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Abstract This paper describes an efficient EM algorithm for maximukelihood estima-
tion of a system of nonlinear structural equations corredjpg to a directed acyclic graph
model that can contain an arbitrary number of latent vaggblhe endogenous variables in
the model must be categorical, while the exogenous vasabbkey be arbitrary. The models
discussed in this paper are an extended version of finiteuneixhodels suitable for causal
inference. An application to the problem of education traission is presented as an illus-
tration.
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1 Introduction

Structural equation models (SEM) are defined by a systemmfrear equations specify-
ing which variables have a direct causal effect on each esrngs variable in the system.
A recursive non parametric SEM is equivalent to a directeatlazgraph (DAG) and, also,
to a set of conditional independence statemeénts.|Peaf{188 shown that, under certain
conditions, (thedack-door and thefront-door criteria) causal effects can be estimated from
the frequency distribution of the observed variables;alwmditions are, however, rather re-
strictive and are difficult to combine with statistical méidg assumptions. In this paper we
restrict attention to models where the full joint distrilomt of observed and latent variables
is identified and we describe an efficient algorithm for maximlikelihood estimation; cer-
tain routines of this algorithm may also be used to computarakdirect causal effects,

[Peall [(2010).
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The class of models considered in this paper may be seen astearsien of latent
class models in the sense that observable variables nedstiotiependent conditionally
on the latent ones. In addition, an observable variable naag l direct effect on a latent
one and a latent variable may have a direct effect on an adtentl which is conceptually
distinct. These models are not entirely new, for examplegiagils (2002) has considered an
application to a social science context of a model which ezl case of those considered
here. The class of mixture models considered by Alfo anddfin(2011) may be seen as
a special case of those studied here, relative to the depeadgructure; a more detailed
discussion will be given in sectién 2.2.

We present an application in the context of education trégsson, a much debated issue
in Econometrics and Labor Economics. In order to assessleateffect of the education
of the parents on that of their child, one needs to controtierlatent endowments of the
parents and that of the child, which are likely to be stroreggociated. The approach we
propose is based on estimating a recursive system of stalietyuations where the natural
endowment of parents and child are treated as two latentgemdos variables; this, we
believe, provides an innovative contribution to the erigtiiterature on the subject which
we review briefly in Section 5.

The class of models studied in this paper are defined in se2tiwhere we examine
the relationship with related models. The computation okimam likelihood estimates
and their implementation are discussed in section 3, aroapprto the evaluation of causal
effects is presented in section 4 and the application toa@ctransmission is presented
in section 5.

2 A class of semi-parametric structural equation models

We recall, foIIowinr@O), that a non parametriarsive structural equation model
is a system of equations in the variabls. . ., Z,

Zi:fi(paivei)v i:lv“'vn (1)

wherepg; is the subset of variables which are assumed to be the daases o¥;, these are
usually callecparents, andes, ... ., &y is a set of independent background exogenous variables
which account for all residual effects. The fact that theeysis recursive implies that, 4,

is a parent o%;; thenh < i. The system is non-parametric in the sense that the disbibu

of the & and the form of the function$; do not need to be specified. Such a system is
equivalent to a causal DAG where endogenous variables presented by nodes and there
is an arrow fromZy, to Z; if Zy is a direct cause of;, that is if Z, € pg;. A convenient
property of causal DAGs is that the joint distribution mayfaetorized into the product of
the conditional distribution of each node given its pareAt®AG can contain one or more
latent nodes, for example in the case of education trangmisliscussed in sectidd 5, the
unobservable endowments of the parents and that of the atéelédupposed to affect the
educational achievements of the latter.

The methodology described in this paper is applicable winglogenous variables, ob-
served or latent, are categorical. Our models differ from parametric SEM because, when
a variable is assumed to depend on two or more other varjakéallow some of these ef-
fects to be additive on a logit scale appropriate to the eatfithe response variable under
consideration. Essentially, logits of typeference category or adjacent are more appro-
priate when response categories are not ordered, logitgpefgtobal are preferable when
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response categories are ordered and logits of tgpgnuation are more suitable when re-
sponse categories correspond to survival or achievermssdsColombi and Forcina (2001)
for a detailed discussion. % has categories coded ad0...,c — 1, theith structural equa-
tion hasc; — 1 components, one for each logithfand, in the special case when the effects
of its parents are additive, theh logit (h=1,...,¢; — 1) may be written as

