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Abstract—We derive a probability distribution, confidence
intervals and statistics of the quality Q) factor of an arbitrarily
shaped mode-stirred reverberation chamber, based on ensdiie
distributions of the idealized random cavity field with assumed
perfect stir efficiency. It is shown that Q exhibits a Fisher—
Snedecor F-distribution whose degrees of freedom are gowsezd
by the number of simultaneously excited cavity modes per sti
state. The most probable value ofQ) is between a fraction2/9
and 1 of its mean value, and between a fractiont/9 and 1 of its
asymptotic (composite@) value. The arithmetic mean value is
found to always exceed the values of all other theoretical ntiécs
for centrality of @. For a rectangular cavity, we retrieve the
known asymptotic @ in the limit of highly overmoded regime.

I. INTRODUCTION

(Pq4), multiplied by the excitation frequer{}yu [10]-[13]:

V()
Pa@)) @)

The definition of this so-called ‘effective’ or ‘composite’

quality factor is inspired by the corresponding notion ofdab

Q for a single eigenmode of a static resonant cavity, i.e.,
A Umnp(wmnp)

=WmnppH 7 2
de,mnp(wmnp) ( )

in which wnp, Unnp and Py mnp take constant values for
a selected mode specified by modal indieesn, p. In a
MT/MSRC, howeverlJ and P, fluctuate quasi-randomly as a
function of stir stater. Hence, defining an instantaneous value
of Q at eachr as

Qest(w) 2w

anp (Wmnp)

U(w,T)
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To date, the study of mode-tuned or mode-stirred rever- Qw,m) = wlr) Py(w,T)’ 3

beration chambers (MT/MSRCs) — i.e., multi-mode cavityhis () is now arandomly fluctuatingjuantity with an associ-
resonators furnished with a 'stirring’ mechanism that progs  ated PDFf, (¢), correlation functions, etc., when considered
time-varying excitation and/or boundary conditions — hagcross allr. For simplicity of notation, we shall further omit
mainly focused on the properties of the random electromquicaﬁng the dependencies anandr in (3).
netic (EM) field. Probability density functions (PDFs) for compared to[{1), the definitio](3) is closer in spirit to
idealized and imperfect fields, including EM boundary-ealuthe original concept 0fQ,,,. Firstly, (3) involves a ratio
problems [1], [2], were calculated and compared with megf quantities that exist physically at eash as opposed to
surements or simulations. A natural extension is the s&ittha the formal ratio of mean values i](1) that exist only in a
characterization ahtrinsic EM parametersf instrumentation r-averaged, i.e., mathematical sense. Secondly, because of
and devices subjected to random fields, e.g., wave and ingudpagation of uncertainties, any disregard for the random
impedances [3]-[6], antenna parameters [7], [8], etc. fluctuations of U and P results in an underestimate of the
One of the fundamental parameters of a MT/MSRC is ilevel of fluctuation of other stochastic EM quantities that
quality (@Q-) factor [8]-[21]. In the simplest model) is depend explicitly or implicitly onQ, in particular the standard
defined by a constant single value, as the ratio of the stiteviations of the EM fields ., ando ., (cf. (Z2)), which
averageﬂl stored energyU) to the averaged dissipated poweare of fundamental importance. °

2In general, the spectral power densifyw) and, hence, the spectrally
oo oo
averaged angular centre frequengy = f wg(w)dw/ fo g(w)dw vary
as a function of stir state [22]. Therefore, spectral anceeitde averagings
are strictly needed to replace in (@) by (wo). For narrowband excitation
or nondispersiveg(w), the fluctuations ofvg are usually negligibly small,
whence ensemble and spectral averaging afan then be omitted.

1The fact that the total energies stored and dissipated vitiyolvanging stir
state has been validated by experiments, which show thahé&zsurement of
S11 at a fixed frequency and source pow@s exhibits random fluctuations
with changing stir state. Therefore, the net forward povar, = (1 —
|S11]%) Ps injected into the MT/MSRC fluctuates accordingly.
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An alternative but more restrictive approach to quantiyinbe expressed as
the uncertainty of) was developed previously in [20]. There,

second-order statistical characterization(pfwas performed U = % / {E (r) - a% t(f) + H(r)- 6% t(f)} dv

based on spectral and ensemble averagin@,f, for TE and v

TM eigenmodes. This permitted a calculation of the mgan — 1/ [6—0|E(T)|2 + @|H(r)|2} dv

and standard deviation for a rectangular cavity in which 2 )y t2 7" 2

wall stirring causes modal perturbations. _ Ho |H(r)|2dV A M<|H|2>V 4)
In the present paper, the use of sampled instantaneous (as 2 Jy T 2 Y

opposed to averaged) values@fallows for the calculation of where an asterisk denotes complex conjugation.

