [25, sec. 10.4]

Q =
2

µw,rδw

∫

V |H(r)|2dV
∫

S
|Ht(rS)|2dS

=
2V

µw,rδw S

〈|H |2〉V
〈|Ht|2〉S

. (6)

If only one resonant mode is excited, then the local field
amplitudes throughoutV are characterized by a single modal
amplitude valueHmnp,0, whence (6) can then be written as

Q =
2

µw,rδw

|Hmnp,0|2
|Hmnp,t,0|2

∫

V |φ
mnp

(r)|2dV
∫

S
|φ

mnp
(rS)|2dS

, (7)

where φ
mnp

is the real-valued magnetic eigenvector, and
Hmnp,(t,)0 is its associated complex-valued amplitude.

As an example, consider a rectangular cavity withV =
ℓxℓyℓz with a single excited mode whose local amplitude
|Hmnp(r)| at r = x1x + y1y + z1z can be expressed as

|Hmnp(r)| = |Hmnp,0|
{

sin(kmnp,xx)
cos(kmnp,xx)

}

·
{

cos(kmnp,yy)
sin(kmnp,yy)

}

·
{

sin(kmnp,zz)
cos(kmnp,zz)

}

.(8)

A similar expression for the electric fieldEmnp(r) with ampli-
tude |Emnp,0| applies. Thus, the amplitudes are unmodulated
(sinusoidal or constant) with respect tor, in all directions.
For a transverse mode, any valid combination in (8) consists
of two spatial harmonic functions along two orthogonal di-
rections1α and 1β combined with the unit function in the
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third direction1γ (i.e., cos(kmnp,γγ) = 1), whereα, β, γ ∈
{x, y, z}. However, in MT/MSRCs, we are primarily interested
in overmoded conditions at high frequencies, where the vast
majority of modes are hybrid. For a hybrid mode satisfying
the EM boundary conditions, a valid combination in (8) is
the product of three such harmonic functions. Substituting
(8) into (4) and (5), together with

∫ ℓα
0

sin2(kmnp,αα)dα =
∫ ℓα
0

cos2(kmnp,αα)dα = ℓα/2, we obtain for a rectangular
cavity with conducting boundaries

U =
µ0 V

16
|Hmnp,0|2, Pd =

S

8

√

ωµw

2σw
|Hmnp,t,0|2, (9)

in which the difference between the factors1/16 and 1/8
results from the fact that a hybrid mode generally exhibits
three magnetic field components for the interior field, whereas
only two nonvanishing tangential components of this field exist
on the surface. For a transverse mode, the factors1/16 and
1/8 in (9) are replaced by1/8 and1/4 (or possibly1/2, but
with vanishingly small contribution, when the cavity surface is
locally perpendicular to the transverse direction of the mode),
respectively. From (3) and (9), it follows that

Q =
V

µw,rδwS

|Hmnp,0|2
|Hmnp,t,0|2

. (10)

For any single mode in a rectangular unstirred cavity,
Hmnp,0 and Hmnp,t,0 are constant with respect to location
and time. In nonrectangular (e.g., cylindrical) cavities,the
eigenmodes no longer consist of spatial harmonics. For non-
separable geometries, they may not even exist in closed-form
expressions. Hence the ratio〈|H(r)|2〉V /〈|Ht(rS)|2〉S is in
general different from|Hmnp,0(r)|2/(2|Hmnp,t,0(rS)|2), in
which case (10) is then multiplied by a shape dependent factor
h (cf. (58)).

III. STIRRED CHAMBERS: QUASI-RANDOM U AND Pd

A. Single vs. multimode excitation

When invoking mode tuning or mode stirring, the eigen-
modes and thereforeQ evolve with stir stateτ . The charac-
terization in Sec. II for a single mode is then only meaningful
in a statistical sense. We denote{E(τ |r)} and{H(t)(τ |r(S))}
to represent ensembles of sample sets ofN stir states of the
field at arbitraryr(S). These stirred local fields vary randomly
in spatial orientation, magnitude and phase as a function
of τ . Generally,H(τ |r) and Ht(τ |rS) have three and two
nonzero complex-valued (in-phase and quadrature) rectangular
componentsHα (α = x, y, z), respectively. Hence, if at anyτ
only one cavity mode is excited that is randomly perturbed by
the stir process (i.e., random single-mode excitation), then the
local fieldsH(τ |r) andHt(τ |rS) in (4)–(6) are nowrandom
processes with six and four DoF, respectively.

