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Craḿer-Rao-Induced Bounds for

CANDECOMP/PARAFAC tensor

decomposition
Petr Tichavský1, Anh Huy Phan2, and Zbyněk Koldovský1,3

Abstract

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates

of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions

of a tensor from noisy observations, (i.e.,the tensor plus arandom Gaussian i.i.d. tensor). A novel

expression is derived for a bound on the mean square angular error of factors along a selected

dimension of a tensor of an arbitrary dimension. Insightfulexpressions are derived for tensors of

rank 1 and rank 2.

The existence of the bound reveals necessary conditions foressential uniqueness of the CP

decomposition and, moreover, for identifiability of each column of each factor matrix separately. The

results can be used for checking stability of a given decomposition of a tensor, and for evaluating

performance of certain approximate CP decomposition methods based on reshaping the tensor.

Index Terms

Multilinear models; canonical polyadic decomposition; Cramér-Rao lower bound

I. INTRODUCTION

Three-way and higher-way data arrays need to be analyzed in diverse research areas such as

chemistry, astronomy, and psychology. The analyses can be done through finding multi-linear

dependencies among elements within the arrays. The most popular model is Parallel factor analysis

(PARAFAC), also called Canonical decomposition (CANDECOMP) or CP, which is an extension of a
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low rank decomposition of matrices to higher-way arrays, usually called tensors. In signal processing,

the tensor decompositions have become popular for their usefulness in blind source separation [1].

An important issue is the essential uniqueness of CP decomposition as it entails identifiability of

the model (the factor matrices) from the tensor. A sufficientcondition was derived by Kruskal in [3].

Recently, the problem has been addressed again, namely by Stegeman, Ten Berge, De Lathauwer,

Sidiropoulos et al.; see [4]-[11]. Uniqueness of the CP decomposition for four-way collinear tensors

that have identical components was studied in [12].

Necessary conditions for the uniqueness of CP were derived in [13]. The stability of CP was

investigated in [13] and more recently in [14], through the Cramér-Rao lower bound (CRLB) on an

unbiased estimation of the factor matrices given a noisy observation of a tensor. The former paper

presents the bound in the form of expressions that offer almost no insight into the problem, because

the bound is derived for normalized factor matrices and for three and four-way tensors. In [14],

the stability is studied in terms of a CRLB-induced bound (CRIB) on squared angular deviation of

columns of the factor matrices with respect to their nominalvalues, which is much more practical,

but the study is limited to the case of three-way tensors. Similar results for symmetric tensors are

derived in [15].

This paper presents new CRIB expressions for tensors of arbitrary dimension, and specialized

expressions for rank 1 and rank 2 tensors. The results can be used for checking stability of given CP

decomposition of a tensor, and for evaluating performance of certain approximate CP decomposition

methods based on reshaping the tensor.

The paper is organized as follows. Section II presents the main result, the Cramér-Rao induced

bound on angular error of one factor vector in full generality. In Section III, this result is specialized for

tensors of rank 1 and rank 2. Section IV is devoted to a possible application of the bound: investigation

of loss in accuracy of the tensor decomposition when the tensor is reshaped to a lower-dimensional

form. Section V deals with the bound for tensors with missingentries, Section VI contains examples

– CRIB computed for CP decomposition for a fluorescence tensor, and stability of the tensor of Brie

et al. Section VII concludes the paper.

II. PRESENTATION OF THECRIB

A. Craḿer-Rao bound for CP decomposition

Let Y be anN− way tensor of dimensionI1 × I2 × . . .× IN . The tensor is said to be of rankR,

if it can be written as a sum ofR rank-one tensors (factors)

Y =

R∑

r=1

a(1)r ◦ a
(2)
r ◦ . . . ◦ a

(N)
r (1)
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where◦ denotes the outer tensor product,a
(n)
r , r = 1, . . . , R, n = 1, . . . , N are vectors of the length

In.

Such tensor can be characterized byN factor matricesAn = [a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R ] of the size

In ×R for n = 1, . . . , N .

In practice, a CP decomposition of given rank (R) is used as an approximation of a given tensor,

which can be a noisy observation̂Y of the tensorY in (1). Owing to the symmetry of (1), we can

focus on estimating the first factor matrixA1, without any loss in generality, and we can assume

that all other factor matrices have columns of unit norm. Then the “energy” of the parallel factors is

determined by the squared Euclidean norm of columns ofA1.

It is common to assume that the noise has a zero mean Gaussian distribution with varianceσ2,

and is independently added to each element of the tensor in (1).

