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This article contributes to the search for a notion of postural
style, focusing on the issue of classifying subjects in terms of how
they maintain posture. Longer term, the hope is to make it possi-
ble to determine on a case by case basis which sensorial information
is prevalent in postural control, and to improve/adapt protocols for
functional rehabilitation among those who show deficits in maintain-
ing posture, typically seniors. Here, we specifically tackle the statisti-
cal problem of classifying subjects sampled from a two-class popula-
tion. Each subject (enrolled in a cohort of 54 participants) undergoes
four experimental protocols which are designed to evaluate potential
deficits in maintaining posture. These protocols result in four com-
plex trajectories, from which we can extract four small-dimensional
summary measures. Because undergoing several protocols can be un-
pleasant, and sometimes painful, we try to limit the number of pro-
tocols needed for the classification. Therefore, we first rank the pro-
tocols by decreasing order of relevance, then we derive four plug-in
classifiers which involve the best (i.e., more informative), the two
best, the three best and all four protocols. This two-step procedure
relies on the cutting-edge methodologies of targeted maximum likeli-
hood learning (a methodology for robust and efficient inference) and
super-learning (a machine learning procedure for aggregating vari-
ous estimation procedures into a single better estimation procedure).
A simulation study is carried out. The performances of the proce-
dure applied to the real data set (and evaluated by the leave-one-out
rule) go as high as an 87% rate of correct classification (47 out of 54
subjects correctly classified), using only the best protocol.

1. Introduction. This article contributes to the search for a notion of
postural style, focusing on the issue of classifying subjects in terms of how
they maintain posture.

Posture is fundamental to all activities, including locomotion and pre-
hension. Posture is the fruit of a dynamic analysis by the brain of visual,
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proprioceptive and vestibular information. Proprioceptive information stems
from the ability to sense the position, location, orientation and movement of
the body and its parts. Vestibular information roughly relates to the sense
of equilibrium. Every individual develops his/her own preferences according
to his/her sensorimotor experience. Sometimes, a sole kind of information
(usually visual) is processed in all situations. Although this kind of process-
ing may be efficient for maintaining posture in one’s usual environment, it
is likely not adapted to reacting to new or unexpected situations. Such sit-
uations may result in falling, the consequences of a fall being particularly
bad in seniors. Longer term, the hope is to make it possible to determine
on a case by case basis which sensorial information is prevalent in postural
control, and to improve/adapt protocols for functional rehabilitation among
those who show deficits in maintaining posture, typically seniors.

As in earlier studies [Bertrand et al. (2001), Chambaz, Bonan and Vi-
dal (2009) and references therein], our approach to characterizing postural
control involves the use of a force-platform. Subjects standing on a force-
platform are exposed to different perturbations, following different exper-
imental protocols (or simply protocols in the sequel). The force-platform
records over time the center-of-pressure of each foot, that is, “the position of
the global ground reactions forces that accommodates the sway of the body”
[Newell et al. (1997)]. A protocol is divided into three phases: a first phase
without perturbation, followed by a second phase with perturbation, fol-
lowed by a last phase without perturbation. Different kinds of perturbations
are considered. They can be characterized either as visual, or proprioceptive,
or vestibular, depending on which sensorial system is perturbed.

We specifically tackle the statistical problem of classifying subjects sam-
pled from a two-class population. The first class regroups subjects who do
not show any deficit in postural control. The second class regroups hemi-
plegic subjects, who suffer from a proprioceptive deficit. Even though dif-
ferentiating two subjects from the two groups is relatively easy by visual
inspection, it is a much more delicate task when relying on some general
baseline covariates and the trajectories provided by a force-platform. Fur-
thermore, since undergoing several protocols can be unpleasant, and some-
times painful (some sensitive subjects have to lie down for 15 minutes in
order to recover from dizziness after a series of protocols), we also try to
limit the number of protocols used for classifying.

Our classification procedure relies on cutting-edge statistical methodolo-
gies. In particular, we propose a nice preliminary ranking of the four pro-
tocols (in view of how much we can learn from them on postural control)
which involves the targeted maximum likelihood methodology [van der Laan
and Rubin (2006), van der Laan and Rose (2011)], a statistical procedure for
robust and efficient inference The targeted maximum likelihood methodol-
ogy relies on the super-learning procedure, a machine learning methodology
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for aggregating various estimation procedures (or simply estimators) into
a single better estimation procedure/estimator [van der Laan, Polley and
Hubbard (2007), van der Laan and Rose (2011)]. In addition to being a key
element of the targeted maximum likelihood ranking of the protocols, the
super-learning procedure plays also a crucial role in the construction of our
classification procedure.

We show that it is possible to achieve an 87% rate of correct classification
(47 out of 54 subjects correctly classified; the performance is evaluated by
the leave-one-out rule), using only the more informative protocol. Our clas-
sification procedure is easy to generalize (we actually provide an example of
generalization), so we reasonably hope that even better results are within
reach (especially considering that more data should soon augment our small
data set). The interest of the article goes beyond the specific application.
It nicely illustrates the versatility and power of the targeted maximum like-
lihood and super-learning methodologies. It also shows that retrieving and
comparing small-dimensional summary measures from complex trajectories
may be convenient to classify them.

