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1 Introduction
Graphs considered here are undirect, finite and connevted. A graph is called simple if it has no multi-
ple edges and loops. For graphical notation and terminology without explanation,we refer to ref. [1].
By a surface, we shall mean a closed compact and connected 2-manifold. Let G=(V,E) be a connect-
ed graph. The maximum genus'® ,denoted by 7, (G) ,of a graph G is defined to be the maximum integer &
such that G admits a cellular embedding in an orientable surface S of genus k. Since any cellular embed-
ding of a graph into a surface has at least one face,the Euler polyhedral equation gives the following up-

per bound on the maximum genus of a graph G (for any integer x,[ x| denotes the greatest integer no
i B(G) _ - . . ] . .

more than x)yy (G)<[ 2 1. where B(G)=|E(G)| —|V(G)|+1 is known as the circle rank of G (no-

ting that the circle rank of a graph is also commonly known as the cycle rank, cyclotomic number,or the

better number). A graph G is called upper embeddable if y,(G) :[@]

Maximum genus of graphs has been an interesting topic in the topological graph theory since the in-

troductory investigation by Nordhaus in ref. [3]. It is seen that to show a graph is upper embeddable is

equivalent to deriving a lower bound yy (G) = [@] for the maximum genus. Combined with one or

more invariants, many papers give some classes of upper embeddable graphs. For example, using 2-factor,
the two papers [ 3 —4] discussed the upper embeddable graphs with the same value of degree of vertex
under modulo 4.

Inspired by the article [ 4], the author also use 2-factor to study the upper embeddality of some
graphs in this paper.
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This paper is organized as follows. Section 2 explains some definitions and notations. Section 3 gives
some basic theorems and Section 4 uses 2-factor to study the upper embeddality of some graphs and gives

the main results.

2 Some Definitions and Notations

Let T be a spanning tree of graph G. Define the deficiency &(G,T) of a spanning tree T in a graph G
is as the number of components of G\E(T) which have an odd number of edges. The Betti deficiency &
(G) of the graph G is defined to be the minimum of £&(G,T) over all spanning tree T of G. Note that £&(G)
=p(G) (mod 2).

For a subset A E(G),c(G\A) denotes the number of all components of G\A,and 6(G\A) denotes
the number of components of G\A with odd circle rank.

G will be called A-regular graph when its every vertex with k-degree.

A 2-factor F,of a graph G,is a spanning subgraph of G such that dy(v) =2 for any v&€V(F). It is
obvious that each 2-factor of G is a vertex-disjoin union of circuits. If the length of every circuit of a 2-fac-

tor of G is k,it is called that G contains a k-polygon 2-factor.

3 Some Basic Theorems

For the upper embeddability of graphs, we now state two characterizations whose proofs may be seen
in ref. [2] or [5]. They can be expressed in the following theorems.

Theorem A Let G be a graph.

QY }'M(G):%(,B(G)*E(G));

(2) G is upper embeddable if and only if £(G)<C 1.
It is clear from theorem A(1) that the maximum genus of a graph G is mainly determined by the Bet-
ti deficiency £(G) ,for which Nebesky in ref. [ 6] has given another combinatorial expression.

Theorem B Let G be a graph. Then £(G) = max {¢c(G\A) +b(G\A)— |A|—1}.

AS E(G)

For two subgraphs F and H of a graph G,let E(F, H) denote edges one of whose end vertices are in
V(F) and the others in V(H). And let E(F,G) denote edges one of whose end vertices are in V(F) and
the others not in V(F).

The following theorem in ref. [7] provides a structural characterization for a non-upper embeddable
graph,i. e. graph G with é(G)=>2,and plays a fundamental role throughout this paper.

Theorem C Let G be a graph. If G is not upper embeddable,i. e. ,&6&(G)= 2,there exists an edge sub-
set A of G satisfying the following properties:

(1) ¢(G\A)= 2,and furthermore for any component F of G\A,B(F)= 1(mod 2);

(2) for any component F of G\A,F is a vertex-induced subgraph of G;

(3) for any k(= 2) different connected components F, ,F,,++,F,,then |E,(F, ,F,,+,F,)|<< 2k—
3,when k=2,|E;(F, ,F,)< 1,specially;

(D) E(G)=2c¢(G\A)— |A|—1.

Suppose A is such a chosen edge subset of G as in theorem C above. With the help of this notion, we
have the following result,a continuation of theorem C.

Theorem D Under the conditions and the conclusions of theorem C,we have

(1) for any connected component F of G\ A, let G be a graph with k-connectivity (k= 1), then
|E(G,F) [ = k;
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() |A|= %Z (E(G\F,F) ,where the sum is taken over all connected components F of G\A.
=

4  Main Results

In this section,the author will investigate the upper embeddability of graphs with 3-connected.

Paper [ 4] demonstrates that a graph with 3-connectivity can be upper embeddable when its all verti-
ces with even degree. Naturally, we will think of the upper-embeddablity of a graph with 3-connectivity
when all its vertices with odd degree. Generally,such graphs would not be all upper embeddable. In fact,
there exist a number of graphs with 3-connectivity and 3-regular not being upper embeddable. But,if we
add the condition of “having 4-polygon 2-factor”,we can obtain the following theorem:

Theorem 1 ILet G be a 3-connectivity graph having 4-polygon 2-factor and for any v&€V(G) .d; (v)
=1(mod 2),graph G is upper embeddable.