Let a vector parameterθ containing all parameters of our model be arranged as

θ = [(vecA1)
T , . . . , (vecAN )T ]T (2)

The maximum likelihood solution forθ consists in minimizing the least square criterion

Q(θ) = ‖Ŷ− Y(θ)‖2F (3)

where‖ · ‖F stands for the Frobenius norm.

We wish to compute the Cramér-Rao lower bound for estimating θ. In general, for this estimation

problem, the CRLB is given as the inverse of the Fisher information matrix, which is equal to [14]

F(θ) =
1

σ2
JT (θ)J(θ) (4)

whereJ(θ) is the Jacobi matrix (matrix of the first-order derivatives)of Q(θ) with respect toθ. In

other words, the Fisher information matrix is proportionalto the approximate Hessian matrix of the

criterion,H(θ) = JT (θ)J(θ).

Let Γnm be defined as a Hadamard (elementwise) product of matricesCk = AT
kAk, k ∈

{1, . . . , N} − {n,m},

Γnm = ⊛
k 6=n,m

Ck , Ck = AT
kAk . (5)

Theorem 1 [18]: The HessianH can be decomposed into low rank matrices under the form as

H = G+ ZKZT (6)

whereK = [Knm]Nn,m=1 contains submatricesKnm given by

Knm = (1− δnm)PR diag (vecΓnm) (7)
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PR is the permutation matrix of dimensionR2×R2 defined in [18] such thatvecX = PR vec (XT )

for anyR×R matrix X, andδnm is the Kronecker delta. Next,

G = blkdiag (Γnn ⊗ IIn)
N
n=1 (8)

and

Z = blkdiag (IR ⊗An)
N
n=1 (9)

where⊗ denotes the Kronecker product,IIn is an identity matrix of the sizeIn×In, andblkdiag(·)

is a block diagonal matrix with the given blocks on its diagonal. Note that the HessianH in (6) is rank

deficient because of the scale ambiguity of columns of factormatrices [21], [19]. It has dimension

(R
∑

n In)× (R
∑

n In) but its rank is at mostR
∑

n In − (N − 1)R.

A regular (reduced) Hessian can be obtained fromH by deleting(N−1)R rows and corresponding

columns inH, because the estimation of one element in the vectorsa
(n)
r , r = 1, . . . , R, n = 2, . . . , N

can be skipped. The reduced Hessian may have the form

HE = EHET (10)

where

E = blkdiag (IRI1 , IR ⊗E2, . . . , IR ⊗EN ) (11)

andEn is an(In−1)×In matrix of rankIn−1. For example, one can putEn = [0(In−1)×1 IIn−1] for

n = 2, . . . , N . With this definition ofEn, HE is a Hessian for estimating the first factor matrixA1 and

all other vectorsa(n)r , r = 1, . . . , R, n = 2, . . . , N without their first elements. In the sequel, however,

we use a different definition ofEn. Note that eachEn can be quite arbitrary, together facilitate a

regular transformation of nuisance parameters, which doesnot influence CRLB of parameter of the

interest.

The CRLB for the first column ofA1, denoted simply asa1, is defined asσ2 times the left-upper

submatrix ofH−1
E of the sizeI1 × I1,

CRLB(a1) = σ2 [H−1
E ]1:I1,1:I1 . (12)

Substituting (6) in (10) gives

HE = GE + ZEKZT
E (13)

whereGE = EGET andZE = EZ. Inverse ofHE can be written using a Woodbury matrix identity

[16] as

H−1
E = G−1

E −G−1
E ZEK(INR2 + ZT

EG
−1
E ZEK)−1ZT

EG
−1
E (14)

provided that the involved inverses exist.
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Next,

GE = blkdiag
(
Γ11 ⊗ I1,Γ22 ⊗ (E2E

T
2 ), . . . ,ΓNN ⊗ (ENET

N )
)

(15)

G−1
E = blkdiag

(
(Γ11)

−1 ⊗ I1,Γ
−1
22 ⊗ (E2E

T
2 )

−1, . . . ,Γ−1
NN ⊗ (ENET

N )−1
)
. (16)

Put

Ψ = ZT
EG

−1
E ZE (17)

B = K(INR2 +ΨK)−1 (18)

and letB0 be the upper–leftR2×R2 submatrix ofB, symbolicallyB0 = B1:R2,1:R2 . Finally, let g11

andg1,: be the upper–left element and the first row ofΓ−1
11 , respectively. Then

[H−1
E ]1:I1,1:I1 = [G−1

E ]1:I1,1:I1 + [G−1
E ZE ]1:I1,1:R2B0[G

−1
E ZE ]

T
1:I1,1:R2

= g11II1 + (g1,: ⊗A1)B0 (g1,: ⊗A1)
T . (19)

B. Craḿer-Rao-induced bound for angular error

CRLB(a1) considered in the previous subsection is a matrix. In applications it is practical to

characterize the error of the factora1 in the decomposition by a scalar quantity. In [17] it was

proposed to characterize the error by an angle between the true and the estimated vector, and compute a

Cramér-Rao-induced bound (CRIB) for the squared angle. The CRIB may serve a gauge of achievable

accuracy of estimation/CP decomposition.