The article is organized as follows. In Section 2 we describe the data set
which is at the core of the study. The classification procedure is formally
presented in Section 3, and its performances, evaluated by simulations, are
discussed in Section 4. We report in Section 5 the results obtained by ap-
plying the latter classification procedure to the real data set. We relegate to
the supplementary file [Chambaz and Denis (2012)] a self-contained presen-
tation of the super-learning procedure as it is used here, and the descrip-
tion of an estimation procedure/estimator that will play a great role in the
super-learning procedure applied to the construction of our classification
procedure.

2. Data description. The data set, collected at the Center for the study
of sensorimotor functioning (CESEM, Université Paris Descartes), is de-
scribed in Section 2.1. We motivate the Introduction of a summarized version
of each observed trajectory, and present its construction in Section 2.2.

2.1. Original data set. Each subject undergoes four protocols that are
designed to evaluate potential deficits in maintaining posture. The specifics
of the latter protocols are presented in Table 1. Protocols 1 and 2, respec-
tively, perturb the processing of visual data and proprioceptive information
by the brain. Protocol 3 cumulates both perturbations. Protocol 4 relies on
perturbing the processing of vestibular information by the brain through
a visual stimulation.

A total of n= 54 subjects are enrolled. For each of them, the age, gender,
laterality (the preference that most humans show for one side of their body
over the other), height and weight are collected. Among the 54 subjects, 22
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Table 1

Specifics of the four protocols designed to evaluate potential deficits in postural control.
A protocol is divided into three phases: a first phase without perturbation of the posture is
followed by a second phase with perturbations, which is followed by a last phase without
perturbation. Different kinds of perturbations are considered. They can be characterized
either as visual (closing the eyes), or proprioceptive (muscular stimulation), or vestibular

(optokinetic stimulation), depending on which sensorial information is perturbed

Protocol 1st phase (0 → 15 s) 2nd phase (15 → 50 s) 3rd phase (50 → 70 s)

1 eyes closed
2

no perturbation
muscular stimulation

no perturbation
3 eyes closed

muscular stimulation
4 optokinetic stimulation

are hemiplegic (due to a cerebrovascular accident), and therefore suffer from
a proprioceptive deficit in postural control. Initial medical examinations
concluded that the 32 other subjects show no pronounced deficits in postural
control. We will refer to those subjects as normal subjects.

For each protocol, the center of pressure of each foot is recorded over
time. Thus, each protocol results in a trajectory (Xt)t∈T = (Lt,Rt)t∈T , where
Lt = (L1

t ,L
2
t ) ∈ R

2 [resp., Rt = (R1
t ,R

2
t )] gives the position of the center of

pressure of the left (resp., right) foot on the force-platform at time t, for
each t in T = {kδ : 1≤ k ≤ 2800} where the time-step δ = 0.025 seconds (the
protocol lasts 70 seconds). We represent in Figure 1 two such trajectories
(Xt)t∈T associated with a normal subject and a hemiplegic subject, both
undergoing the third protocol (see Table 1). Note that we do not take into
account the first few seconds of the recording that a generic subject needs
to reach a stationary behavior.

Figure 1 confirms the intuition that the structure of a generic trajectory
(Xt)t∈T is complicated, and that a mere visual inspection is, at least on this
example, of little help for differentiating the normal and hemiplegic subjects.
Although several articles investigate how to model and use such trajectories
directly [Bertrand et al. (2001), Chambaz, Bonan and Vidal (2009)], we
rather choose to rely on a summary measure of (Xt)t∈T instead of relying
on (Xt)t∈T .

2.2. Constructing a summary measure. The summary measure that we
construct is actually a summary measure of a one-dimensional trajectory
(Ct)t∈T that we initially derive from (Xt)t∈T . First, we introduce the trajec-
tory of barycenters, (Bt)t∈T = (12 (Lt +Rt))t∈T . Second, we evaluate a ref-
erence position b which is defined as the componentwise median value of
(Bt)t∈T∩[0,15] (i.e., the median value over the first phase of the protocol).
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Fig. 1. Sequences t 7→ Lt (left) and t 7→Rt (right) of positions of the center of pressure
over T of both feet on the force-platform, associated with a normal subject (top) and
a hemiplegic subject (bottom), who undergo the third protocol (see Table 1).

Third, we set Ct = ‖Bt−b‖2 for all t ∈ T , the Euclidean distance between Bt

and the reference position b, which provides a relevant description of the
sway of the body during the course of the protocol. We plot in Figure 2 two
examples of (Ct)t∈T corresponding to two different protocols undergone by
a hemiplegic subject.