Proof Suppose G not be upper embeddable,i. e. £€(G)=2. By theorem C,we can know that there
exists an edge-subset A of G making G\ A satisfy all the properties (1)~ (4) of theorem C. Let H,,H,,
«,H,(k=2) be all connected components of G\A,where [=c(G\A)=>=2. We only need to prove that |E
(G,H;)|>= 4 for any H,;(1<{i< [). First, because of the graph with 3-connectivity, we can easily obtain
that |E(G,H;)| = 3 from theorem D(1). Then we only need to prove that |E(G,H;)|” 3. If not,we sup-
pose that E(G,H;)={e, ,e;,e;} and let x,y,2 be the endpoints of e, ,e, ,e; respectively, which belong to
H, and the three endpoints x,y and z are different because of the graph G with 3-connectivity. According
to the graph G having 4-polygon 2-factor,one of the following two situations are sure to occurr; (a) there
are two edges of e, ,e, and e; belonging to some 4-circle, while the third edge not belonging to any 4-cir-
cle; (b)any edge of ¢, ,e, and e; does not belong to any 4-circle. Noting the difference among x,y and 2, we
can obtain the following conclusions:if the case (a) happens, the number of vertexes in H; can be ex-
pressed as 4n+2(n=1) ;if the case (b) happened,the number of vertexes in H; can be expressed as 4n(n
—=1). No matter what circumstances, the number of vertexes in H; is even. And we can easily know that
there are only three vertexes x,yand ¥ with even degree,so the components H, has odd vertexes with odd
degree. That is a clear contradiction. Then we can obtain that for any components H, (1<l i< ), the ine-
quality |E(G,H;)|>= 4 comes into existence. It is known from theorem D(2) and theorem C(4) respec-
tively, we can obtain that |A|>2/ and £&(G)<{—1,which contradics with £(G)>>2. Thus the proof of the
theorem is finished.

A corollary can be obtained from theorem 1. We will introduce a definition before giving the corollary.

A graph G is called circle-k-edge-connected if any two different circles of G need removal of at least £
edges fromG.

Corollary 1 Every circle-3-edge-connected graph G,if it has a 4-polygon 2-factor;and for any v&V
(G),d;(v)=1(mod 2) ,the graph G is upper embeddable.

Proof Suppose G not be upper embeddable,i. e. £(G)=>2. By theorem C, we can know that there
exists an edge-subset A of G making G\ A satisfy all the properties (1)~ (4) of theorem C. Let H, ,H,,
<+, H,(k=2) be all connected components of G\A,where [=c(G\A)=>2. We only need to prove that |E
(G,H;) | = 4 for any H;(1<<i<< [). From theorem C,for any connected component F of G\A,F has a cir-
cle toosand also because of G being a circle-3-edge-connected graph, we have | E(G, H;)|>= 3. Next we
only need to prove that |E(G,H;)|+3. The remaining process is similar to theorem 1.

Then,we will use 2-factor to study the upper embeddability of graphs with even-regular.

Theorem 2 Let G be an even—regular connected graph with no cut-vertex,if it has a 4-polygon 2-fac-

tor,then the graph G is upper embeddable.
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Proof Suppose G not be upper embeddable,i. e. £(G)=>2. By the theorem C, we can know that
there exists an edge-subset A of G making G\ A satisfy all the properties (1)~ (4) of theorem C. Let H, ,
H,,,H,(k=2) be all connected components of G\A,where [=c(G\A)=2. From theorem D,every H;
has at least a circle,where (1<{ i<{0). Let F be a 4-polygon 2-factor,we will prove that |E(G,H,)|>= 4
for any (1<C i< ). Fistly, because the graph G is a connected graph, | E(G,H;) | =1 from theorem C.
And also we have |E(G,H;)|#1,3 due to the Euler model of graph G.

Now we only need to prove |E(G,H,)|# 2 for any (1< i<{[). Otherwise, let E(G, H;,) ={e, ,e,}
whose endpoints in V(H;) are x and y respectively. Because the graph G has no vertices, then x5 y. Ac
cording to the graph G having 4-polygon 2-factor,one of t he following two situations are sure to occurr:
(a) the two edges of ¢; and e, belong to some 4-circle; (b)both of the two edges e, and e, do not belong to
any 4-circle. Noting the difference between x and y,we can obtain the following conclusions:if the case
(a) happens,the number of vertexes in H; can be expressed as 4n+2(n=>1) ;if the case (b) happened, the
number of vertexes in H, can be expressed as 4n(n—=>1). No matter what circumstances, the number of
vertexes in H; is even. Because G is even-regular graph.d;(v) =2k for any v& V(G). We have
1

DO da(o) —2) = L2k | VAHD) | =1 =& | VCH) |1,

‘ E(HI) |7 vE V(H}) 2
and
B(H)) =| E(H) |—| V(H) |+1= (k—1) | V(H;,) | = 0(mod 2),
it is a clear contradiction to theorem C(1). Same to theorem 1,we have | A|>= 2/ and £(G)<{—1 which

contradics with the assumption of £(G)==2. Then theorem 2 can be obtained.
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