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Abstract

Missing data estimation is an important challenge with high-dimensional
data arranged in the form of an array.In this paper we propose a proba-
bility model for partially observed multi-way array data. Fisher scoring
and expectation maximization are used for estimation of the parameters
of this distribution. The main application is to missing data imputation
for multi way data.

1 Introduction

A vector is a one way array, a matrix is a two way array, by stacking matri-
ces we obtain three way arrays, etc, ... Array variate random variables up to
two dimensions has been studied intensively in Gupta and Nagar [2000] and by
many others. For arrays observations of 3, 4 or in general i dimensions proba-
bility models have been proposed very recently in (Akdemir and Gupta [2011],
Srivastava et al. [2008a] and Ohlson et al. [2011]).

Incomplete data are a major concern for the analysis of array variate random
variables. The purpose of this article is to develop likelihood based methods for
estimation and inference for a class of array random variables when we only
have partially observed arrays.

In Section 2, we introduce a normal model for array variables. In Section
3, we introduce the Full EM and the Hybrid FS-EM algorithms for parameter
estimation and missing data imputation. Two examples illustrating the use of
these algorithms are in Section 4.

2 Array Normal Random Variable

The family of normal densities with Kronecker delta covariance structure are
given by

φ(X̃;M̃,A1,A2, . . .Ai) =
exp (− 1

2
‖(A−1

1 )1(A−1
2 )2 . . . (A−1

i )i(X̃ − M̃)‖2)

(2π)(
∏

j mj )/2|A1|
∏

j 6=1
mj |A2|

∏
j 6=2

mj . . . |Ai|
∏

j 6=i mj
(1)
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where A1,A2, . . . ,Ai are nonsingular matrices of orders m1,m2, . . . ,mi; the
R-Matrix multiplication (Rauhala [2002]) which generalizes the matrix multi-
plication (array multiplication in two dimensions) to the case of k-dimensional
arrays is defined element wise as

((A1)
1(A2)

2 . . . (Ai)
iX̃m1×m2×...×mi

)q1q2...qi

=

m1∑

r1=1

(A1)q1r1

m2∑

r2=1

(A2)q2r2

m3∑

r3=1

(A3)q3r3 . . .

mi∑

ri=1

(Ai)qiri(X̃)r1r2...ri

and the square norm of X̃m1×m2×...mi
is defined as

‖X̃‖2 =

m1∑

j1=1

m2∑

j2=1

. . .

mi∑

ji=1

((X̃)j1j2...ji)
2.

Note that R-Matrix multiplication is sometimes referred to as the Tucker prod-
uct (Kolda [2006]).

The main advantage in choosing a Kronecker structure is the decrease in
the number of parameters. The estimation and inference for the parameters
of the array normal distribution with Kronecker delta covariance structure,
based on a random sample of fully observed arrays {X̃1, X̃2, . . . , X̃N}, can
been accomplished by maximum likelihood estimation (Srivastava et al. [2008b],
Akdemir and Gupta [2011], Srivastava et al. [2008a] and Ohlson et al. [2011]) or
by Bayesian estimation (Hoff [2011]).

The operator rvec describes the relationship between X̃m1×m2×...mi
and its

monolinear form xm1m2...mi×1. rvec(X̃m1×m2×...mi
) = xm1m2...mi×1 where x is

the column vector obtained by stacking the elements of the array X̃ in the order
of its dimensions; i.e., (X̃)j1j2...ji = (x)j where j = (ji − 1)mi−1mi−2 . . .m1 +
(ji − 2)mi−2mi−3 . . .m1 + . . .+ (j2 − 1)m1 + j1.

The following are very useful properties of the array normal variable with
Kronecker Delta covariance structure.

Property 2.1 If X̃ ∼ φ(X̃ ; M̃, A1, A2, . . . Ai) then rvec(X̃) ∼ φ(rvec(X̃);

rvec(M̃), Ai ⊗ . . . ⊗ A2 ⊗A1).

Property 2.2 If X̃ ∼ φ(X̃ ;M̃,A1,A2, . . .Ai) then E(rvec(X̃)) = rvec(M̃)

and cov(rvec(X̃)) = (Ai ⊗ . . .⊗A2 ⊗A1)(Ai ⊗ . . .⊗A2 ⊗A1)
′.

In the remaining of this paper we will assume that the matrices Ai are
square root of the positive definite matrices Σi for i = 1, 2, . . . , i and we will
put Λ = Σi ⊗ . . .⊗Σ2 ⊗Σ1.

3 Updating Equations for the Parameters

Using linear predictors for the purpose of imputing missing values in multivariate
normal data dates back at least as far as (Anderson [1957]). The EM algorithm
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(Dempster et al. [1977]) is usually utilized for multivariate normal distribution
with missing data. The EM method goes back to (Orchard and Woodbury
[1972]) and (Beale and Little [1975]). Trawinski and Bargmann [1964] and Hartley and Hocking
[1971] developed the Fisher scoring algorithm for incomplete multivariate nor-
mal data.