The angleα1 between the true factora1 and its estimatêa1 obtained through the CP decomposition

is defined through its cosine

cosα1 =
aT1 â1

‖a1‖ ‖â1‖
. (20)

The Cramér-Rao induced bound for the squared angular errorα2
1 will be denoted CRIB(a1) in the

sequel.

Before computing CRIB(a1) we present another interpretation of this quantity. Let the estimatêa1

be decomposed into a sum of a scalar multiple ofa1 and a reminder, which is orthogonal toa1,

â1 = βa1 + r1 (21)

where β = aT1 â1/‖a1‖
2 and r1 = â1 − βa1. Then, the Distortion-to-Signal Ratio (DSR) of the

estimateâ1 can be defined as

DSR(â1) =
‖r1‖

2

β2‖a1‖2
. (22)

A straightforward computation gives

DSR(â1) =
1− cos2 α1

cos2 α1
≈ α2

1 . (23)
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We can see that CRIB(a1) serves not only as a bound on the mean squared angular estimation error,

but also as a bound on the achievable Distortion-to-Signal Ratio.

Theorem 2 [17]: Let CRLB(a1) be the Cramér-Rao bound on covariance matrix of unbiased estimators

of a1. Then the Cramér–Rao–induced bound on the squared angularerror between the true and

estimated vector is

CRIB(a1) =
tr[Π⊥

a1
CRLB(a1)]

‖a1‖2
(24)

where

Π⊥
a1

= II1 − a1a
T
1 /‖a1‖

2 (25)

is the projection operator to the orthogonal complement ofa1 and tr(.) denotes trace of a matrix.

Theorem 3: The CRIB(a1) can be written in the form

CRIB(a1) =
σ2

‖a1‖2
{
(I1 − 1)g11 − tr

[
B0

(
(gT

1,:g1,:)⊗X1

)]}
(26)

whereB0 is the submatrix ofB in (18), B0 = B1:R2,1:R2 ,

Xn = Cn −
1

C
(n)
11

C
(n)
:,1 C

(n)T
:,1 (27)

for n = 1, . . . , N , C
(n)
11 and C

(n)
:,1 denote the upper–right element and the first column ofCn,

respectively, andΨ in the definition ofB takes, for a special choice of matricesEn, the form

Ψ = blkdiag
(
Γ−1
11 ⊗C1,Γ

−1
22 ⊗X2, . . . ,Γ

−1
NN ⊗XN

)
. (28)

Proof: Substituting (12) and (19) into (24) gives, after some simplifications,

CRIB(a1) =
σ2

‖a1‖2
tr
[
Π⊥

a1

(
g11II1 − (g1,: ⊗A1)B0 (g1,: ⊗A1)

T
)]

=
σ2

‖a1‖2

{
(I1 − 1)g11 − tr

[
Π⊥

a1
(g1,: ⊗A1)B0 (g1,: ⊗A1)

T
]}

=
σ2

‖a1‖2

{
(I1 − 1)g11 − tr

[
B0

(
(gT

1,:g1,:)⊗
(
AT

1 Π
⊥
a1
A1

))]}
. (29)

This is (26), because

AT
1 Π

⊥
a1
A1 = C1 −

1

C
(1)
11

C
(1)
:,1C

(1) T
:,1 = X1 . (30)

Next, assume thatE is defined as in (11), butEn are arbitrary full rank matrices of the dimension

(In − 1)× In. Then, combining (17), (9), (11) and (16) gives

Ψ = ZT
EG

−1
E ZE = blkdiag

(
Γ−1
11 ⊗C1,Γ

−1
22 ⊗ X̃2, . . . ,Γ

−1
NN ⊗ X̃N

)
(31)

where

X̃n = AT
nE

T
n (EnE

T
n )

−1EnAn (32)
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for n = 2, . . . , N . Note that the expressionET
n (EnE

T
n )

−1En is an orthogonal projection operator to

the columnspace ofET
n . If En is chosen as the first(In − 1) rows of

Π⊥
a
(n)
1

= IIn − a
(n)
1 a

(n) T

1 /‖a
(n)
1 ‖

2 (33)

thenET
n (EnE

T
n )

−1En = Π⊥
a
(n)
1

and consequentlỹXn = AT
nΠ

⊥
a
(n)
1

An = Xn.