Because the most informative features can be found at the start and end of
the second phase, we use the following finite-dimensional summary measure

Fig. 2. Representing the trajectories t 7→ Ct over T which correspond to two different
protocols undergone by a hemiplegic subject (protocol 1 on the left, protocol 3 on the right).
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Fig. 3. Visual representation of the definition of the finite-dimensional summary mea-
sure Y of (Xt)t∈T . The four horizontal segments (solid lines) represent, from left to right,
the averages C̄−

1 , C̄+
1 , C̄−

2 , C̄+
2 of (Ct)t∈T over the intervals [10,15[, ]15,20], [45,50[,

]50,55]. The three vertical segments (solid lines ending by an arrow) represent, from top
to bottom, the components Y1, Y2 and Y3 of Y . Two additional vertical lines indicate the
beginning and ending of the second phase of the considered protocol.

of (Xt)t∈T [through (Ct)t∈T ]:

Y = (C̄+
1 − C̄−

1 , C̄
−
2 − C̄+

1 , C̄
+
2 − C̄−

2 ),(2.1)

where

C̄−
1 =

δ

5

∑

t∈T∩[10,15[

Ct, C̄+
1 =

δ

5

∑

t∈T∩ ]15,20]

Ct,

C̄−
2 =

δ

5

∑

t∈T∩[45,50[

Ct, C̄+
2 =

δ

5

∑

t∈T∩ ]50,55]

Ct

are the averages of Ct computed over the intervals [10,15[, ]15,20], [45,50[
and ]50,55] (i.e., over the last/first 5 seconds before/after the beginning/
ending of the second phase of the protocol of interest). We arbitrarily choose
this 5-second threshold. Note that C̄−

2 − C̄−
1 = Y2 + Y1, C̄

+
2 − C̄−

1 = Y3 + Y2,
C̄+
2 − C̄+

1 = Y1+Y2+Y3 are linear combinations of the components of Y . We
refer to Figure 3 for a visual representation of the definition of the summary
measure Y .

3. Classification procedure. We describe hereafter our two-step classifi-
cation procedure. We formally introduce the statistical framework that we
consider in Section 3.1. The first step of the classification procedure con-
sists in ranking the protocols from the most to the less informative with
respect to some criterion; see Section 3.2. The second step consists of the
classification; see Section 3.3.

3.1. Statistical framework. The observed data structure O writes as O=
(W,A,Y 1, Y 2, Y 3, Y 4), where
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• W ∈ R× {0,1}2 × R
2 is the vector of baseline covariates (corresponding

to initial age, gender, laterality, height and weight, see Section 2.1);
• A ∈ {0,1} indicates the subject’s class (with convention A= 1 for hemi-

plegic subjects and A= 0 for normal subjects);
• for each j ∈ {1,2,3,4}, Y j ∈ R

3 is the summary measure [as defined
in (2.1)] associated with the jth protocol.

We denote by P0 the true distribution of O. Since we do not know much
about P0, we simply see it as an element of the nonparametric set M of all
possible distributions of O.

We need a criterion to rank the four protocols from the most to the less
informative in view of the subject’s class. To this end, we introduce the
functional Ψ :M→ R

12 such that, for any P ∈M, Ψ(P ) = (Ψj(P ))1≤j≤4,
where

Ψj(P ) = (EP {EP [Y
j
i |A= 1,W ]−EP [Y

j
i |A= 0,W ]})1≤i≤3.

The component Ψj
i (P ) is known in the literature as the variable importance

measure of A on the summary measure Y j
i controlling for W [van der Laan

and Rose (2011)]. Under causal assumptions, it can be interpreted as the

effect of A on Y j
i . More generally, we are interested in Ψj

i (P0) because the
further it is from zero, the more knowledge on A we expect to gain from
the observation of W and the summary measure Y j

i [i.e., by comparing
the averages of (Ct)t∈T computed over the time intervals corresponding to
index i; see Section 2.2]. For instance, say that Ψ2

1(P0)> 0: this means that
(in P0-average) the variation in mean of the mean postures C̄−

1 and C̄+
1

of a hemiplegic subject computed before and after the beginning of the
muscular perturbation is larger than that of a normal subject. In words, the
postural control of a hemiplegic subject is more affected by the beginning
of the muscular perturbation than the postural control of a normal subject.

3.2. Targeted maximum likelihood ranking of the protocols. Our ranking
of the four protocols relies on testing the null hypotheses

“Ψj
i (P0) = 0,” (i, j) ∈ {1,2,3} × {1,2,3,4},

against their two-sided alternatives. Heuristically, rejecting “Ψj
i (P0) = 0”

tells us that the value of the ith coordinate of the summary measure Y j

provides helpful information for the sake of determining whether A= 0 or
A= 1.

We consider tests based on the targeted maximum likelihood methodology
[van der Laan and Rubin (2006), van der Laan and Rose (2011)]. Because
presenting a self-contained introduction to the methodology would signifi-
cantly lengthen the article, we provide below only a very succinct description
of it. The targeted maximum likelihood methodology relies on the super-
learning procedure, a machine learning methodology for aggregating various
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estimators into a single better estimator [van der Laan, Polley and Hub-
bard (2007), van der Laan and Rose (2011)], based on the cross-validation
principle. Since super-learning also plays a crucial role in our classification
procedure (see Section 3.3), and because it is possible to present a relatively
short self-contained introduction to the construction of a super-learner, we
propose such an introduction in the supplementary file [Chambaz and Denis
(2012)].