Let x be a k dimensional observation vector which is partitioned as
[

R
M

]
x =

[
xr

xm

]

where xr and xm represent the vector of observed values and the missing ob-
servations correspondingly. Here

[
R
M

]

is an orthogonal permutation matrix of zeros and ones and

x =

[
R
M

]′ [
xr

xm

]
.

The covariance of

[
xr

xm

]
is given by

[
R
M

]
cov(x)

[
R
M

]′
=

[
Σrr Σrm

Σmr Σmm

]
.

3.1 Fisher Scoring Algorithm

3.1.1 Score Function for M̃

Let X̃1, X̃2, . . . , X̃N be a random sample of array observations from the distri-
bution with density φ(X̃ ;M̃,A1,A2, . . .Ai). When the covariance parameters

A1,A2, . . .Ai are known the score function for M̃ is readily available by using
the array-monolinear form relationship in Property 2.1 and the corresponding
theory for the multivariate normal variable with missing observations.

Let xl = rvec(X̃l) and
[

Rl

Ml

]
xl =

[
xrl

xml

]

for l = 1, 2, . . . , N. The score function for M̃ is given by

Ψ(M̃) =

N∑

l=1

R′
l(RlΛR

′
l)
−1(xrl −Rlrvec(M̃)).

The estimating equation Ψ(M̃) = 0 gives the explicit solution

rvec(
̂̃
M) = J−1

N∑

l=1

R′
l(RlΛR

′
l)
−1

xrl (2)
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where J is the information matrix for rvec(M̃) and is given by

J =

N∑

l=1

R′
l(RlΛR

′
l)
−1Rl.

The asymptotic covariance for rvec(
̂̃
M) is therefore J−1.

3.1.2 Score Function for Ãk

Let X̃1, X̃2, . . . , X̃N be a random sample of array observations from the distri-
bution with density φ(X̃ ;M̃,A1,A2, . . .Ai).

Assume M̃ and all of A1,A2, . . . ,Ai are known except for Ak. In this case,
the variable

Z̃ = (A−1
1 )1(A−1

2 )2 . . . (Ak−1)
−1)k−1(Imk

)k(A−1
k+1)

k+1 . . . (A−1
i )i(X̃ − M̃)

has density φ(Z̃ ; 0̃, Im1
, Im2

, . . . Imk−1
,Ak, Imk−1

Imi
).

Now, let Z(k) denote the mk ×
∏

j 6=k mj matrix obtained by stacking the

elements of Z̃ along the kth dimension. Hence, we can write Z(k) ∼ φ(Z(k);
0mk×

∏
j 6=k mj

, Ak, I∏
j 6=k mj

). therefore the corresponding random sample (Z(k)1,

Z(k)2, . . . , Z(k)N ) = (z1, z2, ... zN
∏

j 6=k
mj

) provides a random sample of size

N
∏

j 6=k mj from the mk-variate normal distribution with mean zero and covari-
ance Σk = AkA

′
k.

Let σklm
denote the lmth element of Σk for 1 ≤ l ≤ m ≤ mk. The corre-

sponding elements of the score function for Σk under multivariate normality are
given by ()

Ψ(Σk)lm =

N
∏

j 6=k mj∑

q=1

tr{Wklmq
(zqz

′
q −Σkrrq

)}

where

Wklmq
= Σ−1

krrq

∂Σkrrq

∂σklm

Σ−1
krrq

.

The sensitivity matrix Sk for Σk, defined as the expected derivative of the
estimating function Ψ(Σk)lm with respect to the entries Σ, has elements given
by

S(Σk)(lm)(l′m′) = −

N
∏

j 6=k mj∑

q=1

tr(Σ−1
krrq

∂Σkrrq

∂σklm

Σ−1
krrq

∂Σkrrq

∂σkl′m′

).

and dimension (mk(mk+1)/2)2. The Newton scoring algorithm for Σk is hence
given by means of the update

Σt+1
k = Σt

k − S(Σt
k)

−1Ψ(Σt
k) (3)

where the result of the matrix product S(Σk)
−1Ψ(Σk) is understood as a m2

k

symmetric matrix with lower triangle defined by symmetry.
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3.2 The EM Algorithm

Let X̃1, X̃2, . . . , X̃N be a random sample of array observations from the dis-
tribution with density φ(X̃ ;M̃,A1,A2, . . .Ai). Let the current values of the

parameters be M̃t,At
1,A

t
2, . . .A

t
i.

3.2.1 The updating equation for M̃

The updating equation of the parameter M̃ is given by

rvec(M t+1) =
1

N

N∑

l=1

rvec(
̂̃
Xl)

= rvecM̃t +

N∑

l=1

ΛtR′
l(RlΛ

tR′
l)
−1(xrl −Rlrvec(M̃

t)) (4)

3.2.2 The updating equation for Σk

Let

Z̃ = (At
1
−1

)1(At
2
−1

)2 . . . (At
k−1

−1
)k−1(Imk

)k(At
k+1

−1
)k+1 . . . (At

i

−1
)i(X̃ − M̃ t).