the complete PDF¢(q). This provides a more comprehensive To obtain a corresponding expression @y, the relevant
characterization compared to mere first- and second-ordgfantity is the tangential magnetic field, at a location
moments. For simplicity, the analysis is based esrsemble rs on the cavity’s interior boundary surfacg = 9V with
distributions of U and P; for ideal Gaussian EM fields, ynit local inward surface normal, (rg). Conduction loss
as opposed to their sampling distributions [23], [24]. Thig the wall yields a nonvanishing tangential electric field
implicitly assumes that a sufficiently large and theordiyca E, = Ry(H, x1,) # 0 at S that can be envisaged as
infinite number (V) of statistically independent stir states foa surface layer of magnetic current produced My as an
the field is generated by the stir proces§ (- +o0). It equivalent boundary source and dissipatedshyin addition
will be found thatfq(q) then satisfies a Fisher—Snedecor Fo the sheet of surface charge produced by the normal electri
distribution, whose two numbers of degrees of freedom (Dofi¢ld in a lossless cavity. The time-averaged absorbed gnerg
both depend on the numbed/( of simultaneously excited s the spatially integrated real part of the normal compoénen

cavity modes per stir state. Whéid increasesf(q) evolves of the local Poynting vectors,, = Re[l, - (E x H*)]/2, i.e.,
from a positively skewed PDF for low/ toward a Gaussian

(normal) PDF, accompanied by a reduction in mean value and p; = &/ 11,(rg) x H(rg)[>ds
absolute or relative spread ¢f. 2 Js

The results apply generally to cavities with arbitrary ge- — 1 / |ﬂt(£S)|2 s 2 S <|ﬂt|2>S’ (5)
ometries, including irregular shapes, but will be illustch 20w0w Js 200w
with explicit expressions for simple (integrable) rectalag in which R.. 2 1/(owdy) = /o] (@ow) represents the

cavities. Except in Se€_ 11D, we do not distinguish betwee ; . ; =r ,
: . . Per—unlt area surface resistance of the interior cavityl,wal
mode-tuned and mode-stirred methods of operation, mso(saré \/27 its skin depth. and wh B

as only quasi-static fields are considered. &p(jwt) time % = /(Whwow) S its skin depth, and whege, = (/o
dependence is assumed and suppressed throughout. iffe ow are Its permeal_rnllty and_ conductivity, respectively.
types of averaging will be performed: we shall use th§ubstltut|ng[(}4) and{5) intd 3) yields [25, sec. 10.4]
thations<~>V, (s and (-) to represent spatial averaging _ 2 [y | H(r)|?dV _ 2V (|H]P)v )
with re:spect_ to the volumé&’, ;urfgce aresd, and _ensemble [l xOns fs [H,(r5)PdS ~ fiwrw S (H,|2)s

averaging with respect to cavity stir statesespectively. The ) _ )
ensemble average assumes eddaind S throughout, as a If only one resonant mode is excited, then the local field
prerequisite for constant average spectral mode density, &mPplitudes throughout” are characterized by a single modal
only involves perturbations of shape or aspect ratio(spszcr amplitude valuer,,,,,,, o, whence[(B) can then be written as

different realizations. o 2 | Hypnpol? I @mnp(f”gdv
,uw.,r(sw |Hmnp.,t,0|2 fs |9mnp(£5)|2d5’

where ¢ is the real-valued magnetic eigenvector, and
Hnp,(¢,)0 1S its associated complex-valued amplitude.

As an example, consider a rectangular cavity with=
¢,¢, with a single excited mode whose local amplitude

()

Il. UNSTIRRED CHAMBERS WITH SINGLEMODE
EXCITATION: DETERMINISTIC U AND Py

For the purpose of establishing definitions and extendir}g
the analysis later to stirred multi-mode cavities, we byiefl ®

review some basic results for th@ of a single eigenmode \H ()] @1 = 21, +yl, + 21, can be expressed as
in a static (unstirred) cavity at its fixed angular resonance sin(kmnp.o)
frequencywy,,p. In this case, the modal),,,, is single- |ﬂmnp(f)| - |Hmnp70|{ co8(kmn ’zx) }

valued. In an unstirred cavity, the local electric and maigne cos(k y) " sin(k 2)
modal amplitudeszy and H, at any location inside V' are { . km"”’y j } . { ‘(km"p’z ) ]EB)
time invariant. For a lossless linear time-invariant ieptc sin(Fmnp,yY COSWimnp, 22

homogeneous medium filling the cavity interid),= ¢x £ and A similar expression for the electric fieﬂmnp(z) with ampli-