Let O(1), . . . ,O(n) be n independent copies of O. For each (i, j) ∈ {1,2,3}×
{1,2,3,4}, we compute the targeted maximum likelihood estimator (TMLE)

Ψj
i,n of Ψj

i (P0) based on O(1), . . . ,O(n) and an estimator σj
i,n of its asymp-

totic standard deviation σj
i (P0). The methodology applies because Ψj

i is
a “smooth” parameter. It notably involves the super-learning of the con-
ditional means Qj

i (P0)(A,W ) = EP0(Y
j
i |A,W ) and of the conditional dis-

tribution g(P0)(A|W ) = P0(A|W ) (the collection of estimators aggregated
by super-learning is given in the supplementary file [Chambaz and Denis

(2012)]). Under some regularity conditions, the estimator Ψj
i,n of Ψj

i (P0)

is consistent when either Qj
i (P0) or g(P0) is consistently estimated, and it

satisfies a central limit theorem. In addition, if g(P0) is consistently esti-

mated by a maximum-likelihood based estimator, then σj
i,n is a conservative

estimator of σj
i (P0). Thus, we can consider in the sequel the test statistics

T j
i,n =

√
nΨj

i,n/σ
j
i,n (all (i, j) ∈ {1,2,3} × {1,2,3,4}).

Now, we rank the four protocols by comparing the 3-dimensional vectors
of test statistics (T j

1,n, T
j
2,n, T

j
3,n) for 1≤ j ≤ 4. Several criteria for comparing

the vectors were considered. They all relied on the fact that the larger is |T j
i,n|

the less likely the null “Ψj
i (P0) = 0” is true. Since the results were only

slightly affected by the criterion, we focus here on a single one. Thus, we
decide that protocol j is more informative than protocol j′ if

3
∑

i=1

(T j′

i,n)
2 <

3
∑

i=1

(T j
i,n)

2.

This rule is motivated by the fact that, if σj
1,n, σ

j
2,n, σ

j
3,n are consistent es-

timators of σj
1(P0), σ

j
2(P0), σ

j
3(P0), then

∑3
i=1(T

j
i,n)

2 asymptotically follows

the χ2(3) distribution under Hj
0 : “Ψ

j(P0) = 0.”
By definition of O and by construction of the TMLE procedure, this rule

yields almost surely a final ranking of the four protocols from the more to
the less informative for the sake of determining whether A= 0 or A= 1.

3.3. Classifying a new subject. We now build a classifier φ for deter-
mining whether A = 0 or A = 1 based on the baseline covariates W and
summary measures (Y 1, Y 2, Y 3, Y 4). To study the influence of the ranking
on the classification, we actually build four different classifiers φ1, φ2, φ3, φ4
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which, respectively, use only the best (more informative) protocol, the two
best, the three best and all four protocols. So φj is a function of W and of j
among the four vectors Y 1, Y 2, Y 3, Y 4.

Say that J ⊂ {1,2,3,4} has J elements. First, we build an estimator
hJn(W,Y j , j ∈ J ) of P0(A= 1|W,Y j, j ∈ J ) based on O(1), . . . ,O(n), relying
again on the super-learning methodology (the collection of estimators in-
volved in the super-learning is given in the supplementary file [Chambaz
and Denis (2012)]). Second, we define

φJ(W,Y j, j ∈ J ) = 1{hn(W,Y j , j ∈ J )≥ 1
2}

and decide to classify a new subject with information (W,Y j , j ∈ J ) into
the group of hemiplegic subjects if φJ(W,Y j, j ∈ J ) = 1 or into the group
of normal subjects otherwise.

Thus, the classifier φJ relies on a plug-in rule, in the sense that the Bayes
decision rule 1{P0(A = 1|W,Y j , j ∈ J ) ≥ 1

2} is mimicked by the empirical

version where one substitutes an estimator of P0(A = 1|W,Y j, j ∈ J ) for
the latter regression function. Such classifiers can converge with fast rates
under a complexity assumption on the regression function and the so-called
margin condition [Audibert and Tsybakov (2007)].

4. Simulation study. In this section we carry out and report the results
of a simulation study of the performances of the classification procedure
described in Section 3. The details of the simulation scheme are presented
in Section 4.1, and the results are reported and evaluated in Section 4.2.

4.1. Simulation scheme. Instead of simulating (W,A) and the four com-
plex trajectories (X1

t )t∈T , (X
2
t )t∈T , (X

3
t )t∈T , (X

4
t )t∈T associated with four

fictitious protocols, we generate directly (W,A) and the summary mea-
sures Y 1, Y 2, Y 3, Y 4 that one would have derived from the trajectories
(X1

t )t∈T , (X
2
t )t∈T , (X

3
t )t∈T , (X

4
t )t∈T . Three different scenarios/probability

distributions P 1
0 , P

2
0 , P

3
0 are considered. They only differ from each other

with respect to the conditional distributions g(P 1
0 ), g(P

2
0 ), g(P

3
0 ) (see Ta-

ble 2 for their characterization).