Let Z(k) denote the mk ×
∏

j 6=k mj matrix obtained by stacking the elements of

Z̃ along the kth dimension with the qth column represented by zq. The updating
equation for Σk is given by

Σt+1
k =

1

N
∏

j 6=k mj

N
∏

j 6=k
mj∑

q=1

[ẑqẑ
′
q+M ′

q(Σ
t
kmmq

−Σt
kmrq

Σt−1
krrq

Σt
krmq

)Mq]. (5)

4 Flip-Flop Algorithm for Incomplete Arrays

Inference about the parameters of the model in (1) for the matrix variate
case has been considered in the statistical literature (Roy and Khattree [2003],
Roy and Leiva [2008], Lu and Zimmerman [2005], Srivastava et al. [2008b], etc.).
The Flip-Flop Algorithm Srivastava et al. [2008b] is proven to attain maximum
likelihood estimators of the parameters of two dimensional array variate nor-
mal distribution. In (Akdemir and Gupta [2011], Ohlson et al. [2011] and Hoff
[2011]), the flip flop algorithm was extended to general array variate case.

For the incomplete matrix variate observations with Kronecker delta covari-
ance structure parameter estimation and missing data imputation methods have
been developed in Allen and Tibshirani [2010].

The following is a modification of the Flip-Flop algorithm for the incomplete
array variable observations:

Algorithm for estimation:
Given the current values of the parameters, repeat steps 1 and 2 until con-

vergence:
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1. Update M̃ using (2) or (4),

2. For k = 1, 2, . . . , i update Σk using (3) or (5).

Note that at each step of this algorithm we can choose the EM or Fisher
Scoring updating equations. Therefore there are four modifications possible:

1. Full FS: Both steps of the estimation algorithm uses the Fisher scoring
updating equations.

2. Full EM: Both steps of the estimation algorithm uses the EM updating
equations.

3. Hybrid FS-EM: First step uses the Fisher scoring update and second step
uses the EM update.

4. Hybrid EM-FS: First step uses the EM update and second step uses the
Fisher scoring update.

In the following we have only implemented the Full EM and the Hybrid
FS-EM algorithms.

5 Illustrations

Example 5.1 In this first example we have simulated data from a 2× 2 array
normal distribution with differing number of observations. For each sample size,
we have repeated the experiment 10 times. The convergence of the estimator of Λ
is checked by reporting the mean L = ‖Λ−Λ̂‖2 over 10 trials at each sample size.

True covariance components were

[
2 .6
.6 3

]
and

[
4 −.6

−.6 1

]
. Sample sizes

50,100, 200 and 500 were used. Missing data intensity defined as the proportion
of the number of randomly selected (with replacement) data points that were set
to missing to the total number of data points, in the experiments this was set
to 1

4 . Figure 1 display the results from the Hybrid and EM algorithms. As the
number of observations increase, L decreases towards zero.

Example 5.2 In this example, we use a subset of the data previously analyzed
by Basford et al. [1991]. The most comprehensive analyses of these data as well
as experimental details can be found in Basford and Tukey [1999]. The data set
involved measurements on 58 different soybean lines observed on 6 traits and in 8
environments. Because of the low number of replications, we have only included
the first 20 lines in our analysis. We have assumed that the 20× 6 matrices of
observations from different environments (4 locations, 2 times) were independent
and identically generated from a two way array (matrix) normal distribution.
We have deleted all the observations for the lines 1 through 10 for the last
environment and estimated these using the Full EM algorithm. The average
correlation between the true and the estimated values over the 6 variables was
0.57. We have also used applied imputation using 2-nearest neighbors regression
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Figure 1: The convergence of the Full EM (Left) and the Hybrid FS-EM (Right)
algorithms. As the number of observations increase, L decreases towards zero.
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(Hastie et al. [2001]) and random forest regression (Stekhoven and Bühlmann
[2012]) using the 120 × 8 data matrix representing the 120 variable-location
pairs and 8 replications. The corresponding correlation values were 0.55 and
0.57.

6 Conclusions

We have formulated a parametric model for array variate data and developed
suitable estimation methods for the parameters of this distribution with possi-
bly incomplete observations. The main application of this paper has been to
multi-way regression (missing data imputation), once the model parameters are
given we are able to estimate the unobserved components of any array from the
observed parts of the array. We have assumed no structure on the missingness
pattern other than assuming that it is fixed.

The methods developed here use the assumption that the data is generated
from a distribution with Kronecker delta covariance structure. The suitability
of this model to any data set is questionable. The choice of model and and
determination of its order could be accomplished using a model selection criteria
based on the likelihood function which is available through the results in this
paper.
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