B = uoH, whence the electric and magnetic stored energigsle |E,,,, 0| applies. Thus, the amplitudes are unmodulated
U. andU,, are proportional to the spatial integrals of the locgkinusoidal or constant) with respect 10 in all directions.
intensities| E(r)|* and | H (r)|?, respectively. For steady stateFor a transverse mode, any valid combination[in (8) consists
excitation,U, = Uy, to first approximation at sufficiently high of two spatial harmonic functions along two orthogonal di-
frequencies. The total stored energy= U. + U,, can thus rectionsl, and 1, combined with the unit function in the



third direction1, (i.e., cos(kmnp7) = 1), wherea, 3,y € of the MT/MSRC, so that corresponding (non)overlapping
{z,y, z}. However, in MT/MSRCs, we are primarily interestednodes may be simultaneously excited (e.g., multitones in a
in overmoded conditions at high frequencies, where the vamultimode laser or in certain communications protocol®t L
majority of modes are hybrid. For a hybrid mode satisfyinthe number of simultaneously excited modes per stir state
the EM boundary conditions, a valid combination [d (8) ibe denoted byM/. A physical estimation of the value dff
the product of three such harmonic functions. Substituting given in Appendix??. For arbitraryr, the cavity field is
@) into (4) and [(b), together witlj‘(f"‘ sin?(kmnp.aa)da =  the resultant of the weighted superpositiom\dfparticipating
fofoc cos?(kmnp.ac)da = £,/2, we obtain for a rectangular modes (random walk model), producing a spatial modulation
cavity with conducting boundaries of the amplitudes”, and H; ), across the cavity's interior. If
the structure of the cavity is sufficiently irregular @t then

U — M|Hmn o2, Pi= 5 O B 0] (9) this spatial distribution is quasi-random. This (statipptal
16 P 8V 20w S variation is additional to the (dynamic) fluctuations of the
in which the difference between the factorg16 and 1/8 local field caused by stirring and yields a 4-D spatio-terapor
results from the fact that a hybrid mode generally exhibitgndom field. For spatially random field§] (4) adl (5) remain
three magnetic field components for the interior field, waereValid in & statistical sense, i.e., at arbitraryThus, for a wall-
only two nonvanishing tangential components of this fielstex Stirred rectangular cavity, we now have instead[of (9)-(10)

on the surface. For a transverse mode, the factgi$ and 4 9
1/8 in (@) are replaced by /8 and1/4 (or possiblyl/2, but u(r) = 16 {Ho(r)P)v, (11)
with vanishingly small contribution, when the cavity swdas P S fwpy I 9 12
locally perpendicular to the transverse direction of thede)o a(r) = s\ 20, ([ Heo(T)F)s, (12)
respectively. From[{3) and](9), it follows that 0 - Vo (Ho(r)[2)y | w3
Q _ |4 |Ii[1nnp70|2 ) (10) /’LW,I‘(SWS <|Ht70(7—)|2>s
P 10w S | Hpmnp,t,0]? Each individual mode acts as a ‘channel’ for storage and

For any single mode in a rectangular unstirred CaVitg’issipation of energy and increases by one unit the number of

Hynp.o and Hy,npi0 are constant with respect to locationVays in which the value of each Qartesian component of the
and time. In nonrectangular (e.g., cylindrical) caviti¢ise resultant field phasor can be obtained. The DoFs of the spa-

eigenmodes no longer consist of spatial harmonics. For ndidly integrated field intensities leading t6 and Py increase

separable geometries, they may not even exist in closed-foccordingly. For each modé,,,,, andH,,,,, are physically

expressions. Hence the ratif (r)|2)v /(|H,(rg)|?)s is in (i.e., d_eterministically)_ related via a wave impedancediya
general different from|Homp.o(1)|2/ (2] Hynp.t.0(rs)|2), in Following (4)-{5), the increase of the number of DoRbby

which case[{I0) is then multiplied by a shape dependentrfacfRch mode is therefore the same ad foandU., individually,
h (cf. (58)). i.e., six, whereas the corresponding increaseHpiis four.

Finally, assuming that the stirring process is sufficiently
efficient to be capable of generating a very large (thecaklyic

Il. STIRRED CHAMBERS QUASI-RANDOM U AND Py infinite) value of N that produce independent and identically

A. Single vs. multimode excitation distributed ideal Gaussiaf,, (i.e., N — +oc) and as-
When invoking mode tuning or mode stirring, the eigersuming that wide-sense ergodicity of the fields holds (i.e.,
modes and therefor€ evolve with stir stater. The charac- K (r|r) = Hu(r|r) @Nd Of(rr) = om(-|r), SUuch that the

terization in Sed]I for a single mode is then only meanihgfigpatial distributions of eacH ), is identical to its ensemble
in a statistical sense. We dendtg(r|r)} and{H ,(r[r(s))} (i-e., stir) distribution U then exhibits approximatélya x2,,

to represent ensembles of sample setsvostir states of the PDF, andP; has approximatelya x%,, PDF across the stir
field at arbitraryr, 5. These stirred local fields vary randomlystates and cavity interior, i.e[. (34) afd](35) hold witk: 31/

in spatial orientation, magnitude and phase as a functiends = 2M, respectively.