cj—1

h
An=% Ba+ > > Biplz;=1), 2
=1

Zj€pa 1=1

wherel (Z; > 1) is the indicator function. Note that we have used the increaieoding for
the s, this means that, for instanfgy, is the difference in the intercepts of thendh— 1
logits for Z;. The reconstruction formulas for the case of logits glolmal adjacent, the only
types used in this paper, are given below

exp()\ih) exp()\ih_l)
:P(Z=h) = - :
©: P = = T eam ~ T+ exphn 1)
h
ex ' AN
(@): P(Zi=h) = Ciﬂz'—l 'h)
14+ 3 g exp(3iie Ain)
From the software point of view, any model of our class is ueieed by the following
specifications:

— An ordered list of the endogenous variables such that, ietisean arrow fron; to Z;,
thenz; comes before;;

— A binary indicator specifying which variables, among the@genous ones, are latent;

— For each endogenous variable, the list of its parents;

— For each node, the corresponding link function; this is mheitged by the number of
categories of the node variable and the type of logit (adjgacglobal, continuation)
which determines how its conditional distribution is paeaetized;

— For each endogenous variable, a regression model whiclfispdmw its logits depend
on the parents and, possibly, on additional exogenousblasaneasured at the level of
statistical units; this is determined by a design matrixdach response variable .

2.1 Identifiability

Identifiability results for latent class models under cdiodial independence are by now well
established. Recent results|by Allman et al (2009) can kaselleral extended latent class
models where certain subsets of the observable variablgbenassociated conditionally to
the latent. Though, to our knowledge, no results are avaitlaldetermine whether a general
DAG with an arbitrary number of latent variables is idenbfes the numerical method de-
scribed b)m 8) can be used to determine whethigea model is locally identi-
fiable with very high probability everywhere in the parameigace; this approach was used
in the application. Essentially, the methods samples pdioim the parameter space and
checks whether the jacobian matrix obtained by differ¢intigthe log-linear parameters of
the saturated model for the joint distribution of the obabte variables with respect to the
actual parameters of the model is well away from being samgul

Typical modeling restrictions that might be used to achieemtifiability are assump-
tions of additivity within a given link function, like, for>ample, a multivariate logistic
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function. Continuous covariates may be included as exagewariables; these are the vari-
ables determined outside the system so that there is ndeqtizt describes their behavior.
Clearly, when continuous covariates are available, a tinegression model within the as-
sumed link function must be used.

2.2 Discussion

An interesting instance of the models described above wes insormally byl Hagenadrs

) as an extended latent class model. It may be integesstinote that, while in a basic
latent class model the parameters which determine the nadjstribution of the latent are
somehow separate from those which determine the condititistaibution of the responses,
in the general context described here, in principle, aneraidhe DAG may correspond to a
latent variable and, if there is a latent nagjevhich has no parents, its marginal distribution
is determined by theSion, the intercept parameters for the adjacent logits, whosebeu
equals the number of latent categories minus 1.

A different, but closely related literature is that basedfioite mixture models, like
those developed, for instance,lin Alfd and Trovato (201hEme a selection variable and
two or more response variables are assumed to depend onigamatié continuous latent
distribution. However, when the underlying distributierapproximated with a discrete dis-
tribution with K support points, the resulting model is equivalent to a DAGIetavith a
single discrete latent variable, sdy the special case where there are two respoYiseé
and a selection variabM is displayed in the DAG below

U

SN

YI=—Y9o——Y>

It is worth noting that the true multivariate nature of thedarlying latent, once turned
into a discrete one, should show up in the values of the etthiatercept parametef;,
wherei indexes the response variabjethe latent and the category of the latent; the fact
that 3j) is positive (or negative) for all| indicates that the underlying latent is essentially
uni-dimensional.

3 Maximum likelihood estimation

Under the assumption that, conditionally on exogenousraes, the joint distribution of
the variables (both the observable and the latent onesgiBAG is multinomial, any iden-
tifiable model may be fitted by an EM algorithm. In the E-stepupeate the hypothetical
latent distribution on the basis of the posterior prob&bsithat the subjects with a given
observed response profile belong to each possible latefiguoation and in the M-step we
maximize the multinomial likelihood of the latent distriimn.