In practical (non-superconducting) overmoded MT/MSRCs,
significant multimode excitation occurs typically. Spectral
overlap of nondegenerate modes having nonzero absorption
bandwidths causes intermodal coupling, such that even a
single-frequency (CW) source then excites simultaneously
several modes with differentωmnp. Alternatively, the spec-
trum of a wide-band source may encompass severalωmnp

of the MT/MSRC, so that corresponding (non)overlapping
modes may be simultaneously excited (e.g., multitones in a
multimode laser or in certain communications protocols). Let
the number of simultaneously excited modes per stir state
be denoted byM . A physical estimation of the value ofM
is given in Appendix??. For arbitraryτ , the cavity field is
the resultant of the weighted superposition ofM participating
modes (random walk model), producing a spatial modulation
of the amplitudesE0 andH(t,)0 across the cavity’s interior. If
the structure of the cavity is sufficiently irregular atω, then
this spatial distribution is quasi-random. This (static) spatial
variation is additional to the (dynamic) fluctuations of the
local field caused by stirring and yields a 4-D spatio-temporal
random field. For spatially random fields, (4) and (5) remain
valid in a statistical sense, i.e., at arbitraryτ . Thus, for a wall-
stirred rectangular cavity, we now have instead of (9)–(10),

U(τ) =
µ0 V

16
〈|H0(τ)|2〉V , (11)

Pd(τ) =
S

8

√

ωµw

2σw
〈|Ht,0(τ)|2〉S , (12)

Q(τ) =
V

µw,rδwS

〈|H0(τ)|2〉V
〈|Ht,0(τ)|2〉S

. (13)

Each individual mode acts as a ‘channel’ for storage and
dissipation of energy and increases by one unit the number of
ways in which the value of each Cartesian component of the
resultant field phasor can be obtained. The DoFs of the spa-
tially integrated field intensities leading toU andPd increase
accordingly. For each mode,Emnp andHmnp are physically
(i.e., deterministically) related via a wave impedance dyadic.
Following (4)–(5), the increase of the number of DoF ofU by
each mode is therefore the same as forUe andUm individually,
i.e., six, whereas the corresponding increase forPd is four.

Finally, assuming that the stirring process is sufficiently
efficient to be capable of generating a very large (theoretically
infinite) value ofN that produce independent and identically
distributed ideal GaussianH(t) (i.e., N → +∞) and as-
suming that wide-sense ergodicity of the fields holds (i.e.,
µH(r|τ) = µH(τ |r) and σH(r|τ) = σH(τ |r)), such that the
spatial distributions of eachH(t,)α is identical to its ensemble
(i.e., stir) distribution,U then exhibits approximately3 a χ2

6M

PDF, andPd has approximately4 a χ2
4M PDF across the stir

states and cavity interior, i.e., (34) and (35) hold withr = 3M
ands = 2M , respectively.

In practice, the values ofM andN evaluated for different
stir processes are often strongly positively correlated. For small
M , the practical stirring performance may then be significantly
compromized. If the assumptionN → +∞ becomes unsus-
tainable, then the use of BesselK sampling distributions for

3The incoherent superposition ofM participating modes with equalχ2

6

energy distributions presumes that energy is equally partitioned across these
modes. For overlapping modes, this is only approximately true because the
partitioning depends on the source’s spatial location and on the specific
spectral distances of theωm′n′p′ relative to the excitation frequencyω. They
should be Lorentz weighted accordingly in the superposition.

4On S, the nonorthogonality of irrotational and solenoidal magnetic eigen-
vectors (i.e., solutions associated with boundary conditions of magnetic type)
causes the total power loss to deviate from the sum of the power losses of
individual modes [25, Sec. 10.4]. This nonorthogonality results in the DoF
2s to be somewhat less than4M .



4

E, H(t), U andPd|U [24] offers an appropriate framework for
characterizingfQ(q) [27]. In practice, the caseM = 1 often
(although not exclusively) involves excitation at wavelengths
that are not small compared to cavity dimensions, while also
the modal overlap is small. In this case, the stir process is
also typically (but not inevitably) less efficient, whence the
χ2
6 andχ2

4 PDFs ofU(τ |r) and Pd(τ |rS)|U(τ |r) and, hence,
the PDF (14) are then only approximately valid.

Although we shall further focus on the case whereM
is a constant integer with respect to stir state, one may
envisage a situation where its value could fluctuate as a
function of τ . In this case, we can estimateM by its mean
value

∑N
τ=1M(τ)/N , which may be fractional, yielding a

generalization ofχ2
4M andχ2

6M PDFs to gamma PDFs. Values
of M smaller than unity represent the case where, on average,
less than one mode per stir state is being excited.