of 7. Generally, H(7|r) and H,(t|rs) have three and two In practice, the values ¥/ and N evaluated for different
nonzero complex-valued (in-phase and quadrature) regtang Stir processes are often strongly positively correlated small
componentdd,, (o = z,y, z), respectively. Hence, if at any M, the practical stirring performance may then be signifigant
only one cavity mode is excited that is randomly perturbed pmpromized. If the assumptiaN' — +oco becomes unsus-
the stir process (i.e., random single-mode excitatioptthe tainable, then the use of Besskl sampling distributions for

local fleldsﬂ.(ﬂz). andﬂt(ﬂfS) n @D_@).are nowandom 3The incoherent superposition d@ff participating modes with equatg
processes with six and four DOFZ respectively. energy distributions presumes that energy is equally tipartid across these
In pract|ca| (non—superconductmg) overmoded MT/MSRCsjodes. For overlapping modes, this is only approximatalg tbecause the

i nifi ; At ; partitioning depends on the source’s spatial location andth® specific
significant multimode excitation occurs typically. Spattr spectral distances of the,,/,,/,/ relative to the excitation frequency. They

overlap of nondegen_erate modes ha\/_ing nonzero absorplfalid be Lorentz weighted accordingly in the superpasitio
bandwidths causes intermodal coupling, such that even &on s, the nonorthogonality of irrotational and solenoidal metimeigen-

single-frequency (CW) source then excites simultaneou tors (i.e., solutions associated with boundary camitiof magnetic type)
causes the total power loss to deviate from the sum of the psses of

several mod_es with dmerem’mnp' Altemat'vely' the SPEC- individual modes [25, Sec. 10.4]. This nonorthogonalitgules in the DoF
trum of a wide-band source may encompass sewefal, 2sto be somewhat less thatiVi.



E, H ), U andPy|U [24] offers an appropriate framework forcient of variation for [(T#) follow from[(43)£(45) as

characterizingfg(q) [27]. In practice, the cas@/ = 1 often M LYV
(although not exclusively) involves excitation at waveléis 1o = (@) = 57— g (M >1/2) (15)
. . . . - Mo, r Ow

that are not small compared to cavity dimensions, while also ’
the modal overlap is small. In this case, the stir process is 3M(3M +1) 3M \> nV
also typically (but not inevitably) less efficient, whendeet 7@ = (2M —1)(2M - 2) B <2M _ 1) [ O S
X2 andx? PDFs ofU(r|r) and P4(r|rg)|U(r|r) and, hence, (M >1) (16)
the PDF [(I4) are then only approximately valid.

Although we shall further focus on the case wheve ,  _ (2M - 1)(3M +1) 1 (M), (17)
is a constant integer with respect to stir state, one may 3M(2M —2) ’

envisage a situation where its value could fluctuate as

TReir corresponding limit expressions fof > 1 are
function of 7. In this case, we can estimafd by its mean P g P

value Zivle(r)/N, which may be fractional, yielding a po - 3 (1 n L) hV (18)
generalization of?,, andx?,, PDFs to gamma PDFs. Values @ 2 2M ) jiy 104 S
of M smaller than unity represent the case where, on average, 15 hV
less than one mode per stir state is being excited. oQ — M m (19)
)
vg — (20)

B. Probability density function and statistics ©f 6M '

Regarding the relationship betwe&nand P, the boundary The dependencies df (15)=(20) a1 are shown in Fig.]2. For
field H,(rg) is deterministically related to the interidf (r), M — 400, the mean(Q)) reduces asymptotically to half its
because of field continuity and EM boundary conditionsalue forM =1, i.e., to
Therefore,U and Py arenot statistically independent. Never- A 3RV
theless, their joint PDF can always be expressed as the grodu Qoo = m (21)
of the marginal PDF of/ and the conditional PDF of;, R
givenU, Viz., fu p,(u,pa) = fu(u)fp,u(u, palu). Based on The residual meamA(Q)/Qee 2 ((Q) — Qu)/Que =
this factorization f(g) is derived in Appendi®? as the ratio 1/(2M — 1) is positive and asymptotically inversely pro-
of a x3, distributedwU and a3, distributedPy, for general portional to M. For h = 1, the result[(Z1) was previously
values ofr ands, resulting in a Fisher—Snedecor F-distributiobtained [10], [13], [20], [26], whereas the finding thay) =
with (2r,2s) DoF (cf. egs. [(37),[(40),[(41)[(#6) and {47))2Q., when M = 1 agrees with the findings in [15]. This