Note that the first row and the first column ofXn are zero.

Theorem 4: Assume that all elements of the matricesCn in (5) are nonzero. Then, the matrixB0

in Theorem 3 can be written in the form

B0 = [−IR2 +V(IR2 +V)−1]Y (34)

where

V = W−Y(Γ−1
11 ⊗C1) (35)

W = PR

N∑

n=2

dvec(Γ1n)S
−1
n (Γ−1

nn ⊗Xn)dvec(C1 ⊘Cn) (36)

Y = PR

N∑

n=2

dvec(Γ1n)S
−1
n (Γ−1

nn ⊗Xn)PRdvec(Γ1n) (37)

Sn = IR2 − (Γ−1
nn ⊗Xn)dvec(Γnn ⊘Cn)PR, n = 2, . . . , N . (38)

Here, dvec(M) is a short-hand notation fordiag(vec(M)), i.e. a diagonal matrix containing all

elements of a matrixM on its main diagonal, and “⊘” stands for the element-wise division.

Proof: See Appendix B.

Note that in place of inverting the matrixB of the sizeNR2 × NR2, Theorem 4 reduces the

complexity of the CRIB computation toN inversions of the matrices of the sizeR2 ×R2.

It can be shown that the firstR rows and the firstR columns inB0 are zeros. This fact indicates

possibility of further simplifications and computational savings.

Finally, note that the assumption that elements ofCn must not be zero is not too restrictive.

Basically, it means that no pair of columns in the factor matrices must be orthogonal. The Cramér-

Rao bound does not exhibit any singularity in these cases, and is continuous function of elements

of Cn. If some element ofCn is closer to zero than say10−5, it is possible to increase its distance

from zero to that value, and the resultant CRIB will differ from the true one only slightly.

Theorem 5 (Properties of the CRIB)

1) The CRIB in Theorems 3 and 4 depends on the factor matricesAn only through the products

Cn = AT
nAn.
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2) The CRIB is inversely proportional to the signal-to-noise ratio (SNR) of the factor of the

interest (i.e.‖a1‖2/(σ2I1)) and independent of the SNR of the other factors,‖ar‖2/(σ2Ir),

r = 2, . . . , R.

Proof: Property 1 follows directly from Theorem 3. Property 2 is proven in Appendix C.

III. SPECIAL CASES

Because of Corollary 2 in the previous section, for simplicity we shall assume in this section that

‖a1‖
2/σ2 = 1.

A. Rank 1 tensors

In this case, the matrixX1 is zero, and

CRIB(a1) = (I1 − 1)g11 = I1 − 1 . (39)

In (39), g11 = 1 due to the convention that the factor matricesAn, n ≥ 2, have columns of unit

norm.

B. Rank 2 tensors

Due to Corollary 2, we can assume, without any loss in generality, that all factor vectors have unit

norm. Letcn be the correlation of the factor vectors in then−th mode. It means that the matrices

Cn have the form

Cn =


 1 cn

cn 1


 , n = 1, . . . , N .

Due to Theorem 5 we note that the CRIB ona1 is only a function of the correlationsc1, . . . , cN . It

is symmetric function inc2, . . . , cN and possibly nonsymmetric inc1. In Appendix D, we derive the

following result that does not need the assumptioncn 6= 0, n = 2, . . . , N , unlike Theorem 4.

Theorem 6 It holds for rank 2 tensors

CRIB(a1) =
I1 − 1

1− h21
+

(1− c21)h
2
1

1− h21

y2 + z − h21z(z + 1)

(1− c1y − h21(z + 1))2 − h21(y + c1z)2
(40)

where

hn =

N∏

2≤k 6=n

cn for n = 1, . . . , N (41)

y = −c1

N∑

n=2

h2n(1− c2n)

c2n − h2nc
2
1

(42)

z =

N∑

n=2

1− c2n
c2n − h2nc

2
1

. (43)

Proof: See Appendix C.
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Note that the expressions (42)-(43) contain, in their denominators, termscn−hnc1. If any of these

terms goes to zero, then quantitiesy andz go to infinity. In despite of this, the whole CRIB remain

finite, becausey andz appear both in the numerator and denominator in (40).

For example, for 3-way tensors (N = 3) we get (using e.g. Symbolic Matlab or Mathematica)

CRIBN=3(a1) =
1

1− c22c
2
3

[
I1 − 1 +

c22
1− c22

+
c23

1− c23

]
. (44)

The above result coincides with the one derived in [14]. As far as the stability is concerned, the CRIB

is finite unless either the second or third factor have co-linear columns.