In spite of the rather complex framework, the E-step hasaheliar form of the product
of the observed frequencies times the estimated postetdbabilities. Let, j (i) denote the
probability of belonging to latent configuratidrconditionally on having observed configu-
ration j for theith unit, wherej andh denote, respectively, a given cell of the observed and
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latent frequency table; let al$g (i) denotes the observed frequency in gebr theith unit,
the reconstructed frequency table is given by

Mj n(i) = N;j(i) M

Shij(i)

Due to the recursive nature of this class of models, the M-stay be performed by maxi-
mizing the conditional likelihood of each endogenous \@&aconditionally on its parents
and on exogenous variables. An efficient algorithm for fittinese generalized logistic mod-
els is described in Evans and For¢ina (2012), section 4.

Though the theory required to implement the EM algorithm tio models is straight-
forward, the difficulty lies in setting up a software that gaerform these tasks efficiently
having as input a general DAG with an arbitrary number ofrlat@riables. Essentially, in
the E-step we first need to compute the marginal probabilgjridution of the observed
variables and then expand this back into the joint distidoutvhile, in the M-step, we first
need to compute, for each node, the conditional distributibthe response variable given
its parents and, at the end, reconstruct the joint distdhutecursively. The basic idea is
to arrange probabilities and frequencies in lexicographier so that the categories Bf
run faster than those & if j > i. Marginal distributions are computed by first rearrang-
ing entries into a two-way table where the variables to baimed are by column and then
summing across rows. Expansion of a smaller table into &tayge is performed first by
replicating each entry a number of times equal to the numheglts of the omitted variables
and then rearranging entries according to the originalrordef variables. Rearrangement
of cells are performed by suitable indices which are corgtidibefore starting the algo-
rithm. The MaTLAB functions that implement the EM algorithm on a general DAG beé
made available as supplementary material.

To start the algorithm, an initial E-step is performed byuasisig the the posterior prob-
abilities gy j (i) are uniform, except for a small random perturbation. In thigal M-step a
one-step ahead logistic model is fitted and estimates austad]to smooth possibly large
absolute values. In this way an initial estimate of the latéstribution is obtained. With
some expertise, the models described in this paper coudoalditted with the LG-Syntax
module described by Vermunt and Magigson (2008)

The methodology described by Bartolucci and Forclna (2086gtion 3.3, was used
to compute standard errors of the parameter estimates fienedtimate of the expected
information matrix. The idea is to collect all parameter®ithe vector3, to compute the
score vector of the log-likelihood for the observed disttibn by the chain rule and the
information matrix as follows

oL(B) dy 206
S= dy/ 69’ aBl? F_E(Ssl/n)7
wherey is the vector of log-linear parameters for the saturateditwgar model of the ob-
served distributiond is the vector of log-linear parameters for the latent distion and- is
the expected information matrix. The extension of this pore to a general DAG model is
a rather complex task which is handled by specific routingshuéxploit the rearrangement
indices mentioned above.

4 Evaluation of causal effects

In this paper we formulate the questions of interest and coengppropriate answers within
the formal language developed by J. Pearl (see for exm- )0, Chapter 3) which
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we summarize briefly below. It may be useful to note that, inrPeframework, the joint
distribution of the observed variables in the DAG is assurmede known, or estimated
from observed frequencies, and the formal language isnedjtd evaluate causal effects by
taking into proper account the causal relations descrilyettidd DAG. The fact that certain
variables are or are not endogenous, is irrelevant when tiraaes the statistical model,
as long as the conditional independencies implies by the BAgXrue. However, while in
a non-parametric context certain causal effects may nostima&ble from the joint distri-
bution of the observable variables, in our semi-paramétaimework, once the statistical
model is identifiable, any causal effect of interest may b&lyy@omputed from the esti-
mated latent distribution.

In a structural equation model, see equatldn (1), we mayetalthe causal effect of a
subset of variableX = (Z;)ic) onY = (Z;) <3, with J disjoint from|, by first applying to
the "do operator”

P(y[do(x)) = % P(z,...,z | do(x)),

iZIog

this is equivalent to determine the distribution that waatlide if we could perform an ideal-
ized experiment where the variablesXrwere randomized. Once the intervention distribu-
tion has been constructed, we need to choose how to comparbutions ofY for different
values ofx: the two most obvious alternatives are differences or saifdhe relevant proba-
bilities. Because in the application we deal with orderaegarical distributions, we simply
compute the ratio of the corresponding survival probaédit

4.1 Direct effects

In a complex DAG causal effects may act through severalrdiffepathways, and we may
be interested in assessing the effects that act along repacific paths. Consider, for in-
stance, the model described in TeHle 1 presented in sectiiimebe,S, (parents’ education)
affectsS (child education) directly, or by affectirldc (child latent endowment) of (fam-
ily income) which, in turn, affec&;. The effect ofU, (parents’ latent endowment) travels
through many channels, but we would mainly be interestets ieffect onS; while observed
family backgrounds is held fixed, to capture the effect otiratinheritance, that is the path
from U, to & going throughJe.

