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Abstract 

This article aims at summarizing the existing methods for sampling social networking 

services and proposing a faster confidence interval for related sampling methods. Social 

networking services (SNSs), such as Facebook and Twitter, are an important part of 

current Internet culture. Collecting samples from these services should be a key process 

to learn more about sociological or psychological issues. However, typical sampling 

methods for networks, such as node-based or link-based methods, are not always 

feasible for social networking services. Alternate approaches such as random walk (RW) 

or Breadth-First-Search (BFS) are applied to gather information from social networking 

services more efficiently. Thus it is beneficial to compare various sampling approaches 

for SNSs and discuss the most suitable one for each situation, which are shown later. 

Moreover, to make statistical inference on the gathered information, it is necessary to 

apply another set of approaches to solve the related problems. One problem is the 

estimation of sampling probabilities, e.g. the probability for a sampled node to be a 

particular node  , which is denoted as     . Many approaches are currently available, 

and their real performance will be discussed later on in terms of RDS sampling.  

RDS sampling, the so-called respondent driven sampling, is invented to detect hidden 

population in society and has been generalized and widely discussed ever since. Many 

methods for estimating the sampling probabilities and constructing confidence intervals 

have been proposed and improved. These methods are useful, yet their properties have 

not been studied sufficiently, some of which will be discussed in the following. Based 

on these existing methods, we also propose modification of existing estimation methods 

and the construction of a faster confidence interval which has not been covered in 

current related literature. 

After all, the topic of sampling on social networking services is relatively new and there 

is still much to be explored. 

1. Networks and Social Networking Services 

Social networking services form a special kind of network. The people who join these services 

are connected by friendship relations and they together constitute a network web which is quite 

huge. Yet these networks are also intangible and it often proves difficult to collect information 

from them. We could trace from person to person in order to get a view of these networks, but 

this approach is very subtle and the problems related to it will be the main focus of this paper. 

After all, to analyze social networking services as networks, we should first give a clear 

definition of them. 
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A network is a collection of “points”, which we call nodes, and specific relationships between 

them, which we call edges. In our situation, a node refers to an account or user on an SNS; an 

edge or link refers to a kind of relationship (friendship on Facebook, etc.) between two accounts; 

the degree of a node refers to the number of nodes linked to it; the volume of a set of nodes refers 

to the sum of the degrees of all the nodes; the neighborhood      of a node refers to the set of 

all nodes linked to node  . 

2. Sampling Methods for Social Networking Services 

2.1. Node-based Sampling Methods 

2.1.1 Simple node-based sampling 

If we desire to make inference on a certain group without any other restriction, then we can apply 

the simplest node-based sampling method: to randomly gather a group of people on SNSs and 

keep the links between them (Figure 2.1a). Though this method generally preserves the 

topological structures of a social networking graph [1], it is not available for sampling under 

many circumstances. There were some available SNS datasets, such as complete available 

datasets for Facebook users in Harvard [2] and Caltech [3], which dated to 2008 [4]. It is 

possible to collect a random sample from these datasets with the node-based sampling method. 

Yet online social networks are highly dynamic, and typical SNSs such as Facebook can only 

generate a small sample each time for a given group of people, which make the node-based 

method of sampling difficult for SNSs. 

2.1.2 Alternative node-based sampling (rejection sampling) 

Another way to acquire a uniform random sample from an SNS is to generate random user IDs 

uniformly and then reject the IDs that do not match any user. It is proved that this kind of 

sampling generates the same results as uniform random sampling without replacements [4]. This 

approach was previously available for Facebook; but now, Facebook has stopped using number 

IDs, and this approach appears to be less practical. 

2.2 Link-Based Sampling Method 

We can also apply link-based sampling to an SNS: to randomly gather a number of links and 

then keep the nodes attached to them. The difference between node-based sampling and link-

based sampling is illustrated as follows [1]: 

(a) Node-based                          (b) Link-based 

Figure 2.1. The difference between node-based and link-based sampling methods. 

The link-based sampling method just preserves some of the topological structures of a social 

networking graph [1]. Besides, it shares the same weaknesses with node-based sampling, as 

random sampling on links in social networks is often not available. Yet when investigating on 



the characteristics of relationships (links) in social network services, the link-based method may 

be a most suitable one. 