B. Probability density function and statistics ofQ

Regarding the relationship betweenU andPd, the boundary
field Ht(rS) is deterministically related to the interiorH(r),
because of field continuity and EM boundary conditions.
Therefore,U andPd arenot statistically independent. Never-
theless, their joint PDF can always be expressed as the product
of the marginal PDF ofU and the conditional PDF ofPd

givenU , viz., fU,Pd
(u, pd) = fU (u)fPd|U (u, pd|u). Based on

this factorization,fQ(q) is derived in Appendix?? as the ratio
of a χ2

2r distributedωU and aχ2
2s distributedPd, for general

values ofr ands, resulting in a Fisher–Snedecor F-distribution
with (2r, 2s) DoF (cf. eqs. (37), (40), (41), (46) and (47)).
Assigningr = 3M ands = 2M , the PDF ofQ is then

fQ(q) =

(

2M−1
3M 〈Q〉

)2M

B(3M, 2M)

q3M−1

(

q + 2M−1
3M 〈Q〉

)5M
, (14)

valid for M > 1/2, representing a F(6M, 4M) PDF. Figure 1
shows (14) for selected values ofM . For M ∼ 1, significant
positive skewness and smaller kurtosis are observed, whereas
for M → +∞, the PDF evolves to Gaussian normality.

0 1 2 3
0

0.5

1

1.5

2

q / 〈Q〉

f Q
(q

) 
× 

〈Q
〉 

 

 
M=1
M=2
M=5
M=10
M=20

Fig. 1. Scaled PDFfQ(q) of normalizedQ (i.e., in units 〈Q〉 =
[3M/(2M − 1)][(hV/(µw,rδwS)]) for selected values ofM .

The (arithmetic) mean value, standard deviation and coeffi-

cient of variation for (14) follow from (43)–(45) as

µQ ≡ 〈Q〉 = 3M

2M − 1

hV

µw,rδwS
, (M > 1/2) (15)

σQ =

√

3M(3M + 1)

(2M − 1)(2M − 2)
−
(

3M

2M − 1

)2
hV

µw,rδwS
,

(M > 1) (16)

νQ =

√

(2M − 1)(3M + 1)

3M(2M − 2)
− 1, (M > 1). (17)

Their corresponding limit expressions forM ≫ 1 are

µQ → 3

2

(

1 +
1

2M

)

hV

µw,rδwS
(18)

σQ →
√

15

8M

hV

µw,rδwS
(19)

νQ →
√

5

6M
. (20)

The dependencies of (15)–(20) onM are shown in Fig. 2. For
M → +∞, the mean〈Q〉 reduces asymptotically to half its
value forM = 1, i.e., to

Q∞
∆
=

3hV

2µw,rδwS
. (21)

The residual mean∆〈Q〉/Q∞
∆
= (〈Q〉 − Q∞)/Q∞ =

1/(2M − 1) is positive and asymptotically inversely pro-
portional toM . For h = 1, the result (21) was previously
obtained [10], [13], [20], [26], whereas the finding that〈Q〉 =
2Q∞ when M = 1 agrees with the findings in [15]. This
demonstrates that consistent asymptotic results are retrieved.
In Sec. III-C, 〈Q〉 will be compared to other measures of
centrality forQ. For M = 1, the σQ and νQ are undefined
(σQ, νQ → +∞), whereas forM → +∞ they asymptotically
approach zero proportionally to1/

√
M , i.e., more slowly than

∆〈Q〉/Q∞. In summary, forM → +∞, the limit PDF ofQ
is a normal distributionN (µQ, σQ), i.e.,

fQ(q) ∼ N
(

(

1 +
1

2M

)

Q∞,

√

5

6M
Q∞

)

. (22)

Parenthetically, ifM 6≫ 1 then the ratio of the averages
〈ωU〉 and〈Pd|U〉 is substantially different from the averaged
ratio 〈ωU/(Pd|U)〉. Indeed, forM = 1 with (10), (15) and
(39), i.e.,〈|H0|2〉 = 6σ2

H
′(′)
α

for a χ2
6 distributed|H0|2 while

〈|Ht,0|2〉 = 4σ2

H
′(′)
α

for a χ2
4 distributed|Ht,0|2, we arrive at

〈ωU〉
〈Pd|U〉 =

hV

µw,rδwS

〈|H0|2〉
〈|Ht,0|2〉

=
3 hV

2µw,rδwS
(23)

=
1

2

〈

ωU

Pd|U

〉

, (M = 1). (24)

In view of (21), this result shows that replacing〈ωU/(Pd|U)〉
by 〈ωU〉/〈Pd|U〉 as in (1) is an approximation, but justifiable
whenM ≫ 1, e.g., in overmoded regime. In fact, comparing
(1), (21) and (23) using (39) for generalM shows thatQeff ≡
Q∞ for anyM . Thus, the definition of compositeQeff neglects
the effect ofM on the fluctuation and value ofQ.
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Fig. 2. Mean, residual mean, standard deviation and coefficient of
variation ofQ as a function ofM , normalized byQ∞.