For N = 4, the similar result is hardly tractable. Unlike the caseN = 3, the result depends on

the correlation of the columns in the first factor matrix, which is c1. A closer inspection of the result

shows that the CRIB, as a function ofc1, achieves its maximum atc1 = 0, and minimum atc1 = ±1.

Therefore we shall treat these two limit cases separately.

We get

CRIBN=4,c1=0(a1) =
I1 − 1

1− c22c
2
3c

2
4

+
c22c

2
3 + c22c

2
4 + c23c

2
4 − 3c22c

2
3c

2
4

(1− c22c
2
3c

2
4)(2c

2
2c

2
3c

2
4 − c22c

2
3 − c22c

2
4 − c23c

2
4 + 1)

(45)

CRIBN=4,c1=±1(a1) =





I1−1
1−c22c

2
3c

2
4

for (|c2| < 1)&(|c3| < 1)&(|c4| < 1)

I1−1
1−c22c

2
3
+ c22+c23−2c22c

2
3

(1−c22)(1−c23)(1−c22c
2
3)

for |c4| = 1

I1−1
1−c22c

2
4
+ c22+c24−2c22c

2
4

(1−c22)(1−c24)(1−c22c
2
4)

for |c3| = 1

I1−1
1−c23c

2
4
+ c23+c24−2c23c

2
4

(1−c23)(1−c24)(1−c23c
2
4)

for |c2| = 1

.(46)

As far as the stability is concerned, we can see that the CRIB is always finite unless two of the factor

matrices have co-linear columns.

Similarly, for a generalN , we have forc1 = 0

CRIBc1=0(a1) =
I1 − 1

1− h21
+

h21z

(1− h21)(1 − h21(z + 1))
. (47)

IV. CRIB FOR TENSORS WITH MISSING OBSERVATIONS

It happens in some applications, that tensors to be decomposed via CP have missing entries (some

observations are simply missing). In this case, it is possible to treat stability of the decomposition

through the CRIB as well. The only problem is that it is not possible to use expressions in Theorems

3-5 in such cases.

Assume that the tensor to be studied is given by its factor matrices A1, . . . ,AN and a 0-1

“indicator” tensorW of the same dimension asY, which determines which tensor elements are

available (observed). The task is to compute CRIB for columns of the factor matrices, like in the
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previous sections. The CRIB is computed through the Hessianmatrix H as in (12) and (20), but its

fast inversion is no longer possible. The Hessian itself canbe computed as in its earlier definition

H = JT (θ)J(θ), J(θ) =
∂vec(Y⊛W)

∂θ
(48)

whereθ is the parameter of the model (2). More specific expressions for the Hessian can be derived

in a straightforward manner.

Theorem 7: Consider the Hessian for tensor with missing data as anN × N partitioned matrix

H = [H(n,m)]N,N
n=1,m=1 whereH(n,m) = [H

(n,m)
r,s ]R,R

r=1,s=1 ∈ R
RIn×RIm . Then

H(n,m)
r,s =





diag

(
W ×̄−n

{
a
(1)
r ⊛ a

(1)
s , · · · ,a

(N)
r ⊛ a

(N)
s

})
, n = m,

(a
(n)
r a

(m)T
s )⊛

(
W ×̄−{n,m}

{
a
(1)
r ⊛ a

(1)
s , · · · ,a

(N)
r ⊛ a

(N)
s

})
, n 6= m

(49)

Y×̄nun denotes the mode-n tensor-vector product betweenY andun [1], and

Y×̄−n{u} = Y ×̄1u1 · · · ×̄n−1un−1×̄n+1un+1 · · · ×̄NuN . (50)

V. A PPLICATION

A. Tensor decomposition through reshape

Assume that the tensor to-be decomposed is of dimensionN ≥ 4. The tensor can be reshaped

to a lower dimensional tensor, which is easier to decompose,so that the first factor matrix remains

unchanged. For example, considerN = 4.

The tensor in (1) can be reshaped to a 3-way tensor

Yres =

R∑

r=1

a(1)r ◦ a
(2)
r ◦ (a

(4)
r ⊗ a(3)r ) . (51)

Both the original and the re-shaped tensors have the same number of elements (I1I2I3I4) and the

same noise added to them.

The question is, what is the accuracy of the factor matrix of the reshaped tensor compared to the

original one. The latter accuracy should be worse, because adecomposition of the reshaped tensor

ignores structure of the third factor matrix. The question is, by how much worse. If the difference

were negligible, then it is advised to decompose the simplertensor (of lower dimension).