Assigningr = 3M ands = 2M, the PDF of() is then demonstrates that consistent asymptotic results arevetti
M1 oM N In Sec_.[Tﬂ_TO,, (@) will be compared to other measures of

folq) = (55 (Q) q (14) centrality for Q. For M = 1, the o and vy are undefined

B(3M,2M) (¢+ %(Q))E’M’ (0g,vg — +00), whereas fotM — +oo they asymptotically

approach zero proportionally i/ M, i.e., more slowly than

valid for M > 1/2, representing a (@M, 4M) PDF. Figurdll A (Q)/Q... In summary, forM — +oo, the limit PDF ofQ
shows [(I4) for selected values 8f. For M ~ 1, significant s a normal distribution\V (11, o0), i.€.,

positive skewness and smaller kurtosis are observed, ahere

for M — +o0, the PDF evolves to Gaussian normality. 1 5
> Y fo@~ N[ (14557 ) Qs /7@ |- (22)
2M 6 M
2 ”’ M=1 |] Parenthetically, ifM 3 1 then the ratio of the averages
N - —M=2 (wU) and (P4]U) is substantially different from the averaged
15 St T Mfio ] ratio (wU/(P4|U)). Indeed, forM = 1 with (I0), [I5) and
& Do M=20 39), i.e., (|Hol?) = 60—25,) for a x2 distributed|H,|? while
S AT ] (|Hol?) = 4012%(,) for ax? distributed|H, |, we arrive at
- Lo \\‘ WU) RV (HP) 3RV oo
0.5 /o .. \'.\\ N ] <Pd|U> /Lw,r(SwS <|Ht70|2> 2Hw,r6w8
e ~=
L TN ) wen e
0 1 2 3 2\ PalU
q/ @0 In view of (21), this result shows that replaciggU/(P,|U))
by (wU)/(P4|U) as in [1) is an approximation, but justifiable
Fig. 1. Scaled PDFfq(q) of normalized@ (i.e., in units(Q) = whenM > 1, e.g., in overmoded regime. In fact, comparing
[38M/(2M — D)][(hV/(pw.x6wS)]) for selected values ab/. @), (Z1) and[(ZB) usind (39) for generdl shows tha.¢ =

Qo forany M. Thus, the definition of compositg.¢ neglects
The (arithmetic) mean value, standard deviation and coeffire effect of M on the fluctuation and value @}.
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Fig. 2. Mean, residual mean, standard deviation and coefficient of
variation of @ as a function ofM/, normalized byQ ...

As an alternative toog, the spread of@) can also be
expressed by an%-confidence interval foy. For a chosen
confidence leveh, the boundarieg, andq, of this interval
are calculated by inverting the cumulative distributiondtion

(CDF) {48)-(5D), i.e., by numerically solving
1=+ (n/100)

9/ q /0]

Folaew) =1 -1, (2M,3M) = 5 , (29
wherelg, (-, -) is a regularized incomplete beta function with
BM qra) (b)
€om = (1 + T ‘”—) . (26)
- 1{@) Fig. 3. Upper @.) and lower ;) boundaries ofp%-confidence

FiguresBa anf13b show these boundaries normalized by :t'Pférlva!;' 0;Q3 (a)lnorn:jaliz?d bynﬁ(c(?g)v asafurll_cti?jnl?fg;\fidence
: N : evel 1%, for selected values of; (b) normalized by(Q), as a
median of@ (cf. (30)-{31)) or by(Q), as a function of) or function of M, for 95%, 99% and99.5% confidence levels.

M, respectively. The interval width rapidly increases with

most prominently when\/ ~ 1 andn > 90. For largerM,

the spread is considerably reduced because of the effectyp, ianeous excitation of modes. For the total (3-D véctor

aggregation of modes, which can also be achieved thro

multiple stirring mechanisms, multiple sources (antehnas

increased EM losses, etc. Faw = 1, 3, 10 and 100,

the 95%-confidence intervals for)/(Q) are [0.080,4.599], C. Other measures of location fap

[0.301,2.590], [0.545,1.713] and[0.833, 1.192], respectively. ] o ]
The standard deviations of the complex-valued analytic EM B&cause of the primary practical interest in the centralezal

fields E — E' —jE" and H — H' — jH" can be estimated of @, we explore a few other measures of location (centrality)

on the premise that, in steady state, the dissipated po/iSralternatives to the arithmetic r‘neé@. Compar?d to such
equals the transmitted power, .62 (7) = Pr«(7), due to other metrics{Q) represents the ‘centre of mass’ of the PDF

conservation of energy. With](5) and{39) for= s = 2M, it and minimizes the expected mean squared deviation of the
follows that (Py|U) = M So2,,, /2, whence ' sample values of). The (Q) is known to provide the most
AR stable measure of centrality when comparing values oldaine