As an alternative toσQ, the spread ofQ can also be
expressed by anη%-confidence interval forQ. For a chosen
confidence levelη, the boundariesqℓ and qu of this interval
are calculated by inverting the cumulative distribution function
(CDF) (48)–(50), i.e., by numerically solving

FQ(qℓ,u) ≡ 1− Iξℓ,u(2M, 3M) =
1± (η/100)

2
, (25)

whereIξℓ,u(·, ·) is a regularized incomplete beta function with

ξℓ,u =

(

1 +
3M

2M − 1

qℓ,u
〈Q〉

)−1

. (26)

Figures 3a and 3b show these boundaries normalized by the
median ofQ (cf. (30)–(31)) or by〈Q〉, as a function ofη or
M , respectively. The interval width rapidly increases withη
most prominently whenM ∼ 1 and η > 90. For largerM ,
the spread is considerably reduced because of the effect of
aggregation of modes, which can also be achieved through
multiple stirring mechanisms, multiple sources (antennas),
increased EM losses, etc. ForM = 1, 3, 10 and 100,
the 95%-confidence intervals forQ/〈Q〉 are [0.080, 4.599],
[0.301, 2.590], [0.545, 1.713] and[0.833, 1.192], respectively.

The standard deviations of the complex-valued analytic EM
fields E = E′ − jE′′ andH = H ′ − jH ′′ can be estimated
on the premise that, in steady state, the dissipated power
equals the transmitted power, i.e.,Pd(τ) = PTx(τ), due to
conservation of energy. With (5) and (39) forn ≡ s = 2M , it
follows that 〈Pd|U〉 = MSσ2

H
′(′)
α

/2, whence

σ2

E
′(′)
α

=
2σwδwη

2
0

M S
〈PTx〉, σ2

H
′(′)
α

=
2σwδw
M S

〈PTx〉, (27)

where η0
∆
=
√

µ0/ǫ0 is the stir averaged5 input impedance
of the MT/MSRC. Thus, like forQ, the standard deviation
of the stirred EM field decreases proportionally to1/

√
M .

This is a result of intrinsic averaging of fields caused by the

5More accurate estimates forσ2

E
′(′)
α

andσ2

H
′(′)
α

are obtained by incorpo-

rating the random fluctuations of the input impedance dyadicZ(τ) [3]–[6].
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Fig. 3. Upper (qu) and lower (qℓ) boundaries ofη%-confidence
intervals ofQ: (a) normalized bymed(Q), as a function of confidence
level η%, for selected values ofM ; (b) normalized by〈Q〉, as a
function ofM , for 95%, 99% and99.5% confidence levels.

simultaneous excitation of modes. For the total (3-D vector)
fields,σ2

E′(′) = 3σ2

E
′(′)
α

andσ2
H′(′) = 3σ2

H
′(′)
α

.

C. Other measures of location forQ

Because of the primary practical interest in the central value
of Q, we explore a few other measures of location (centrality)
as alternatives to the arithmetic mean〈Q〉. Compared to such
other metrics,〈Q〉 represents the ‘centre of mass’ of the PDF
and minimizes the expected mean squared deviation of the
sample values ofQ. The 〈Q〉 is known to provide the most
stable measure of centrality when comparing values obtained
from different samplesets of data. However, it is not the
optimal measure of centrality forensembledata, particularly
when the PDF is significantly skewed, as in the case of
relatively smallM . In the latter case, the mode (for unimodal
data) and the median are more representative parameters.

The generalized mean〈Q〉a ∆
=
(∫∞

0
qafQ(q)dq

)1/a
can be

calculated with the aid of (42) and (21) as

〈Q〉a =
2

3

(

Γ(3M + a)Γ(2M − a)

Γ(3M)Γ(2M)

)1/a

Q∞, (28)
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where a is a chosen real parameter. The particular cases
a = −1, 0, 1 and 2 correspond to the harmonic, geometric,
arithmetic and RMS averages, respectively. Figure 4 shows
〈Q〉a as a function ofa for selected values ofM , after
normalization with respect to〈Q〉 ≡ 〈Q〉1. For anya < 1,
〈Q〉a is always smaller than〈Q〉, a fortiori for smallM . For
M → +∞, all 〈Q〉a merge to〈Q〉 irrespective ofa.

−2 −1 0 1 2

0.5

1

1.5

2

a

〈Q
〉 a / 

〈Q
〉

 

 
M=1
M=2
M=5
M=10
M=20

Fig. 4. Generalized mean〈Q〉a normalized by arithmetic mean
〈Q〉 ≡ 〈Q〉1 as a function ofa, for selected values ofM .