If the tensor has rank one, accuracy of both decompositions is the same. It is obvious from (29).

Let us examine tensors of rank 2. If the original tensor has correlations between columns of the

factor matricesc1, c2, c3 and c4, the reshaped tensor has correlationsc1, c2, andc3c4, respectively.

CRIB(a1) of the reshaped tensor is independent ofc1, while CRIB of the original tensor is dependent

on c1, so there is a difference, in general. The difference will besmallest forc1 = 0 (orthogonal

factors) and largest forc1 close to±1 (nearly or completely co-linear factors along the first dimension).
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TABLE I

ESTIMATED CRIBS [dB] ON BEST FITCPCOMPONENTS OF FLUORESCENCE TENSOR COMPUTED FOR ASSUMED RANK

R = 1, 2, 3, 4

Factor R = 1 R = 2 R = 3 R = 4

n 1 1 2 1 2 3 1 2 3 4

1 44.43 44.44 41.87 64.76 61.34 64.98 65.78 60.96 65.77 38.17

2 27.44 30.28 27.71 53.15 50.17 49.60 54.33 51.39 50.87 23.29

3 32.67 36.23 33.66 58.96 55.75 54.87 60.25 56.28 54.27 25.74

The smallest difference between CRIB(a1) for the reshaped tensor and for the original one is

c22 + c23c
2
4 − 2c22c

2
3c

2
4

(1− c22)(1− c23c
2
4)
−

c22c
2
3 + c22c

2
4 + c23c

2
4 − 3c22c

2
3c

2
4

(1− c22c
2
3c

2
4)(2c

2
2c

2
3c

2
4 − c22c

2
3 − c22c

2
4 − c23c

2
4 + 1)

and the largest difference is

c22 + c23c
2
4 − 2c22c

2
3c

2
4

(1− c22)(1 − c23c
2
4)

=
c22

1− c22
+

c23c
2
4

1− c23c
2
4

.

We can see that the difference may be large if the second or third factor matrix of the reshaped tensor

has nearly co-linear columns (c22 ≈ 1 or c23c
2
4 ≈ 1) .

VI. EXAMPLES

A. Amino Acids Tensor

A data set consisting of five simple laboratory-made samplesof fluorescence excitation-emission

(5 samples× 201 emission wavelengths× 61 excitation wavelengths) is considered. Each sample

contains different amounts of tryptophan, tyrosine, and phenylalanine dissolved in phosphate buffered

water. The samples were measured by fluorescence on a spectrofluorometer [23]. Hence, a CP model

with R = 3 is appropriate to the fluorescence data.

The tensor was factorized for several possible ranksR using the fLM algorithm [18]. CRIBs on

the extracted components were then computed with the noise levels deduced from the error tensor

E = Y− Ŷ

σ2 =
‖Y− Ŷ‖2F∏

n In
. (52)

The resultant CRIB’s are computed for all columns of all factor matrices and are summarized in

Table 1.

Note that a CRIB of 50 dB means that the standard angular deviation (square root of mean square

angular error) of the factor is cca0.18o; a CRIB of 20 dB corresponds to the standard deviation5.7o.

The second mode to the decomposition, which represents intensity of the data versus the emission

wavelength, forR = 2, 3, 4 and 8 is shown in Figure 1. We can see that the CRIB allows to distinguish
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between strong/significant modes of the decomposition and possibly artificial modes due to over-fitting

the model.

In the next experiment, we have studied how much the accuracyof the decomposition is affected

in case that some data are missing (not available). The decomposition with the correct rankR = 3

and σ2 estimated as in (52) was taken as a ground truth; the 0-1 indicator tensorW of the same

size was randomly generated with a given percentage of missing values. The CRIB of the second

mode factors was plotted in Figure 2 as a function of this missing value rate. The figure also contains

means square angular error of the components obtained in simulations. Here an artificial Gaussian

noise with zero mean and varianceσ2 was added to the “ground truth” tensor. The decomposition

was obtained by a Levenberg-Marquardt algorithm [18] modified for tensors with missing entries.

A few observations can be made here.

• CRIB coincides with MSAE for the percentage of the missing entries smaller than 70%. If the

percentage exceeds the threshold, CRIB becomes overly optimistic.

• In general, accuracy of the decomposition declines slowly with the number of missing entries.

If the number of missing entries is about 20%, loss in accuracy of the decomposition is only

about 1-2 dB.

B. Uniqueness of the decomposition of Brie’s tensor

Brie et al [12] presented an example of a four-way tensor of rank 3, which arises while studying the

response of bacterial bio-sensors to different environmental agents. The tensor has co-linear columns

in three of four modes and the main message of the paper is thatits CP decomposition is still unique.