2.3 Traversal Sampling Methods 

When conducting sampling on a social network graph, it is convenient to use the property that 

the nodes are connected from one to another. Therefore, we can sample from one node to another 

node (referring) repeatedly using the existing links between them, which may accelerate the 

speed of sampling on SNSs. Methods of this type are generally called crawling methods. Yet 

crawling methods can be divided into two categories. Traversal methods sample each node only 

once and include the four methods listed below; the other type allows replacements, which 

includes random walk methods and respondent-driven sampling in Section 2.4 and 2.5. 

The following picture illustrates a typical traversal sampling: 

Figure 2.2. A typical traversal sampling (irrelevant links omitted).  

Almost all crawling methods are biased towards nodes with higher degree, i.e. the probability of 

sampling nodes with higher degree is larger. The possible methods to correct this bias are 

discussed in Section 3. 

2.3.1 Breadth-First-Search (BFS) 

The Breadth-First-Search (BFS), or the snowball sampling method, starts with a certain node in a 

social network and then samples all its relevant nodes, and the samples all the relevant nodes of 

its relevant nodes, etc. until the total number of nodes reach a certain amount [1]. The following 

picture illustrates the BFS method (the number indicates the order): 

 

Figure 2.3. An example of the BFS method. 

The BFS method is arguably the fastest method of all, and it is also feasible in current online 

social networks. Yet the high speed of BFS method must be weighed against its shortcomings. 

Many early investigations on SNSs applied the BFS method [1, 5-8], but evidence has shown 

that the BFS method tends to distort the topological features of a network [1], and it also suffers 

from other problems such as low convergence rates (the speed of the sample to approximate the 



actual distribution) and high bias towards high-degree nodes [9] (in other words, the probabilities 

of appearing in the sample for higher-degree nodes are higher).  

2.3.2 Depth-First-Search (DFS)  

The Depth-First-Search starts with a certain node and goes along a random route until it reaches 

a terminal. Then it retreats to the nearest visited node joining another branch and goes along this 

branch randomly until it reaches a terminal again, and so force… until a whole connected 

component of a social network is visited [12]. This method aims at visiting a whole graph or one 

connected component (such as all people that can be traced from one person in Facebook), and 

when it is carried out incompletely, it also introduces an unknown bias towards high-degree 

nodes [9]. The following picture illustrates the DFS method (the number indicates the order):      

  

Figure 2.4. An example of the DFS method. 

2.3.3 Forest Fire Sampling (FF) 

Forest Fire sampling is a modification of the BFS method. In Forest Fire sampling, we start with 

a certain node, sample each of its neighbors with probability p and then sample each of the 

neighbors of its sampled neighbors with probability p, etc. until we have collected a certain 

number of samples. FF sampling reduces to BFS when p=1. This method has similar properties 

with the BFS method [9], and it was applied in [18].  

2.3.4 Alternative Snowball Sampling (SBS) 

Alternative snowball sampling, simply referred to as snowball sampling in [9], [19] and [20] (not 

to be confused with the BFS method), is another modification of the BFS method. Instead of 

sampling all neighbors of a node, we now just sample n neighbors of a node at each step, and 

then reject the neighbors that we have already sampled. [19] gave a crude estimation of the 

sampling probabilities for this approach, and used it to decrease the sampling bias of this method, 

but the bias correction did not always work satisfactorily. 

2.4 Random Walk Sampling Methods 

The random walk sampling consists of many sampling methods that are useful for sampling 

social networking services.  A typical random walk starts with an arbitrary node, then randomly 

visits one of its neighbors, and then randomly visits a neighbor of the neighbor, etc. until a 

certain amount of nodes (with replacements) is collected. It has shown that random walk 

sampling is more theoretically solid than other sampling when carried out properly, though they 

may not be useful in terms of non-local graph properties like the graph diameter and the average 

shortest path length [4]. However, from our further analysis in Section 4, in terms of sampling 

error, random walk may not work as well as traversal methods even under some simple cases. It 

should be noticed that when replacements are impossible, random walk reduces to a traversal 

method. The variations of random walk sampling are as follows: 



 

2.4.1 Simple Random Walk (Random Walk, RW) 

Simple random walk visits at each step one of the neighbors of the previous node with the same 

probability. If the social network is connected and aperiodic, the sampling probability of a 

particular node v converges to the stationary distribution:         
      

       
 ,   be the whole 

network graph [13]. There is a known bias in the sampling results; therefore, we must re-weight 

the results using some method discussed in 4.1. 