The statistical mode is the most probable (or most frequent)
value among the values of the population (or sample data set),
i.e., for {Q(τ)} across one rotation of a mode stirrer. Solving
d[fQ(q)]/dq = 0 using (14), the mode-to-mean ratio is

mod(Q)

〈Q〉 =

(

1− 1

3M

)(

1− 2

2M + 1

)

→ 1− 4

3M
. (29)

Another measure of centrality is the median, defined as
med(Q)

∆
= F−1

Q (0.5) and obtained from (48)–(50) by solving

Iξm(2M, 3M) =
1

2
, (30)

where

ξm
∆
=

(

1 +
3M

2M − 1

med(Q)

〈Q〉

)−1

. (31)

A numerical approximation ofmed(Q) is obtained from
(28) for a = −0.065. Unlike 〈Q〉, the median minimizes
the expectedabsolutedeviation. It is a robust measure of
centrality, being less sensitive to the shape offQ(q). This
is particularly attractive because of the cited difficulties of
characterizing the precise PDFs ofU andPd whenM > 1.

Comparing these metrics, for anyM > 1/2, the ordering

mod(Q) ≤ Q∞ ≤ med(Q) ≤ 〈Q〉 ≤ QRMS (32)

applies, together withmod(Q) < 〈Q〉a < Q∞ when−1 <
a < −0.185, Q∞ < 〈Q〉a < med(Q) when−0.185 < a <
−0.065, andmed(Q) < 〈Q〉a < 〈Q〉 when−0.065 < a < 1.

Figure 5 shows that the ratiomod(Q)/〈Q〉 increases from
0 whenM → 1/2, over2/9 atM = 1, to 1 whenM → +∞.
With the same marker values ofM , this corresponds to
mod(Q)/Q∞ increasing from1/6 over 4/9 to 1. The ratio

med(Q)/〈Q〉 increases from0 over 0.5308 to 1, whereas
med(Q)/Q∞ decreases from1.135 over 1.062 to 1.

In practice, experimentally determined values ofQ are
nearly always reported to be considerablysmaller thanQeff ≡
Q∞, typically by a factor0.2 or 0.5 to 1 [7], [9], [28]. On
account of (32), choosingmod(Q) or a fortiori 〈Q〉(a<−2) as
an a priori theoretical estimate may offer betterad hocquan-
titative agreement than〈Q〉 andmed(Q). Physically, however,
additional loss mechanisms are at the root of loweringQ [10].

10
0

10
1

10
2

0

0.5

1

M

mod(Q)/〈Q〉
med(Q)/〈Q〉
mod(Q)/Q∞
med(Q)/Q∞

Fig. 5. Mode-to-mean and median-to-mean ratiosmod(Q)/〈Q〉,
med(Q)/〈Q〉, mod(Q)/Q∞ andmed(Q)/Q∞ as functions ofM .

D. Q in mode-stirred vs. mode-tuned chambers

The previous analysis assumed quasi-static operation,
through sufficiently slow stepping or scanning (mechanicalor
electronic). General considerations of mode-stirred vs. mode-
tuned operation focusing on acquisition time and nonstationary
effects were given in [21], [22], [29]–[32]. Here, we comment
on aspects of mode stirring relating toQ and its PDF, and we
restrict ourselves merely to some general remarks.

In quasi-stationary MT/MSRCs, the rate of change of the
cavity field between stir states is small compared to the
rate of energy fill and dissipation, whence the values of
U(r, τ) andPd(rS , τ) remain unaffected by this rate. Quasi-
stationary mode stirring may results in purely local uniform
temporal averaging of the fields across an interval of stir
states[0, T ] varying with time. This averaging does obviously
not affect the spatial averagings ofU(r|τ) and Pd(rS |τ),
yielding again (11) and (12). Ensemble averaging ofU(τ) and
Pd(τ) across[0, T ] does not affect〈U(τ)〉 and〈Pd(τ)|U(τ)〉,
whereas bothσ2

U(τ) andσ2
Pd(τ)|U(τ) scale by thesamevariance

functionγT in quasi-stationary conditions [22]. Consequently,
the ratio σU/σPd|U and hencefQ(q) remain unaffected by
local averaging. However, the existing coupling between TE
and TM modes caused by ohmic losses is further increased
by continuous rotation, albeit as a second-order effect of
velocity of rotation [33], [34]. In turn, this has a positivebut
second-order effect onPd. Recent measurements of〈Q〉 in
an overmoded MSRC [35] appear to support these findings,
including a marginal but systematic decrease of〈Q〉 observed
for increased stir speed using the mean power approach.

For nonstationary MT/MSRCs, the situation is more in-
tricate. Expanding wave fronts emanating from the source



7

impinge and get partially absorbed by the cavity walls, after
traversing the cavity interior. Therefore, the cavity fill and
dissipation processes per stir state are not synchronized and
may be affected differently during nonstationary stirringin a
resonant environment, as boundary and excitation conditions
vary in a rapid manner. This situation is to be avoided, in view
of the definition (3) requiring matching (i.e., comparable)pairs
of U(τ) with Pd(τ). Hence, for a nonstationary MSRC, one
may need recourse to the physically less meaningful definition
(1), thereby using nonuniform weighting [36].