Effects exerted through specific paths are called ‘dirdetés’. In the literature different
definitions of direct effects have been considered; the el in our application is the
‘natural direct effect’ which is defined as follows (see faample! Pedrl 0) Definition
45.1 o@rlmO) section 6.1.3). Suppose we are iéer@s the causal effect of a set
of variablesX onY exerted through all paths except those going through a seedfating
variablesM = (Z;)ick, with K disjoint from1,J. Then, first we computes the intervention
distribution obtained by setting = xandM = m

P(y|do(x),do(m)) = % P(z,...,z [ do(x),do(m));
i1 JJUK
the effect ofM is then averaged out, with weights provided by the distidoubf M whenX
is set to its reference category by intervention.

Computation of direct effects requires the computationesksal intervention distribu-
tions, a task that is similar to the one implemented withenEM algorithm described above
to reconstruct the joint distribution. In practice, theibasgredients are the DAG structure
and, for each node, the estimated conditional distribugivan its parents. Then, nodes are
processed one at a time to reconstruct the required intéowmedistribution.
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5 Application to Education transmission

The question of assessing the effect of raising the edutatighe parents by policy in-
tervention on the education of their children is difficulichase the answer depend on the
extent to which the association between parents’ and emilsleducation is due to the trans-
mission of unobservable endowments across generations.

5.1 Background and Literature

For simplicity, consider the very simple model in the fouriahlesSP,UP andS",U°¢, which
denote schooling and unobservable endowments respgctoreparents and child, while
eP, ¢ are exogenous errors and assume that

S = f(SP,U° g9 3)
Uc=g(SP,uP,eP). 4

This model says that a child’s education depends on her odovenent and her parents’
education, and in turn the child’s endowment depends on aemps’ schooling and en-
dowment. Under this model the observed association bet®andS is partly due to the
effect of endowment on schooling within each generationtoed with the transmission
effect fromUP to UC. Thus the stronger the endowment transmission effect tléavethe
scope of education policy. One could substitute from equd#) into [3) to get the reduced
form equation

S = f(P,UP¢) (5)

which requires controlling only for parents’ endowmentrddmain approaches in this di-
rection have been pursued. Behrman and Rosenziveig (20@2)lifferences between sub-
jects with twin mothers, having adjusted for assortativéimgan order to control for differ-
ences between education of fath l_uJT_dZOO4) uses datdaptees under the assump-
tion that there should be no endowment transmission, ajtincas noted bm al
.@), association may be induced by selective placenferdaptees. FinaII al
_M) analyze a dataset where differences in parent’'sa¢iducwas exogenously induced
by reforms in municipal schooling laws which they used asremtriment. For a critical
assessment see Holmlund et al (2011) who apply the threeodwth a single data set and
show that they produce conflicting results.

Alternatively one could estimate equatidd (3) in isolatierhich requires controlling
only for the child's endowment. By fitting a much more compiexsion of [3), Cameron
and Heckman (1998) address the issue of how the family bauokgdraffects the probabil-
ity of transition from one grade of education to the next. O¢jio their model resembles
) the heterogeneity is assumed independent from the wdzbeovariates, so it could be
interpreted as the componentlf which is not determined by family background.

The variableUP, namedfamily endowment, is essentially identified by the variables it
affects, so it is meant to capture the family environment micl children grow up. Itis in
principle a cross classification of various charactemssbicthe family, but in practice it turns
out to be naturally ordered in a scale of ‘quality’. The clsildnobservabl&J € is identified
mainly through cognitive and non-cognitive test scoresjtss not to be interpreted as
strictly reflecting an individual intrinsic endowment; & iather a mixture of this and other
unobservables like motivation and acquired knowledgeulisef schooling advancement.
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5.2 Data

We use data from the National Child Development Survey (NG P&®duced by a UK co-
hort study targeting the population born in the UK betwees 3hd to the 9th of March
1958. Individuals were surveyed at different stages ofrtliiei and information on their
schooling achievement, various tests results and famitkdraund was collected. A com-
plete description of the data is available at
http://www.esds.ac.uk/longitudinal/access/ncds.