Table 2

Characterization of the three conditional distributions g(P k
0 ),

k = 1,2,3, as considered in the simulation scheme

Scenario 1: logit g(P 1
0 )(A= 1|W ) =

W1

50
+

W2

50
−

W3

10
−

W4

2000
+W5

Scenario 2: logit g(P 2
0 )(A= 1|W ) = cos(W1 +W5) + sin(W1 +W5)

Scenario 3: logit g(P 3
0 )(A= 1|W ) = ⌊10cos(W1 +W3)⌋

+
√

5cos(W1 +W3)− ⌊5cos(W1 +W3)⌋
π

50
sin(10 cos(W1 +W3))
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Table 3

Conditional means Q
j
i (A,W ) of Y j

i given (A,W ), (i, j) ∈ {1,2,3} × {1,2,3,4}, as used in
the three different scenarios of the simulation scheme

Fictitious protocol Conditional means

j = 1 Q
1
1(A,W ) = 2[A sin(W1 +W4) + (1−A) cos(W1 +W5)]

Q
1
2(A,W ) = 3

[

(1− 6A)X5 −AX
4 +X

3 −

(

1−
A

2

)

X
2 +AX

]

where X =
(1− 2A)W5

160
+

A

4
Q

1
3(A,W ) =A tan(W4) + (1−A) tan(W5 +W1W2)

j = 2 Q
2
1(A,W ) =

1

120
[A+W1 +W2 +W3 +W5 +W1W2

+ (1−A)W5 +W2W3W4]

Q
2
2(A,W ) = 5[A sin(W1 +W4) + (1−A) cos(W1 +W4)]

Q
2
3(A,W ) =

1

20

[

A

(

2W1 +
3

2
W3

)

+ (1−A)W5

]

j = 3 Q
3
1(A,W ) =A log

(

2W1 +
3

2
W3

)

+ (1−A) log(W5)

Q
3
2(A,W ) =

1

45
(X + 7)(X + 2)(X − 7)(X − 3)

where X =
W4 +W5

145 +AW1

Q
3
3(A,W ) = π[A sin(X)(⌊2X⌋+

√

2X − ⌊2X⌋)

+ (1−A) cos(X)(⌊2X⌋+
√

2X − ⌊2X⌋)]

where X = cos(W3 +W4 +W5)

j = 4 Q
4
1(A,W ) =

1

100
(2X3 +X

2 −X − 1)

where X =
AW2 +W4 +W5

30

Q
4
2(A,W ) =

1

60
(A+W1 +W2 +W3 +W5)

Q
4
3(A,W ) =

1

1000

[

W1W3W4

3
+ (1−A)(W1 +W3W4) +AW2W5

]

For each k = 1,2,3, an observation O = (W,A,Y 1, Y 2, Y 3, Y 4) drawn
from P k

0 meets the following constraints:

1. W is drawn from a slightly perturbed version of the empirical distribu-
tion of W as obtained from the original data set (the same for all k = 1,2,3);

2. conditionally on W , A is drawn from g(P k
0 )(·|W );

3. conditionally on (A,W ) and for each (i, j) ∈ {1,2,3}×{1,2,3,4}, Y j
i is

drawn from the Gaussian distribution with mean Qj
i (A,W ) (the same for

all k = 1,2,3; see Table 3 for the definition of the conditional means) and
common standard deviation σ ∈ {0.5,1}.

Although that may not be clear when looking at Table 2, the difficulty of
the classification problem should vary from one scenario to the other. When
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Fig. 4. Visual representation of the three conditional distributions considered in
the simulation scheme. We plot the empirical cumulative distribution functions of
{gk(A= 1|W(ℓ)) : ℓ= 1, . . . , n} for k = 1 (solid line), k = 2 (dashed line) and k = 3 (dotted
line), where W(1), . . . ,W(L) are independent copies of W drawn from the marginal distri-
bution of W under P k

0 (which does not depend on k), and L= 105.

using the first conditional distribution g(P 1
0 ), the conditional probability of

A = 1 given W is concentrated around 1
2 , as seen in Figure 4 (solid line),

with P 1
0 (g(P

1
0 )(1|W ) ∈ [0.48,0.54]) ≃ 1. In words, the covariate provides lit-

tle information for predicting the class A. On the contrary, estimating g(P 1
0 )

from the data is easy since logit g(P 1
0 )(A= 1|W ) is a simple linear function

of W . The conditional probabilities of A= 1 given W under g(P 2
0 ) and g(P 3

0 )
are less concentrated around 1

2 , as seen in Figure 4 (dashed and dotted lines,
resp.). Thus, the covariates may provide valuable information for predict-
ing the class. But this time, logit g(P 2

0 ) and logit g(P 3
0 ) are tricky functions

of W .
Likewise, the family of conditional means Qj

i (A,W ) of Y j
i given (A,W )

that we use in the simulation scheme is meant to cover a variety of situa-
tions with regard to how difficult it is to estimate each of them and how
much they tell about the class prediction. Instead of representing the latter
conditional means, we find it more relevant to provide the reader with the
values (computed by Monte-Carlo simulations) of