IV. CONCLUSION

In this paper, we derived a PDF for theQ of a MT/MSRC,
with the number of simultaneously excited cavity modes (M )
as a distribution parameter. The analysis assumed idealχ2

ensemble distributions for stored energy and dissipated power,
associated with unbiased circular Gaussian distribution of the
stirred cavity field, in space and time (stir domain). Perfectly
efficient mode stirring, i.e., a theoretically unlimited number
of statistically independent stir states of the local field (N →
+∞), was also assumed but can be relaxed by using sampling
distributions to replace the ensemble distributions. In practice,
this condition onN is usually more closely achieved at short
wavelengths (λ ≪ V 1/3). Also, strong positive correlation typ-
ically exists betweenM on N in practical stirring techniques,
which may leave the expressions forfQ(q) to be somewhat
approximate in practice whenM ∼ 1.

With these idealizations,Q was found to exhibit a Fisher–
Snedecor F(6M, 4M) PDF, given by (14). For generalM , its
arithmetic mean value〈Q〉, standard deviation and coefficient
of variation were obtained in (15)–(17). ForM → +∞, the
PDF approaches a Gauss normal limit PDF (22). Confidence
intervals forQ were calculated numerically from (25)–(26)
and indicate that the spread ofQ can be considerable, even
when M ≫ 1. Expressions for the standard deviations of
the EM fields were obtained in (27). Alternative measures
of centrality (viz., the generalized mean (28), mode (29) and
median (30)–(31)) rank according to (32), producing values
that are always smaller than〈Q〉, for anyM but especially for
M ∼ 1. Specifically, the most probable and most robust central
values ofQ are smaller than〈Q〉 by factors ranging from2/9
and 0.5308 (for M = 1) to 1 (for M → +∞), respectively.
Compared to the mean and especially the median, the mode
and generalized mean with indexa < −2 agree quantitatively
with typical measured values ofQ that are much lower than
a priori estimated〈Q〉.

Regarding extensions of the present analysis, the nonorthog-
onality of the magnetic eigenvectors on the boundary in case
of multi-mode excitation is known to affect the total dissipated
power. This requires characterization and quantification in
the context of dynamic cavities. Generalization to nonzero
excitation bandwidths is required to quantify the resulting
increase of the uncertainty ofQ. The effect of the non-
integrability (‘complexity’) of real MT/MSRC enclosures –
including the geometry of a mode stirrer – onh in (58)
and the effect of elongation or flattening of the cavity shape
on fQ(q) deserve further attention. A rigorous generalization

to fluctuatingM during stirring (cf. Sec. III-A), caused by
entrance and exit of modes in the cavity bandwidth [37],
is of interest. The PDFfM (m) is expected to depend on
the eigenfrequency spacing statistics [4] and their dynamics,
which, in turn, depend on the integrability of the cavity shape.
The additional uncertainty caused by fluctuatingM is expected
to increase the width of the confidence interval ofQ. Finally,
the (auto)correlation function ofρQ(∆τ) provides insight into
the rate of fluctuationdQ/dτ , i.e., the stir sensitivity ofQ(τ).
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APPENDIX

The PDF ofQ
∆
= ωU/Pd can be calculated from the joint

PDF6 fωU,Pd
(ωu, pd) of ωU andPd ≡ ωU/Q, as

fQ(q) =
1

q2

∫ +∞

0

fωU,Pd

(

ωu,
ωu

q

)

|ωu| d(ωu), (33)

in which fωU,Pd
(ωu, pd) = fωU (ωu)fPd|ωU (pd|ωu), with

fY (y) = fU (u = y/ω)/|ω| for the auxiliary variateY
∆
= ωU

and fPd|ωU (pd|ωu) = fPd|U (pd|u) for deterministicω. For
ideal Gaussian interior and surface fields, the associated energy
densityU and conditional dissipated powerPd|U exhibit χ2

2r

andχ2
2s PDFs, respectively, i.e., in self-sufficient form [22]

fU (u) =
rr/2

Γ(r)σr
U

ur−1 exp

(

−
√
r

σU
u

)

(34)

fPd|U (pd|u) =
ss/2

Γ(s)σs
Pd|U

pd
s−1 exp

(

−
√
s

σPd|U
pd

)

, (35)

with which (33) reduces, with the aid of [38, (3.351.3)], to

fQ(q) =
ω

q2

∫ +∞

0

fU (u)fPd|U

(

ωu

q

)

u du (36)

=
1

B(r, s)

(
√

s

r

ωσU

σPd|U

)s
qr−1

(

q +
√

s
r

ωσU

σPd|U

)r+s ,

(37)

where the complete beta function is calculated as

B(r, s) =
Γ(s)Γ(r)

Γ(s+ r)
=

(s− 1)! (r − 1)!