20 52 208 from different samplesets of data. However, it is not the
2 o Ow WnO P 2 . Ow P 27 . . .
T = W< Tx)s T = m< 'rx), (27) optimal measure of centrality fansembledata, particularly
when the PDF is significantly skewed, as in the case of
where g £ /110/o is the stir averagédinput impedance relatively smallM. In the latter case, the mode (for unimodal
of the MT/MSRC. Thus, like forQ, the standard deviation data) and the median are more representative parameters.
of the stirred EM field decreases proportionally 1@/ M. The generalized meafQQ), 2 ( 0°° qan(q)dq)l/a can be
This is a result of intrinsic averaging of fields caused by thealculated with the aid of(32) and (21) as

2 2 2 2
ds,o%,) = 3UE,(,) andoy,, = 30H,(,).

(28)

5More accurate estimates forQE,(,) and af{/(/) are obtained by incorpo- 2 (T(BM 4+ a)T'(2M — a) 1/a

rating the random fluctuations of the input ir%pedance dygﬂc) [3]-[6].



where a is a chosen real parameter. The particular casesd(Q)/(Q) increases fromD over 0.5308 to 1, whereas
a = —1,0, 1 and2 correspond to the harmonic, geometricined(Q)/Q- decreases from.135 over1.062 to 1.
arithmetic and RMS averages, respectively. Figure 4 showsn practice, experimentally determined values @f are
(@), as a function ofa for selected values of\/, after nearly always reported to be considera$iyallerthanQ.q =
normalization with respect tdQ) = (Q):. For anya < 1, Q, typically by a factor0.2 or 0.5 to 1 [7], [9], [28]. On
(Q)q s always smaller thafiQ), a fortiori for small A/. For account of[(3R), choosingiod(Q) or a fortiori (Q) <2y as
M — +o0, all (Q), merge to(Q) irrespective ofa. ana priori theoretical estimate may offer bettad hocquan-
titative agreement thaf@)) andmed(Q). Physically, however,
additional loss mechanisms are at the root of loweth[.0].

) 1 LX3 --......./.../::;;-;:,--2‘9
= S
S o5 — mod(Q)/QL
5 05l ///' — — med(Q)/[@O|{
///' _ . mod(Q)/IQ_
7 . med(Q)/Q
0 5 v 2
10 10 10
. M

Fig. 4. Generalized mear(Q). normalized by arithmetic mean Fig. 5. Mode-to-mean and median-to-mean ratiesd(Q)/(Q),
(Q) = (@)1 as a function of, for selected values af/. med(Q)/(Q), mod(Q)/Qs andmed(Q)/Qx as functions ofM.

The statistical mode is the most probable (or most frequent)
value among the values of the population (or sample data s@&) Q in mode-stirred vs. mode-tuned chambers
i.e., for{Q(7)} across one rotation of a mode stirrgr..SoIving The previous analysis assumed quasi-static operation,
d[fe(q)]/dq = 0 using [14), the mode-to-mean ratio is through sufficiently slow stepping or scanning (mechanizal
mod(Q) 1 ) 4 electronic). General considerations of mode-stirred vsden
Q) = < - m) < - m) 1- 3 (29)  tuned operation focusing on acquisition time and nonstatip
o ) ] effects were given in [21], [22], [29]-[32]. Here, we comnhen
Anothir measure of centrality is the median, defined ag, aspects of mode stirring relating @and its PDF, and we
med(Q) = F,'(0.5) and obtained fron(48)=(50) by solvingrestrict ourselves merely to some general remarks.
1 In quasi-stationary MT/MSRCs, the rate of change of the
==, (30) cavity field between stir states is small compared to the
2 ) o
rate of energy fill and dissipation, whence the values of
U(r,7) and P4(rg,7) remain unaffected by this rate. Quasi-
A 3M  med(Q) -1 stationary mode stirring may results in purely local unifor
Em = ( oM -1 (Q) ) (31) temporal averaging of the fields across an interval of stir
stateq0, 7] varying with time. This averaging does obviously

A numerical approximation ofmed(Q?) is obtained from not affect the spatial averagings of(r|7) and Py(rg|7)
(28) for a = —0.065. Unlike (@), the median minimizes

the expectedabsolutedeviation. It is a robust measure o
centrality, being less sensitive to the shapefgf(q). This
is particularly attractive because of the cited difficidtief
characterizing the precise PDFs éfand Py when M > 1.
Comparing these metrics, for ady > 1/2, the ordering