2.4.2 Metropolis-Hastings Random Walk (MHRW) 

Metropolis-Hastings Random Walk visits at each step the neighbor v of the last node u with the 

same probability and move to the new node with probability        
      

      
  . Otherwise, the node 

remains the same. Then the sampling probability of each node is the same:  
 

| |
 [11, 14]. Both RW 

and MHRW significantly outperform BFS in terms of convergence and topological properties, 

and are acceptable [4]. RW is slightly more efficient than MHRW [16, 17], but consider the 

higher efficiency of computing for MHRW, both methods have their merits. 

2.4.3 Weighted Random Walk (WRW) 

Now suppose we want to gather more information from a certain group of people in SNSs. To 

achieve this effect, we can place weight        on the edge       of a network so that our 

desired nodes incur more weight. Then we visit at each step the neighbor v of the last node u 

with probability 
      

∑             
. The sampling probability of a node v is         
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2.4.4 Stratified Weighted Random Walk (S-WRW) 

Suppose we want to gather information from several categories which differ greatly in size. To 

get an approximately equal number of samples from each category, some means must be taken. 

The S-WRW sampling, a special case of WRW, aims to solve the problem with following 

algorithm [11]: 

(1) Run a short pilot random walk and discover categories   ’s. Let 
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(4) Let  ̃      
  ̃       
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 , which is the weight of any edge 

between   ,   . 

(6) An decrease in  ̃  results in more focus on relevant categories but less convergence speed; an 

increase in   results in more focus on smaller categories but larger possibility to become 

“trapped” in them, which means, more deviation. 

2.5 Respondent-Driven Sampling (RDS) 

Respondent-driven sampling was first invented as a chain-referral sampling method to detect 

hidden populations, such as drug addicts or sex workers, to whom traditional sampling methods 

were unable to get access [21]. In respondent-driven sampling, surveyees are asked to report 

information of whom they know, and these people may turn into later surveyees. Later this 

method was generalized and its characteristics were well-studied [22].  

Nowadays RDS generally refers to crawling sampling methods which samples n nodes from one 

node at a time, both with and without replacements. When n = 1, RDS with replacements reduces 

to RW and when RDS is performed without replacements, it can be viewed as alternative 

snowball sampling. It was mentioned in [17] and [22] that the sampling probabilities of RDS is 

proportional to the node degree, and even so as an approximation when it is conducted without 

replacements. However, [9] and [30] have shown that this approximation is not satisfactory 

enough and there are various ways below to improve it. 

3. Estimation of Sampling Probabilities  

3.1 Direct Estimation 

The sampling probabilities for sampling methods with replacements have already been given. 

For traversal methods, it is impossible to derive such formulas for sampling probabilities. 

However, it is still possible to derive some satisfactory estimation for traversal methods. [9] and 

[10] provide a direct estimation of the sampling probabilities with the following logic: 

(1) First we introduce the concept of node degree distribution     , which is the proportion of 

nodes with degree   inside the network. Then we consider the given network as a random 

network with fixed degree distribution     ,     . A node with degree   is considered to have 

  “stubs”. We can connect all the stubs in pairs randomly to form the final random social 

network graph, but now we just leave them unconnected.  

(2) We adopt such an algorithm: choose a node   , set   {  }. We take an element   from   

and add ones of its neighbors,  , into  . We repeat this process until we are done. This algorithm 

implements many traversal sampling methods. It is the BFS method on a first-in first-out basis; it 

becomes the DFS method on a last-in first-out basis. However, we have to solve the problem of 

how to choose neighbors in a random graph. 



 

(3) To solve this problem, we introduce such an approach: we assign each stub with a random 

number with a distribution of       . Then we take    with the smallest stub number, and 

choose the neighbor at each iteration again with the smallest stub number. This is like a “scan” 

process from     to    .  

(4) We assume the existence of this “time” variable. The expected number of sampled nodes 

with degree   at “time”   is:      [        ],   be the total volume. Taking the expected 

values as the real values, the sampling probability for a certain node  ,                   . 

(5) Because “time”   is unknown, we try to establish a relationship between   and sampling 

proportion  , which is the ratio of the sample size over the total volume. We have        
       ∑            . It should be noticed that      can only be estimated using some 

other method like random walk. Letting         , the final answer we get is        
                . Because ∑      , we only need the relative     . 