(s+ r − 1)!
. (38)

Alternatively, (37) can be expressed in terms of average values
serving as distribution parameters, because anyχ2

2n distributed
variate X – being the sum of squares of2n independent
and identically distributedN (0, σ) variates – has its standard
deviation and mean value related via [23]

σX =
〈X〉√
n

= 2
√
nσ2, (39)

as a result of which (37) can be written as

fQ(q) =
1

B(r, s)

(

s

r

ω〈U〉
〈Pd|U〉

)s
qr−1

(

q + s
r

ω〈U〉
〈Pd|U〉

)r+s . (40)

6It is assumed here that the excitation is sufficiently narrowband so thatω
can be considered to be a deterministic (constant) quantity.



9

Equations (37) and (40) represent a Fisher–Snedecor F-
distribution with (2r, 2s) degrees of freedom.

Now we wish to express the ratio of the field-dependent
distribution parametersσU/σPd|U or 〈U〉/〈Pd|U〉 in (37) or
(40) in terms of field-independent cavity design parameters.
The evaluation in Appendix?? yields these ratios as (56).
Hence, (37) and (40) can be written as

fQ(q) =
1

B(r, s)

(

hV

µw,rδwS

)s
qr−1

(

q + h V
µw,rδwS

)r+s , (41)

in which h is the average shape factor of the stirred cavity,
defined by (58).

With the moments ofQ of order i defined as〈Qi〉 ∆
=

∫∞

0 qifQ(q)dq and evaluated using [38, (3.194.3)] as

〈Qi〉 = Γ(r + i)Γ(s− i)

Γ(r)Γ(s)

(

hV

µw,rδwS

)i

, (42)

the arithmetic mean, the standard deviation and the coefficient
of variation are obtained as

µQ ≡ 〈Q〉 = r

s− 1

hV

µw,rδwS
, (s > 1) (43)

σQ =
√

〈Q2〉 − 〈Q〉2

=

√

r(r + 1)

(s− 1)(s− 2)
−
(

r

s− 1

)2
hV

µw,rδwS
,

(s > 2) (44)

νQ =
σQ

µQ
=

√

(s− 1)(r + 1)

(s− 2)r
− 1, (s > 2) (45)

respectively. The form (41) can therefore be rewritten in self-
sufficient format in terms of〈Q〉, i.e.,

fQ(q) =
1

B(r, s)

(

s− 1

r
〈Q〉
)s

qr−1

(

q + s−1
r 〈Q〉

)r+s (46)

valid for s > 1, or alternatively in terms ofσQ, as

fQ(q) =
1

B(r, s)

(
√

(s− 1)2(s− 2)

r(r + 1)(s− 1)− r2(s− 2)
σQ

)s

× qr−1

(

q +
√

(s−1)2(s−2)
r(r+1)(s−1)−r2(s−2)σQ

)r+s , (47)

valid for s > 2. Both (46) and (47) depend neither on field
parameters nor on cavity design parameters.

The CDF ofQ corresponding to the form (46) is

FQ(q) = 1− Iξ(s, r), (s > 1) (48)

where

Iξ(s, r)
∆
=

1

B(s, r)

∫ ξ

0

ts−1(1 − t)r−1dt (49)

is the regularized incomplete beta function with

ξ
∆
=

(

1 +
r

s− 1

q

〈Q〉

)−1

. (50)

APPENDIX

We consider statistically independent, circular Gauss nor-
mal, analytical fieldsE andH . From (4), (5) and (8),

ω〈U〉
〈Pd|U〉 =

ω µ0

2 〈
∫

V
|H(r)|2dV 〉

1
2

√

ωµw

2σ 〈
∫

S |Ht(rS)|2dS〉

=

√

2ωµ0σ

µw,r

〈
∫

V
|H(r)|2dV 〉

〈
∫

S
|Ht(rS)|2dS〉

. (51)

For general multimode excitation,

|H(r)|2 =

∣

∣

∣

∣

∣

∣

(M)
∑

mnp

Hmnp,0 φ
mnp

(r)

∣

∣

∣

∣

∣

∣

2

(52)

where
∑(M)

mnp denotes a sum overM simultaneously excited
modes. Upon ensemble averaging, the cross product terms
(incoherent field terms) in the summation vanish and we obtain

〈
∫

V

|H(r)|2dV
〉

=

〈

∫

V

(M)
∑

mnp

|Hmnp,0|2|φmnp
(r)|2dV

〉

≃
〈

|H0|2
∫

V

(M)
∑

mnp

|φ
mnp

(r)|2dV
〉

(53)

= M
〈

|H0|2
〉

〈
∫

V

|φ(r)|2dV
〉

. (54)