Some variables are inherently discrete (notably schodéwgl) while others would be
more naturally described as continuous, like income artdsteses. Because the finite mix-
ture model approach used in this paper can be applied onlp athendogenous variables
are categorical, continuous variables were turned intorelis. Though clearly a continu-
ous variable contains more information relative to a digcepproximation, there are two
reason why a model based on categorical variables may eNebs parametric restrictions
than one based on the original continuous measuremengs, &icontinuous variable used
as explanatory in a regression model implies linearity smladditional polynomial terms
are introduced; instead, once it has been transformed iseb @f a dummy variables corre-
sponding to discrete categories, it can capture patternsrofinearity in a non parametric
way. Models involving a continuous variable as responseuatelly based on the rather
restrictive assumption of normality while, when used asgattical, the discrete distribution
is assumed to be multinomial, that is completely unregtticat least in the first stage.

The original sample contains 18560 observations, but nwae 80% have at least a
missing entry. Incompleteness is scattered across maiaples included in the survey. The
subsample of complete data which we analyze amounts to 88808 subjects, 1471 males
(sons) and 1330 females (daughters). The marginal distiisiof the summary statistics
for the most relevant variables in the complete-case soipigado not differ significantly
from the same distributions in the whole sample, but we cargadly exclude selection bias.
Our main dependent variab® is the amount of education achieved by each individual,
which takes four levels: no qualification, O-level, A-leasld higher education.

Children are tested at the age of 7 and 11 for mathematicdinggand non-cognitive
skills, and again at 16 for math and reading, and we use thedeges for identification of
the unobservable endowment. More specifically, after takirincipal components (which
in all cases explain no less than 90% of the total varianaanfih and reading we combine
scores at 7 and 11 into two ordered variablEd and ER. Math and reading scores at
16 are coded in two additional variable$! and LR. For non-cognitive skills (available
at ages 7 and 11), principal components yields two factbesd were averaged and then
dichotomized at the median into the binary varial(e.

Parents’ schooling is defined as the age at which they lefidddi2 to 21 years); for
each parent we extract a three level variable corresporidisgnificant educational steps:
leaving up to 14 years of age; after 14 but not later than 1r df6; these are called
S, s' for mother and father respectively. As usual there are maisging data on fam-
ily income; to alleviate the problem, since few mothers ie ttataset have an income, we
neglect mother’'s income (thus avoiding to drop data withsimig mother’s income) and
concentrate on fathers’. We group their income in threegeaies into the ordered variable
Y.

The NCDS contains also information on parents’ intereshe@irtchildren’s education,
as reported by teachers; this turns out to be an importargblar it should measure the
amount of effort or concern, and, perhaps, is related to &heevthat family gives to the
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child’s education. Parents’ interest is originally cldissl into as many as 5 categories; we
extract three binary parents’ interest variablés) 1, 116,

6 The Model
We estimate a system of equations which is an extended ahty ligmplex version of[{3)
and [3); because of its complexity, it is convenient to sumireathe basic features of the

model in tabld1l below where, for each variable in the DAG we dhe number of cate-
gories, the type of logitd for global anda for adjacent) and the list of parents. Note that

Table 1 Description of the model

i Z n.cat. logit pa

1 UP 3 a -

2 07 2 g ur

3 11 2 g ur

4 1% 2 g ur

5 g 3 g uP

6 S 3 g uP, gm
7Y 3 g uP, sm sf

8 uU° 3 a uP, 17,111, |16gn &f
9 EM 3 g ue

10 LM 3 g UC, EM

1 ER 3 g ue

12 LR 3 g U°® ER

13 NC 2 a ue

14 £ 4 g gn sfy,ue

there is an arrow fron8™ to S’ to account for assortative mating. In the fitted model the
dependence of each node on its parents is assumed lineas apgfopriate logit link trans-
formation. In particular, because all observable variabighe system are naturally ordered,
we use cumulative (or ‘global’) logits. The levels of unoh&dble variables, instead, are as-
sumed to correspond to unordered qualitative types, so weadgcent logits . Separate
models were fitted for daughters and sons to account for gefigets.