I, (2M,3M)

where

P/ielding again[(Il) and(12). Ensemble averaging@/¢f) and
Pa(1) acrosd0, 7] does not affectU (7)) and (P4 (7)|U (7)),
whereas botlf, ., ando?, . (., scale by thesamevariance
function~7 in quasi-stationary conditions [22]. Consequently,
the ratiooy/op, v and hencefg(q) remain unaffected by
local averaging. However, the existing coupling between TE
and TM modes caused by ohmic losses is further increased
mod(Q) < Qoo < med(Q) < (Q) < Qrnts (32) by continuous rotation, albeit as a second-order effect of
applies, together witinod(Q) < (@), < Qs When—1 < velocity of rotation [33], [34]. In turn, this has a posititeit
a < —0.185, Qs < (@) < med(Q) when—0.185 < a < second-order effect oy. Recent measurements ¢f) in
—0.065, andmed(Q) < (@), < (Q) when—0.065 < a < 1. an overmoded MSRC [35] appear to support these findings,
Figure[$ shows that the ratimod(Q)/(Q) increases from including a marginal but systematic decreasé@f observed
0whenM — 1/2, over2/9 atM =1,to1 whenM — +oco. for increased stir speed using the mean power approach.
With the same marker values of/, this corresponds to For nonstationary MT/MSRCs, the situation is more in-
mod(Q)/Q« increasing froml/6 over 4/9 to 1. The ratio tricate. Expanding wave fronts emanating from the source



impinge and get partially absorbed by the cavity walls, raftéo fluctuating M during stirring (cf. Sec[Ill-A), caused by
traversing the cavity interior. Therefore, the cavity filhda entrance and exit of modes in the cavity bandwidth [37],
dissipation processes per stir state are not synchronizéd & of interest. The PDFf,,(m) is expected to depend on
may be affected differently during nonstationary stirringa the eigenfrequency spacing statistics [4] and their dyoami
resonant environment, as boundary and excitation comditiovhich, in turn, depend on the integrability of the cavity sha
vary in a rapid manner. This situation is to be avoided, inwieThe additional uncertainty caused by fluctuatiigs expected

of the definition [[B) requiring matching (i.e., comparalgajrs to increase the width of the confidence interval@fFinally,

of U(r) with P4(r). Hence, for a nonstationary MSRC, onehe (auto)correlation function gfp (A7) provides insight into
may need recourse to the physically less meaningful definitithe rate of fluctuationd@/dr, i.e., the stir sensitivity of)(7).

(@), thereby using nonuniform weighting [36].
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Equations [(37) and[{40) represent a Fisher—Snedecor
distribution with (2r, 2s) degrees of freedom.

Now we wish to express the ratio of the field-depende
distribution parametersy /o p, |y or (U)/(Pa|U) in (@31) or

(40) in terms of field-independent cavity design parameters

The evaluation in Appendi®? yields these ratios a$ (b6).
Hence, [(3F) and_(40) can be written as

F-

We consider statistically independent, circular Gauss nor
Mal, analytical fieldsZ and H. From [4), [5) and[{8),

APPENDIX

w(U) wi ([, [H(r)|*dV)
(PalU) 3V ([g | H(rs)]?dS)

2 H(r)[?dv
fola) = gy (v ) @) - s ©
Q\4) = B(T,S) Mw,r(SWS (q+ RV )r+s7 > S 12=t\LS
Hw,xOw S For general multimode excitation,
in which h is the average shape factor of the stirred cavity, (M) 2
defined by [[35). o | H@E = |3 Honpo 6, (1) (52)
With the moments of@ of order i defined as(Q*) = oyt —mnp
157 ' fo(q)dg and evaluated using [38, (3.194.3)] as
) ) i wherezgfl; denotes a sum ovey! simultaneously excited
Q" = L +0)0(s — i) ( hV ) , (42) modes. Upon ensemble averaging, the cross product terms
I(r)(s) fiw xOw S (incoherent field terms) in the summation vanish and we obtai

the arithmetic mean, the standard deviation and the castfici
of variation are obtained as

. o hV
ey T O
og = V(@) —(Q)

B rir+1) ([ > v

- \/(3—1)(5—2) (s—l) U

(s>2) (44)
L 99 _ (s=1(r+1) .
Q = o \/7(8—2)7‘ 1, (s>2) (45

respectively. The forn{{41) can therefore be rewritten iifr se
sufficient format in terms of@), i.e.,
q

( Q>)S e

valid for s > 1, or alternatively in terms ofg, as

r—1

folq) = %

r,s)

s—1
r

(46)

o (- 122 S
fola) = B(r, s) <\/T(7’ +1(s—1)—r?(s—2) 0Q>
qr—l

(47)

s—1)2(s—2)
r+§)(571§7r2(572) 9Q

X r+s?
(‘”W )+

valid for s > 2. Both (48) and[(47) depend neither on field

parameters nor on cavity design parameters.