[9] has shown that this Kurant approximation formula (for simplicity) performs quite well when 

the assortativity
†
 is near 0. Otherwise, this formula yields high errors and cannot be applied. 

To simplify this formula, we can take such approximation: let              ̅ ,  ̅ is the 

average node degree of the sample. The simplified formula does not need the estimation of node 

degree distribution. We will evaluate the performance of this simplification in section 3.1.1. 

3.2 Gile’s Successive Sampling Estimation 

Gile’s Successive Sampling (SS) estimates, based on simulation, are constructed as follows [30]: 

(1) Initial estimation:         
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, k is the degree of node v,    is the number of 

nodes with degree k in the sample, n is the sample size and N is the total population. 

(2) For i = 1, ... , r,  repeat the following steps: 

i.  Estimate the number of nodes with certain degrees: 

  
    

  

       
∑

  

       
⁄ ,   

  is the number of nodes with degree k in the i-th interation. 

ii. Calculate the new sampling probabilities with simulation: 

Generate a random network graph with population N and number of degree-k nodes   
 . 

Simulate   successive samples with size n from the network and estimate: 

                 
    ,    is the total observed number of nodes with degree k. 

(3) Take the       as the final     . 

                                                           
†
 Assortativity is the tendency of nodes to be connected to nodes of similar degrees. It is positive if higher-degree nodes tend to 

be connected to higher-degree nodes; it is negative if most links are higher-degree to lower-degree connections. 



[30] has shown that the Gile’s SS estimates are more efficient than with-replacement estimation 

(sampling probabilities proportional to node degrees) when applied to traversal methods. 

Nevertheless, it still remains uncertain about the relative performance of the two types of 

estimates mentioned above. The next section will apply these estimates to various situations of 

statistical inference and compare their relative performances. 

4. Statistical Inference for RDS Sampling Methods for SNSs 

In this section, we will discuss statistical inference for RDS sampling methods. Regarding what 

we should estimate, we simulate networks with volume 1000 and randomly assigns each node 

with category A or B. We control the proportion of category A to be, say, 0.3 in the following 

examples. Then we will use RDS sampling to estimate the proportion of category A in terms of 

point estimation discussed in Section 4.1 and confidence interval estimation discussed in Section 

4.2. Section 4.3 summarizes some simulation results which is related to the accuracy of many 

estimations for sampling probabilities. All simulation results are based on the ERGM model and 

averaged over 100 random network graphs with population size 1000 and 100 samples on each 

network without specification. 

4.1 Point Estimation of Category Proportions 

Because RDS samling methods are all biased towards higher-degree nodes, we cannot use the 

category proportions of the sample to replace the category proportions of the total population. 

The Horvitz-Thompson (or Hansen-Hurwitz, Voltz-Heckathorn) estimator [11, 15, 29] estimates 

population total as   ̂      
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     is the node characteristic and       is the sampling probability. This estimator is unbiased 

and is applied for RDS in most situations. We need only make      an indicator function to 

estimate the category proportions of the total population. 

4.1.1 Sampling with Replacements 

Now we investigate the accuracy of the estimator on RDS sampling with replacements and 

estimate the mean degree of social network graphs. We use the relative mean standard error as an 

indicator which is calculated from a sample of volumn   on a quadratic mean basis:  ̂   ̂  , 

 ̂  √∑  
   ,   is the category proportion. The relative mean standard errors are plotted against 

the sampling proportions to show how many samples we should collect in order to get a reliable 

estimation. There are comparisons between RDS and RW methods. We only assume that 

sampling probabilities are proportional to the node degrees, as Gile’s SS estimates are typically 

applied for traversal methods.  

Also, to identify the influence of node degrees on sampling results, we change a paramater called 

the activity ratio, which is defined as the ratio between the average node degree of category A 

and the average node degree of category B [29]. We set three situations from the left to the right 

below: activity ratio = 0.5, activity ratio = 1 and activity ratio = 2. 

 



The relative standard errors for RW and RDS are as follows:   

(a) Homophily ratio (the tendency of nodes to be connected within the categories) = 1.   

(b) Homophily ratio = 2.   

Figure 4.1. The relative mean standard errors of RW and RDS (n=3) on different social 

network graphs; activity ratio = 0.5, 1, 2 from left to right; the horizontal axis is the 

sampled proportion. 