In this subsection we verify this property by computing the CRIB.

The factor matrices of the tensor have the form

A1 = [a1,a2,a3] A2 = [a4,a4,a5], A3 = [a6,a7,a6] A4 = [a8,a9,a9] .

Assume for simplicity that all factors have unit norm,‖an‖ = 1, n = 1, . . . , 9. Due to Theorem 5 it

holds that CRIB ona1 is a function of scalarsc11 = aT1 a2, c12 = aT1 a3, c13 = aT2 a3, c2 = aT4 a5,

c3 = aT6 a7, c4 = aT8 a9 and I1, which is the dimension ofa1. Then, the correlation matricesCn,

n = 1, . . . , 4, have the form

C1 =




1 c11 c12

c11 1 c13

c12 c13 1


 ,C2 =




1 1 c2

1 1 c2

c2 c2 1


 ,C3 =




1 c3 1

c3 1 c3

1 c3 1


 ,C4 =




1 c4 c4

c4 1 1

c4 1 1


 .

A straightforward usage of Theorem 4 is not possible, because some of the involved matrices become

singular. The CRIB itself, however, is finite and can be computed using an artificial parameterε as
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Fig. 1. Illustration for emission components from best-fit decompositions over 100 Monte Carlo runs for example VI-A.
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Fig. 2. CRIB for the second-mode components of CP decomposition of tensor in section VI.A with missing elements and

mean square angular error obtained in simulations versus percentage of the missing elements.
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a limit. The limit CRIB is computed for modified matrices atε→ 0,

C2ε =




1 1− ε c2

1− ε 1 c2

c2 c2 1


 ,C3ε =




1 c3 1− ε

c3 1 c3

1− ε c3 1


 ,C4ε =




1 c4 c4

c4 1 1− ε

c4 1− ε 1


 .

If any of the correlationsc2, c3, c4 is zero, it is also augmented byε.

The limit CRIB can be shown to be independent ofc11, c12, c13, unless any of these three

correlations equals±1 (see a similar situation in (46)). Assume that they are all different. The result,

obtained by Symbolic Matlab, is

CRIBε=0(a1) =
1

2c22c
2
3c

2
4 − c22c

2
3 − c22c

2
4 − c23c

2
4 + 1

[
(I1 − 1)(1− c22c

2
3)

−
c43(c

2
2 + 1)− 3c23 + 1

1− c23
−

c42(c
2
3 + 1)− 3c22 + 1

1− c22
+

2− c22 − c23
1− c24

]
. (53)

It follows that the decomposition is stable, unless all three factors in some mode are collinear.

VII. C ONCLUSIONS

In this paper, Cramér-Rao bounds for CP tensor decomposition are studied. Several novel

expressions of the bound are derived, namely expression fora general dimension and general rank

of the tensor, and specialized expressions for rank 2 tensors.

CRIB might be useful for assessing accuracy of the tensor decomposition in the presence of additive

noise. It is a good indicator of stability and uniqueness of the decomposition. The tensor may have

missing entries, and still have a stable CP decomposition.

APPENDIX A

Matrix Inversion Lemma (Woodbury identity)

Let A, X, Y, andR are matrices of compatible dimensions such that the following products and

inverses exist. Then

(A+XRY)−1 = A−1 −A−1X(R−1 +YA−1X)−1YA−1 . (54)

APPENDIX B

Proof of Theorem 4

Let the matricesK andΨ in (18) be partitioned as

K =


 0 K1

KT
1 K2


 , Ψ =


 Ψ1 0

0 Ψ2


 (55)
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where the left-upper blocks have the sizeR2 ×R2. Then, using a formula for inverse of partitioned

matrices, the left-upper block ofB in (18) can be written as

B0 = K1(I(N−1)R2 +Ψ2K2 −Ψ2K
T
1Ψ1K1)

−1Ψ2K
T
1

△
= K1K

−1
3 Ψ2K

T
1 . (56)

A key observation which enables a fast inversion of the termK3 is that

K = K0 +DFDT (57)

where

K0 = −blkdiag
(
PRF(dvec(1⊘Cn))

2
)N
n=1

(58)

F = PR

N∏

n=1

dvec(Cn) = PR dvec(Γ11 ∗C1) (59)

D = [dvec(1⊘C1), . . . , dvec(1⊘CN )]T . (60)

Similarly,

K2 = K02 +D2FD
T
2 (61)

where

K02 = −blkdiag
(
PRF(dvec(1⊘Cn))

2
)N
n=2

(62)

