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On the Cardinalities of Row Space of Some Special Boolean Matrices
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Abstract: Let Bnxa be the set of all m x n Boolean matrices; R(A) denote the row space of A€Bx, | R(A) |
denote the cardinality of R(A), m, n be positive integers, and £ be non negative integers. In this paper, we
prove the following three results: (1) let A€ Buxn, Vm, (1) if A is the idempotent matrix, i. e., A’= A,
then |R(A")I = I R(A)1;( ii) if A is the involutory matrix, i e. ,A’= I, then| R(A")I = | R(A)| when m
is an odd number or | R(A)| = 2" when m is an even number; (2) let A €Buxabe k of the numbers of 1, 0
<& Smin{m, n}, and each row and column is at most one of the numbers of 1inA, then |R(A)l= 2*; (3)
0o 0

},AI: (ai)ixi,ai= O(i>] ), ai= 1(i§ ), i.j= 1,2,

let A €Buxx be the partitioned matrix as A=
0 A

-y k,then IR(A)l= k+ 1.
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1 Introduction

For any positive m, n, let Buxn denote the set of all m % n Boolean matrices. While m= n, we write B..
Then B. is a sem+group with the ordinary matrix multiplication and entries using Boolean operation. Let
R(A) denote the row space of A€B., |R(A)| denote the cardinality of R(A).Then the cardinality is in
[1,2"].The research of the distribution of cardinality of row space of matrix A € B has a long time. In
1992, ref. [ 1] gave the distribution of cardinality of row space of matrix A€ B, in interval (2" ', 2'].
Simultaneously, he conjectured that there exists AC€B. with IR(A)l = m for any m€/1,2" ']. In 1995,
ref. [2— 6] showed some results on the cardinalities of row space of Boolean matrices. In this paper, by
studying some special Boolean matrices, we obtain three results: (1) let, A € Buxa, ¥m, (1) if A is the
idempotent matrix, i.e. ,A’= A, then |R(A" )| = R(A)|; (ii) if A is the involutory matrix, i.e., A’= I,
then |R(A")I=1R(A)| when m is an odd number or | R(A)l = 2" when m is an even number; ( 2) let A€
Buxn be k of the numbers of 1,0 <k <min{m, n}, and each row and column is at most one of the numbers
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of 1 in A, then IR(A)I = 2"; (3) let A€Bux. be the partitioned matrix as A= {0 A
I
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=0(i>j)ai=1(i<j),ij= 1,2, -k, ,then IR(A)l = k+ 1.

2 Notions and Definitions
Let m, n, ¢, i be positive integers, and k be a nonnegative integer. By Aix we denote the &th row of A
€Buxn, and by ai we denotethe (i,j)-entry of A. Let ei be the n-tuple with 1 in the &th coordinate and 0
in other coordinates, and 0 be the n-tuple with 0 in all coordinates.
Definition 1 Let A €Bux.. The row spaceof A, denoted by R(A), is the span of the set of all row of
A. The set R(A) consists of all sums of rows of A, including the empty sum, which is the zero vector. T he
cardinality of R(A),denoted by | R(A) |, is the number of the vectors of R(A).
Definition 2 Let A€ Bux., 1 S¢S, 1<) Su. Define
RYA) = {Ais + Aip + ot Aie 1k 21,1 << o< i Sm, 3j,05 = qf,
RYA)= [Ais+ Aie + ok Aie |k 20,1 S<it< o< i Sm, VJ, i Zq).

3 Lemmas and Main Results
Lemma 1'""  Let A€ Bw, 1<y <m.If R "(A)NR""(A)= f,then
| R(A) =1 R'(A) 1+ R"(A) | .

Lemma 2" Let A€Bux.. If there exist two permutation matrices P, Q such that, then B = PAQ,
then| R(A) I=1 R(B) |.

Theorem 1 Let AC€B., Vm, (1) if A is the idempotent matrix, i e.,A’= A, then | R(A")| =
IR(A)|;(ii) if A is the involutory matrix, i. e., A°= I, then | R(A" )l = | R(A)] when m is an odd num-
ber or IR(A)l = 2" when m is an even number.

By the hypothesis, it is easy to show theorem 1.

Theorem 2 Let A€ Buxu be k of the numbers of 1, 0<k <m1n{m, n},and each row and column is at
most one of the numbers of 1 in A, then | R(A)| = 2".

I. O
Proof For A,there exist two permutation matrices P, Q such that PAQ= {OA 0} = B, then |R(A) |
=IR(B)I= 2"
Corollary 1 A€B., i= 1,2, .., k,

eir k- 1 k= 1,2 - sn— i+ 1,
Ak* =
0 k= n- i+ 2,n— i+ 3, -, n,
then I[R(A)1=2""".
Proof Clearly, A satisfies the conditions of theorem 2, k= n— i+ 1. So,
| R(A) 1= 27",
Corollary 2 A€ B, i= 2,3, ..,n,
el k= i,i+ 1, -y n,
Ak* =
0 k= 1,2, ..,i— 1,
then I[R(A)1=2""".
By using the similar proof as corollary 1, we can show | R(A)I= 2" o
o
1

4 JAL= (ai Jin, 0 <k, aj = 0(i>
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Theorem 3 Let A € B, be the partitioned matrix as A= 0
j)oai=1(i<j), ij= 1,2, - k, then IR(A)l = k+ 1.
Proof Clearly,| R(A)l= |R(A)I, R*'(A1) MR '(Ai)= f.
So, by lemma 1,1 R(A1) 1= 1R (Ai)l+ R "(A)I,IR""(Ai)l= ,IR '(Ai)|= k. We show | R(A)



l=k+ 1

Corollary 3 Let B= (bij)n, bi= 0(i< j), bi= 1(i >]), then i,j= 1,2, -, n,then |R(B)| = n+ 1.

By using the similar argument of theorem 3, we can show it.

Corollary 4 A € B.. If there exist one row and one column in A, its numbers of 1is i, i= 1,2, - k, 1
<k <, then |R(A) 1= k+ 1.
0
,n=51i=1,23k=3.1R(A)l = 4

For example, A=
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0 0 0
Proof Because for A, there exist two permutation matrices P, @, such that
0 0 . NPT
PAQ = 0 A = B A = (aj)r,ai = 0(i>j),ai = 1(i <]),L,]= 1,2, - k.
1
| R(A) =1 R(B) | = k+ 1
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