Sj(P k
0 ) =

3
∑

i=1

(

Ψj
i (P

k
0 )

σj
i (P

k
0 )

)2

for (j, k) ∈ {1,2,3,4}×{1,2,3} and σ ∈ {0.5,1}; see Table 4. Indeed, nSj(P k
0 )

should be interpreted as a theoretical counterpart to the criterion
∑3

i=1(T
j
i,n)

2.
In particular, we derive from Table 4 the theoretical ranking of the protocols:
for every scenario P k

0 and σ ∈ {0.5,1}, the protocols ranked by decreasing
order of informativeness are protocols 3, 2, 1, 4.



12 A. CHAMBAZ AND C. DENIS

Table 4

Values of Sj(P k
0 ) for (j, k) ∈ {1,2,3,4} × {1,2,3} and σ ∈ {0.5,1}. They notably teach us

that, for every scenario P k
0 and σ ∈ {0.5,1}, the protocols ranked by decreasing order of

informativeness are protocols 3, 2, 1, 4

Scenario 1 Scenario 2 Scenario 3

Fictitious protocol σ = 0.5 σ = 1 σ = 0.5 σ = 1 σ = 0.5 σ = 1

j = 1 0.14 0.04 0.11 0.03 0.14 0.04
j = 2 0.86 0.37 0.74 0.31 0.85 0.37
j = 3 2.94 1.12 2.49 0.93 2.90 1.11
j = 4 0.06 0.01 0.04 0.01 0.06 0.01

4.2. Leave-one-out evaluation of the performances of the classification

procedure. We rely on the leave-one-out rule to evaluate the performances
of the classification procedure. We acknowledge that they usually result in
overly optimistic error rates. Specifically, we repeat independently B = 100
times the following steps for k = 1,2,3:

1. Draw independently O(1,b), . . . ,O(n,b) from P k
0 , with n= 54; we denote

by A(ℓ,b) the group membership indicator associated with O(ℓ,b), and by O′
(ℓ,b)

the observed data structure O(ℓ,b) deprived of A(ℓ,b).
2. For each ℓ ∈ {1, . . . , n},

(a) set S(ℓ,b) = {O(ℓ′,b) : ℓ
′ 6= ℓ, ℓ′ ≤ n};

(b) based on S(ℓ,b), rank the protocols (see Section 3.2), then build

four classifiers φ1
(ℓ,b), φ2

(ℓ,b), φ3
(ℓ,b) and φ4

(ℓ,b) (see Section 3.3),

which, respectively, use only the best (more informative), the two
best, the three best and all four protocols (thus, φJ

(ℓ,b) is a func-

tion of the covariate W and of J among the four vectors Y 1,
Y 2, Y 3, Y 4);

(c) classify O(ℓ,b) according to the four classifications φ1
(ℓ,b)(O

′
(ℓ,b)),

φ2
(ℓ,b)(O

′
(ℓ,b)), φ

3
(ℓ,b)(O

′
(ℓ,b)), φ

4
(ℓ,b)(O

′
(ℓ,b)).

3. Compute PerfJb = 1
n

∑n
ℓ=1 1{A(ℓ,b) = φJ

(ℓ,b)(O
′
(ℓ,b))} for J = 1,2,3,4.

From these results, we compute for each J ∈ {1,2,3,4} the mean and stan-
dard deviation of the sample (PerfJ1 , . . . ,Perf

J
B). All the standard deviations

are approximately equal to 5%. Second, for every value of σ ∈ {0.5,1}, per-
formance PerfJ actually depends only slightly on J (i.e., on the number
of protocols taken into account in the classification procedure), without any
significant difference for j = 1,2,3,4. Third, the latter performances all equal
approximately 80% when σ = 1, and increase to approximately 90% when
σ = 0.5. This increase is the expected illustration of the fact that the larger
is the variability of the summary measures, the more difficult is the clas-
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Table 5

Ranking the four protocols using the entire real data set. We report the realizations of the
criteria

∑3
i=1(T

j
i,n)

2 obtained for protocols j = 1,2,3,4. These values teach us that the
most informative protocol is protocol 3, and that the three next protocols ranked by

decreasing order of informativeness are protocols 2, 1 and 4

Protocol j = 3 j = 2 j = 1 j = 4

Criterion
∑3

i=1(T
j
i,n)

2 75.51 33.13 6.80 5.53

sification procedure. On the contrary, it is a little bit surprising that the
conditional distributions g(P 1

0 ), g(P
2
0 ), g(P

3
0 ) do not affect significantly the

performances. Anecdotally, the estimated ranking of the protocols always
coincide with the ranking that we derived from Table 4.

5. Application to the real data set. We present here the results of the
classification procedure of Section 3 applied to the real data set. Thus, we
first rank the protocols from the more to the less informative regarding pos-
tural control (see Section 5.1); then we construct the four classifiers and rely
on the leave-one-out rule to evaluate their performances (see Section 5.2).
A natural extension of the classification procedure is considered and applied
in Section 5.3, and yields significantly better results. We conclude the article
with a discussion; see Section 5.4.