The approximation in (53) arises as a result of replacing the
superposition of modal amplitudesHmnp,0 by a single random
amplitudeH0, for arbitraryτ . The equality (54) holds provided
that the output impedance of the source is matched to the
input impedance of the cavity for each stir stateτ , such that
each source amplitudeHmnp,0 is independent ofτ and, hence,
independent of the variation ofφ

mnp
as a function ofτ . The

modal triplets can be omitted when the integral of|φ
mnp

|2 is
independent ofkmnp (cf. Sec. II). Similarly,
〈
∫

S

|H(rS)|2dS
〉

= M
〈

|Ht,0|2
〉

〈
∫

S

|φ(rS)|2dS
〉

. (55)

Substituting (54), (55) and (39) into (51) yields

ωσU

σPd|U
=

√

s

r

ω〈U〉
〈Pd|U〉 =

√

r

s

h V

µw,rδwS
(56)

=

√

r

s

2

µw,rδw

〈
∫

V
|φ(r)|2dV 〉

〈
∫

S
|φ(rS)|2dS〉

, (57)

where

h
∆
=

2 〈〈|φ(r)|2〉V 〉
〈〈|φ(rS)|2〉S〉

(58)

defines an average geometry (shape) factor of the stirred cavity
that maintains constantV andS. For a wall-stirred rectangular
cavity, |φ(r)|2 = sin2(kxx) sin

2(kyy) sin
2(kzz) whenceh =

1 and (56) becomes

ωσU

σPd|U
=

√

3

2

V

µw,rδwS
. (59)
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APPENDIX

For practical application, ana priori estimate of the number
of simultaneously excited cavity modes,M , based on cavity
design parameters is of interest.

The average mode density inside a cavity of volumeV
and surfaceS operated at CW frequencyf is given by the
generalized Weyl density [39], [40] as

dMc(f)

df
=

8πV

c

(

f

c

)2

+

[

− 4

3πc

∫ ∫

∂V

ds

̺(r)

+
1

6πc

∫

∂S

[π − ϕ(r)][π − 5ϕ(r)]dl

ϕ(r)

]

, (60)

up to terms of order(f/c)−2 or smaller, whereMc represents
the cumulative spectral mode count from dc tof . The other
symbols in (60) were defined in [40]. Forλ ≪ V 1/3, i.e.,
V (f/c)3 ≫ 1, the number of modesδMc inside a narrow band
of width δf = 〈f/Q(f)〉 ≃ f/〈Q(f)〉 can be approximated
by retaining only the first term in (60) and using (43) to yield

δMc(f) ≃
dMc(f)

df
δf = 8π

s− 1

r

µw,rδwS

h

(

f

c

)3

. (61)

A CW source excites7 all overlapping modes withinδf
simultaneously, henceδMc = M . With r = 3M ands = 2M ,
(61) yieldsM as a solution of the quadratic

3M2 − 2bM + b = 0, (62)

where

b
∆
= 8π

µw,rδwS

h

(

f

c

)3

. (63)

On physical grounds, the solution with the negative sign is
discarded becauseM is known to increase withf . Therefore,

M(f) =
b+

√
b2 − 3b

3
(64)

whose asymptotic expression forf → +∞ is 2b/3, i.e.,

M∞(f) =
16π

3

µw,rδwS

h

(

f

c

)3

=
8πV

Q∞

(

f

c

)3

, (65)

i.e., proportional tof5/2 and σ
−1/2
w . Figure 6 illustrates the

rapid increase ofM∞ with f , for selected values ofS for
a rectangular cavity withσw = 106 S/m andµw,r = 1. For
S = 100 m2, the predicted values ofM∞ at f = 0.1, 1 and
10 GHz are0.0031, 0.99 and313, respectively.

Large values ofM may occur, even at relatively low modal
spectral densities and narrowband excitation, provided the
spectral overlap of modes is sufficiently high [40] (which
depends on ohmic dissipation and leakage of the cavity), or
when the excitation bandwidth is large relative to the average
spectral modal spacing. For ultra-low loss enclosures (e.g.,
superconducting or laser cavities), the modal overlap can be
small or nonexistent, even at very high frequencies. Therefore,
the value ofM need not always be exceedingly large, even in
overmoded conditions. For RF and microwave metal cavities,

7Note thatδf is defined as the width at half height. Excitation near the
edges of the bandδf is not as strong as near the centre of the band but may
contribute through multiplication ofδMc by a suitable factor of order unity.

10
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10
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10
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10
2

10
−5

10
0

10
5

f (GHz)

M
∞

S=10m2

S=100m2

S=1000m2

Fig. 6. M∞(f) for a rectangular cavity withσw = 106 S/m and
µw,r = 1 at selected values ofS.

however, the losses and modal overlap are larger whenceM is
then typically large. Since the value ofM can also be related
to the number of coherence cells inV , its value can also be
estimated by dividingV by the size of such cells [41], [42].
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