The CDF of@ corresponding to the forni (#6) is
Fo(q) =1—I(s,7), (s>1) (48)
where
Le(s,r) 2 — 1 /g 511 — 1)t (49)
’ B(s,7) Jo
is the regularized incomplete beta function with
—1
A r q
=1+ — . 50
(e i) 0

(M)

[ mwpav) - < / 3 npal'6,,(2) dv>
(M)
~ 2 r 2
~ <|Ho| / 3 16,0 dv> (53)

M<|H0|2>< / |9<z>|2dV>. (54)

The approximation in[{33) arises as a result of replacing the
superposition of modal amplitudés,, ., o by a single random
amplitudeH,, for arbitraryr. The equality[(54) holds provided
that the output impedance of the source is matched to the
input impedance of the cavity for each stir statesuch that
each source amplitudd,,,, o is independent of and, hence,
independent of the variation gﬁfmnp as a function ofr. The

modal triplets can be omitted when the integral|@71jww|2 is
independent ok, (cf. Sec[Tl). Similarly,

2 _ 2 2
([1tesPas) = as o) [ lotzs)ias) . e9)
Substituting [(54),[(85) and (B9) intG_(51) yields

woy swlU) _ [r hV
Opy|U \/;<Pd|U> B \/?,uw,réws (56)
2y mPay)
== Jslosrasy O
where
a2 ((8@P)) 58)

{(l¢(zs)?)s)

defines an average geometry (shape) factor of the stirréty cav
that maintains constait and.S. For a wall-stirred rectangular
cavity, |¢(r)|? = sin®(kyx) sin®(kyy) sin®(k.z) whenceh =

1 and [56) becomes
_ \/5
V2

1%
Nw,r(sws .

woy

(59)

Opy|U
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APPENDIX 10°

For practical application, aa priori estimate of the number _ //// -
of simultaneously excited cavity modes], based on cavity - //’/ -
design parameters is of interest. 5. 0 -

The average mode density inside a cavity of voluie =10 '/ T — $=10m?
and surfaceS operated at CW frequency is given by the -~ — - 5=100m?
generalized Weyl density [39], [40] as — . §=1000m?>

2 10° ‘ ‘
WMe(f) 8V <i> + {—i// s 10" 10° 10" 10°
df c c 3mc av 0(r) f (GHz)
R B Gt 3 s 5<P(£)]dl} . (60)
6mc Jas o(r) Fig. 6. Mo (f) for a rectangular cavity withr, = 10° S/m and

up to terms of orde(f/c)~2 or smaller, wheré\l. represents #vr = 1 at selected values of.

the cumulative spectral mode count from dcjftoThe other
symbols in [6D) were defined in [40]. For < V1/3, ie.,
V(f/c)? > 1, the number of mode®\/. inside a narrow band

of width §f = (f/Q(f)) = f/(Q(f)) can be approximated
by retaining only the first term il .(60) and usirig(43) to yiel

AMc(f) o, o s—1 perdeS (F°
A CW source excitdk all overlapping modes withirj f
simultaneously, henc&Vl, = M. With r = 3M ands = 2M,

(61) yields M as a solution of the quadratic

however, the losses and modal overlap are larger whéhée

then typically large. Since the value 8f can also be related
éo the number of coherence cells ¥, its value can also be
estimated by dividing” by the size of such cells [41], [42].

3M? —2bM +b =0, (62)
where
3
b2 SWM <i) . (63)
h C

On physical grounds, the solution with the negative sign is
discarded becaus¥ is known to increase witlf. Therefore,

b+ +vb%—3b
M(f) = ——5—= (64)
whose asymptotic expression fér— +oo is 2b/3, i.e.,
167 p 0w S [ f 3 8V [ f 3
Moo(f)_TT (E) oo \c) > (65)

i.e., proportional tof%/2 and o /2. Figure[® illustrates the
rapid increase ofM/, with f, for selected values of for
a rectangular cavity withr, = 10° S/m andu,,, = 1. For
S = 100 m?, the predicted values a¥/, at f = 0.1, 1 and
10 GHz are0.0031, 0.99 and 313, respectively.

Large values of\/ may occur, even at relatively low modal
spectral densities and narrowband excitation, providesl th
spectral overlap of modes is sufficiently high [40] (which
depends on ohmic dissipation and leakage of the cavity), or
when the excitation bandwidth is large relative to the agera
spectral modal spacing. For ultra-low loss enclosures.,(e.g
superconducting or laser cavities), the modal overlap @n b
small or nonexistent, even at very high frequencies. Tloegef
the value ofM need not always be exceedingly large, even in
overmoded conditions. For RF and microwave metal cavities,

"Note thatdf is defined as the width at half height. Excitation near the
edges of the bandf is not as strong as near the centre of the band but may
contribute through multiplication of M. by a suitable factor of order unity.
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