D2 = [dvec(1⊘C2), . . . , dvec(1⊘CN )]T . (63)

Then the matrixK3 in (56) can be written as

K3 = I(N−1)R2 +Ψ2K2 −Ψ2K
T
1 Ψ1K1

= I(N−1)R2 +Ψ2(K02 −KT
1 Ψ1K1) +Ψ2D2FD

T
2

= Q+Ψ2D2FD
T
2 (64)

where

Q = blkdiag(Qn)
N
n=2 (65)

Qn = IR2 − (Γ−1
nn ⊗Xn)PR (F(dvec(1⊘Cn))

2 + dvec(Γ1n)(Γ
−1
11 ⊗C1)dvec(Γ1n)PR) .(66)

Now, K3 can be easily inverted using the matrix inversion lemma (54),

K−1
3 = Q−1 −Q−1DT

2 (IR2 +DT
2 Q

−1Ψ2D2F)
−1Ψ2D2FQ

−1 . (67)

Inserting (67) in (56) gives, after some simplifications, the result (34).
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APPENDIX C

Proof of Theorem 5

Consider the change of scale of columns of factor matrices upto their first columns. As in Section II

assume that the scale change is realized inA1, while the other factor matrices have columns of unit

norm. The theorem claims that the substitutionA1 ← A1D into (26) whereD = diag(1, λ2, . . . , λR),

λr 6= 0, has no influence on CRIB(a1).

The substitutionA1 ← A1D leads toC1 ← DC1D and X1 ← DX1D while Cn and Xn,

n = 2, . . . , N , remain the same. Consequently,Γ1n, n = 1, . . . , N , remain unchanged whileΓnn ←

DΓnnD for n = 2, . . . , N . Now, we can substitute into (34) assuming that the condition of Theorem 4

is satisfied.

Let S̃n denote the matrixSn in (38) after the substitutionA1 ← A1D. It can be shown that

(D⊗ IR)S̃n = Sn(D⊗ IR) using the rules

(DΓnnD)−1 ⊗Xn = (D−1 ⊗ IR)(Γ
−1
nn ⊗Xn)(D

−1 ⊗ IR) (68)

dvec(DΓnnD⊘Cn) = (D⊗D)dvec(Γnn ⊘Cn) (69)

(IR ⊗D)PR = PR(D⊗ IR) (70)

and the fact that diagonal matrices commute. Using the same rules in further substitutions, after some

computations, the independence of CRIB(a1) on D follows.

APPENDIX D

Proof of Theorem 6

It holds

Γ11 =


 1 h1

h1 1


 , Xn =


 0 0

0 1− c2n


 , n = 1, . . . , N .

and

g11 = [Γ−1
11 ]11 =

1

1− h21
(71)

g1,: = g11 [1, −h1] . (72)

The matrixΨ in (31) can be decomposed asΨ = JΦ where

J = blkdiag
(
I4, I2 ⊗ [0, 1]T , . . . , I2 ⊗ [0, 1]T

)
(73)

Φ = blkdiag
(
Γ−1
11 ⊗C1, (1− c22)Γ

−1
22 ⊗ [0, 1], . . . , (1 − c2N )Γ−1

NN ⊗ [0, 1]
)
. (74)

Then the matrixB in (18) can be rewritten using the Woodbury identity (54) as

B = K(I4N + JΦK)−1 = K−KJ(I2N+2 +ΦKJ)−1ΦK . (75)
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Now, putB4 = I2N+2 +ΦKJ and write it in the block form as

B4 = I2N+2 +ΦKJ =


 B41 B42

B43 B44


 (76)

whereB41 has the size4 × 4. The bottom-right blockB44 of dimension(2N − 2) × (2N − 2) is

easy to be inverted using the Woodbury identity again, because it can be written as

B44 = B5 + sfT (77)

where

B5 = blkdiag (B52, . . . ,B5N ) (78)

B5n =


 1 −hnc1(1−c2

n
)

1−h2
n
c21

0 c2
n
−h2

n
c21

1−h2
n
c21


 , n = 2, . . . , N (79)

s =

[
−
h2c1(1− c22)

1− h22c
2
1

,
(1− c22)

1− h22c
2
1

, . . . ,−
hN c1(1− c2N )

1− h2N c21
,
(1− c2N )

1− h2N c21

]T
(80)

f = [0, 1, 0, 1, . . . , 1]T . (81)

After some computations, we receive the result (40).
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[14] P. Tichavský and Z. Koldovský, “Stability of CANDECOMP-PARAFAC tensor decomposition”, Proc. ICASSP 2011,

Prague, Czech Republic, pp. 4164-4167, 2011.
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