5.1. Targeted maximum likelihood ranking of the protocols over the real

data set. Hemiplegic subjects are known to be sensitive to muscular stim-
ulations, and also to tend to compensate for their proprioceptive deficit by
developing a preference for visual information in order to maintain posture
[Bonan et al. (1996)]. This suggests that protocols involving muscular and/or
visual stimulations should rank high. What do the data tell us?

We derive and report in Table 5 the results of the ranking of the proto-
cols using the entire data set. Table 5 teaches us that the most informative
protocol is protocol 3 (visual and muscular stimulations), and that the three
next protocols ranked by decreasing order of informativeness are protocols 2
(muscular stimulation), 1 (visual stimulation) and 4 (optokinetic stimula-
tion). Apparently, protocols 3 and 2 (which have in common that muscular
stimulations are involved) are highly relevant for differentiating normal and
hemiplegic subjects based on postural control data. On the contrary (and
perhaps surprisingly, given the introductory remark), protocols 1 and 4 seem
to provide significantly less information for the same purpose.

5.2. Classification procedures applied to the real data set. To evaluate
the performances of the classification procedure applied to the real data
set, we carry out steps 2a, 2b, 2c from the leave-one-out rule described
in Section 4.2, where we substitute the real data set O(1), . . . ,O(n) for the
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Table 6

Leave-one-out performances PerfJ of the classification procedure using the real data set.
Performance PerfJ corresponds to the classifier based on J among the four vectors Y 1,
Y 2, Y 3, Y 4 (those associated with the J more informative protocols) and either using all

estimators (second row) or only two of them (third row) in the super-learner (see
Appendix A in the supplementary file [Chambaz and Denis (2012)])

J = 1 J = 2 J = 3 J = 4

PerfJ (all est.) 0.70 (38/54) 0.80 (43/54) 0.74 (40/54) 0.78 (42/54)
PerfJ (two est.) 0.74 (40/54) 0.81 (44/54) 0.78 (42/54) 0.85 (46/54)

simulated one. We actually do it twice. The first time, the super-learning
methodology involves a large collection of estimators; the second time, we
justify resorting to a smaller collection (see the supplementary file [Chambaz
and Denis (2012)]). We report the results in Table 6, where the second and
third rows, respectively, correspond to the first (larger collection) and second
(smaller collection) rounds of performance evaluation.

Consider first the performances of the classification procedure relying on
the larger collection. The proportion of subjects correctly classified (evalu-
ated by the leave-one-out rule) equals only 70% (38 out of the 54 subjects
are correctly classified) when the sole most informative protocol (i.e., pro-
tocol 3) is exploited. This rate jumps to 80% (43 out of 54 subjects are
correctly classified) when the two most informative protocols (i.e., proto-
cols 3 and 2) are exploited. Including one or two of the remaining protocols
decreases the performances.

The theoretical properties of the super-learning procedure are asymptotic,
that is, valid when the sample size n is large, which is not the case in this
study. Even though this is contradictory to the philosophy of the super-
learning methodology, it is tempting to reduce the number of estimators
involved in the super-learning. We therefore keep only two of them, and run
again steps 2a, 2b, 2c from the leave-one-out rule described in Section 4.2,
where we substitute the real data set O(1), . . . ,O(n) for the simulated one.
Results are reported in Table 6 (third row). We obtain better performances:
for each value of J (i.e., each number of protocols taken into account in the
classification procedure), the second classifier outperforms the first one. The
best performance is achieved when all four protocols are used, yielding a rate
of correct classification equal to 85% (46 out of the 54 subjects are correctly
classified). This is encouraging, notably because one can reasonably expect
that performances will be improved on when a larger cohort is available.

Yet, this is not the end of the story. We have built a general methodology
that can be easily extended, for instance, by enriching the small-dimensional
summary measure derived from each complex trajectory. We explore the
effects of such an extension in the next section.
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Table 7

Ranking the four protocols using the entire real data set and the extended
small-dimensional summary measure of the complex trajectories. We report the

realizations of the criteria
∑8

i=1(T
j
i,n)

2 obtained for protocols j = 1,2,3,4. The ranking is
the same as that derived from Table 5

Protocol j = 3 j = 2 j = 1 j = 4

Criterion
∑8

i=1(T
j
i,n)

2 83.64 43.61 14.92 12.60

5.3. Extension. Thus, we enrich the small-dimensional summary mea-
sure initially defined in Section 2.2. Since it mainly involves distances from
a reference point, the most natural extension is to add information pertain-
ing to orientation . Relying on polar coordinates of the trajectory (Bt)t∈T
poses some technical issues. Instead, we propose to fit simple linear models
y(Bt) = vx(Bt) + u [where x(Bt) and y(Bt) are the abscisse and ordinate
of Bt] based on the data sets {Bt : t ∈ T ∩ [10,15[}, {Bt : t ∈ T ∩ [15,20[},
{Bt : t ∈ T ∩ [20,45[}, {Bt : t ∈ T ∩ [45,50[} and {Bt : t ∈ T ∩ [50,55[}, and to
use the slope estimates as summary measures of an average orientation over
each time interval. The observed data structure and parameter of interest
still write as O = (W,A,Y 1, Y 2, Y 3, Y 4) and Ψ(P ) = (Ψj(P ))1≤j≤4, but Y j

and Ψj(P ) now belong to R
8 (and not R

3 anymore). The ranking of the

protocols now relies on the criterion
∑8

i=1(T
j
i,n)