6.1 Main Estimation Results

In Table2 we display some of the most relevant parametenaii from different structural
equations included in the model which we fitted to data on soiksdaughters separately..
First of all note that all thgj;,, parameters are negative and usually significant, thisatelsc
that the three parents’ latent class may be ordered frontbesirst; the only exception are
the Bgins which, being positive, indicate that the child’s laterdss may also be ordered
from best to worst. This is in agrement with the fact thatladi btherBs;n are negative, indi-
cating that increasing rearing efforts and higher edunaiiothe parents’ side are positively
associated with an improvement of the latent endowmenteftttild. The few displayed
parameters from the equations for early and late score ih indicate that better endowed
children get better score and that performances are ctaddlatime. Finally, for the educa-
tional achievements, the displayed estimates confirm that mndowed children get higher
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Table 2 Parameter estimates and standard errors(se) for sons agltels

Daughters Sons
coeff se coeff se
Bs11  -1.4133 0.3007 -1.3860 0.2721
Ba2  -2.7674 0.3951 -2.2284  0.2546
Bs11  -2.5027 0.2776 -2.4058 0.2285
Bs12  -0.7036  0.1750 -0.6301  0.1437
Bs11  -2.9051 0.3717 -5.7254  0.5329
Be1z  -0.2087  0.2082 -0.4647  0.1749
Be11 1.2421  0.6426 0.1621  0.5733
Be12 2.8051  0.5843 1.4549  0.4474
Bea1  -0.5668  0.2332 -0.8648  0.1737
Bss»  -0.6575  0.2957 -0.8067  0.2468
Bss2  -0.0092  0.3903 -0.6447  0.4554
Bog1  -2.8296 0.1876 -2.8735  0.2047
Bosz  -2.6018 0.1278 -2.5633  0.1204
Bios1 -3.1387  0.2905 -3.0296  0.2333
Biog2 -2.0644 0.2211 -1.5633  0.2147
Bioor  0.3476  0.1984 0.5046  0.1842
Buas1t  0.1585  0.1491 -0.0599  0.1422
Bus, 0.3622  0.2009 -0.1078  0.2000
Biagr 0.0818  0.1539 0.3573  0.1464
Bue> 0.1118  0.2050 0.6453  0.2129
Busi -1.8843 0.1831 -3.0141 0.2135
Bugy -2.8394  0.2107 -1.7979  0.2177

achievements. The parameter estimates for the assoacrtiothe education of the parents
are less obvious to interpret: essentially we see that wind@ssociation with the education
of the father is positive and significant for the son, the eisgimn for the daughter is close
to 0 and smaller than the association with the educationeoirtbther. These results may be
interpreted as indicating a possible gender (or role) effétich may act either as pressure
from the related parent or as an effort of emulation. A morcHje interpretation of these
results within the context of causal inference is describéde next section.

6.2 Estimated direct effects

The results are presented in Table 3, where estimates feraswhdaughters are considered

separately. The comparisons are expressed as ratios afaymobabilities, so, for example
the upper-left value of 1.3640 says that the probability &girl reaches education level at
least 1 wherR= (1, 1, 1) is 1.3640 times larger than whéh= (0, 0, 0). The effect of
parents’ education is calculated excluding the income,zathit includes the indirect effect
exerted via child’s endowment.



Dags and finite mixtures 11

Table 3 Causal effects of°

Daughters Sons
>0 $F>2 F>0 2

rearing efforts R= (17,111,116)

frommintomax 1.3640 1.8120 1.7379 2.7337
Separately for the three components

R’ from0Oto 1 1.0398 1.0733 1.0780 1.1263
R fromOto 1 1.1761 1.3554 1.2824 1.5182
R from O to 1 1.1023 1.1943 1.2373 1.4215
Mother’s schooling S™

fromOto 1 0.9383 0.9144 0.9893  0.9699
from 1 to 2 1.2005 1.5480 1.1840 1.2741
frommintomax 1.1264 1.4155 1.1713 1.2357
Father’s schooling Sf

fromOto 1 1.0593 1.1330 1.1746 1.4384
from1to 2 1.0259 1.0748 1.3195 1.9446
frommintomax 1.0867 1.2177 1.5499 2.7971
IncomeY

fromOto 1 1.0275 1.0773 1.0071 1.0178
from1to 2 1.0546 1.1596 1.0720 1.1844

frommintomax 1.0836 1.2493 1.0796 1.2055
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