2, whose definition straight-
forwardly extends that of the criterion introduced in Section 3.2. The values
of the criteria are reported in Table 7. The ranking of protocols remains
unchanged, but the discrepancies between the values for protocol 2, on one
hand, and for protocols 1 and 4, on the other hand, are smaller.

We finally apply once again steps 2a, 2b, 2c from the leave-one-out rule
described in Section 4.2, where we substitute the real data set O(1), . . . ,O(n)

for the simulated one, and use either all estimators or only two of them in
the super-learner. The results are reported in Table 8.

Table 8

Leave-one-out performances PerfJ of the classification procedure using the real data set
and the extended small-dimensional summary measure of the complex trajectories.

Performance PerfJ corresponds to the classifier based on J among the four vectors Y 1,
Y 2, Y 3, Y 4 (those associated with the J more informative protocols) and either using all

estimators (second row) or only two of them (third row) in the super-learner (see
Appendix A in the supplementary file [Chambaz and Denis (2012)])

J = 1 J = 2 J = 3 J = 4

PerfJ (all est.) 0.82 (44/54) 0.80 (43/54) 0.80 (43/54) 0.78 (42/54)
PerfJ (two est.) 0.87 (47/54) 0.85 (46/54) 0.80 (43/54) 0.82 (44/54)
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When we include all estimators in the super-learner, the classification pro-
cedure that relies on the extended small-dimensional summary measure of
the complex trajectories outperforms the classification procedure that relies
on the initial summary measure, for every value of J (i.e., each number of
protocols taken into account in the classification procedure). The perfor-
mances are even better when we only include two estimators. Remarkably,
the best performance is achieved using only the most informative protocol,
with a proportion of subjects correctly classified (evaluated by the leave-
one-out rule) equal to 87% (47 out of the 54 subjects are correctly classi-
fied).

5.4. Discussion. We conducted a brief simulation study to evaluate the
performances of the classification procedure. With its three different sce-
narios [i.e., three conditional distribution g(P k

0 )] and four trajectories (i.e.,

twelve conditional means Qj
i ), the simulation scheme is far from compre-

hensive. Rather than extending the simulation study, we discuss here what
additional scenarios would need to be considered before applying the proce-
dure more generally. In the same spirit as in Section 4, one should consider
the following:

• other conditional distributions g(P k
0 ), |g(P k

0 (A= 1|W )− 1/2| being close
to 0 with high probability (W strong predictor of A) or low probability
(W weak predictor of A);

• other conditional means Qj
i , (i, j) ∈ {1,2,3} × {1,2,3,4}, and standard

deviation σ, {Sj(P k
0 ) : j = 2,3,4} having one, two, three or four well-

separated values.

A straightforward generalization would consist in allowing the standard de-
viation of Y j

i to depend on (i, j). Furthermore, another approach to simulat-
ing could be considered, where the trajectories (X1

t )t∈T , (X
2
t )t∈T , (X

3
t )t∈T ,

(X4
t )t∈T would be obtained as realizations of stochastic processes satisfying

a variety of piecewise stochastic differential equations (SDEs). For instance,
the same SDE could be used to simulate the trajectory during the first and
third phases (0→ 15 s and 50→ 70 s, without perturbations), and another
SDE could be used to simulate during the second phase (15→ 50 s, with per-
turbations). On top of that, the breaking points could be drawn randomly
from two symmetric distributions centered at 15 s and 50 s.

This alternative approach to simulating arose while we were trying to
quantify in some way how much information is lost when one substitutes
a summary measure for the original trajectory for the purpose of classify-
ing. Ultimately such a quantification could permit to elaborate new summary
measures with minimal information loss. We did not obtain a satisfactory
answer to this very difficult question. However, we identified important in-
formation that can be derived from the original trajectory, such as mean
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orientation, as used in Section 5.3, and empirical breaking points, as evoked
for the sake of simulating in the previous paragraph, and used for the sake
of classifying by Denis (2011).
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Physique et de réadaptation, CHU Rennes) and P.-P. Vidal (CESEM, Uni-
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SUPPLEMENTARY MATERIAL

Supplementary file: Supplement to “Classification in postural style” (DOI:
10.1214/12-AOAS542SUPP; .pdf). We gather in this Supplementary file
a short and self-contained description of the construction of a super-learner,
as well as the estimation procedures that we choose to involve for the sake
of classifying subjects in postural style. One of those estimation procedures,
a variant of the top-scoring pairs classification procedure, is specifically pre-
sented.
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