All social network graphs of different activity ratios and homophily ratios indicate that the mean 

standard error generally decreases with more sampled nodes, though fast at first and quite slow 

later. Also, the patterns of RW and RDS curves were highly similar so they almost coincide and 

no one seems to clearly outperform another when there is no homophily. However, when the 

homophily ratio is large, RW tend to outperform RDS to a large extent, and all errors tend to be 

much larger. Meanwhile, there is a tendency that the mean standard error does not decrease 

rapidly with an increase in sample volume. In contrast, they seem to come close to a certain 

positive number (in these examples, around 0.10 and 0.20) with the volume increasing. This 

indicates that overly large samples may be valueless and how to further decrease the error in RW 

and RDS sampling should be a question of investigation. 

It was also found in simulation that when the homophily ratio is high, there are some outliers that 

significantly change the mean standard errors, and the standard error is also higher. This is likely 

to be caused by the fact that the sampler is trapped in a small group of people with dense ties and 

does not come out. This kind of phenomenon should be avoided in both theory and practice. [9] 

provided an approach to eliminate this phenomenon by identifying the close social circles. 

However, such an identification is not always available, and more methods to eliminate this 

phenomenon should be discovered. 



It is reasonable to hypothesize that the mean standard error does not quickly converge to zero as 

sample size increases, the sampler picks up some points with extreme node degrees, which 

increase the sample variation of the node degrees to a large extent. The following simulation 

results, with sampling errors decomposed into bias and standard deviation, largely prove this 

hypothesis, which is shown as follows: 

      (a) activity ratio = 0.5,                 (b) activity ratio = 1,                   (c) activity ratio = 2, 

          homophily ratio = 1;                    homophily ratio = 1;                   homophily ratio = 2. 

Figure 4.2. Relative biases and standard deviations (divided by proportion) for RW and 

RDS (n=3) methods against sampled proportion. 

We can observe from the graphs that the sampling bias is almost zero, and the main contributor 

to the error is the standard deviation. The standard deviation decreases rather slowly as the 

sampling proportion increases, and remains at about 5% of the real value when there is no 

homophily. Therefore more work should be done on decreasing the standard deviation of the 

estimator. We will compare these results with the results from traversal (without-replacement) 

sampling below. 

4.1.2 Traversal (Without-replacement) Sampling 

Despite the fact that the accurate sampling probabilities of traversal methods are not available, it 

is still beneficial to discuss how approximate methods work, especially for RW and RDS 

sampling without replacements. [22] approximates the situations to sampling with replacements 

and [9] gives the Kurant approximation to estimate the node degree distribution, which could be 

modified to estimate the distribution for each node and furthermore, to estimate the degree 

properties. Though, the formula involves the actual node degree distribution itself, which can 

only be estimated through some other means and thus making methods with replacements more 

preferrable. Also, it might be applicable to simplify the approximation and eliminate the use the 

other methods, which has been discussed in Section 3.1. Moreover, Gile’s SS estimator is also 

available for traversal sampling. Thus it would be beneficial to discuss how these methods 

actually work in practice: (1) Horvitz-Thompson estimator using Kurant approximation; (2) 

Horvitz-Thompson estimator using simplified Kurant approximation; (3) Gile’s SS estimator. 

The following graphs illustrate the relationship between relative mean standard errors and 

different sampling and estimation approaches:  



3(b)  

(a) activity ratio = 0.5,                  (b) activity ratio = 1,                 (c) activity ratio = 2, 

        homophily ratio = 1;                     homophily ratio = 2;                  homophily ratio = 2. 

Figure 4.3. The relative mean standard errors of traversal RW, plotted against the 

sampling proportion; average node degree = 20; homophily ratio = 1; Kurant 

approximations yield almost identical errors and are not distinguished. 

It can be referred from the results that all traversal estimates consistently have smaller average 

errors than with-replacement estimates, which shows that traversal estimates are more applicable. 

In the traversal estimates, Gile’s SS estimates perform consistently better, but the difference is 

only significant when the sampled proportion is large (above 0.4) and the activity ratio is far 

from zero, which is quite uncommon in real practice. Considering the fact that Kurant 

approximations are much easier to calculate than Gile’s SS estimates, it is acceptable to replace 

Gile’s SS estimates with Kurant estimates under “normal” circumstances, where the sampling 

proportion is not too high. Also, it is shown that the simplified Kurant estimates almost have the 

same results as original Kurant estimates. 

Further investigation can be made into the similarity between the Gile’s SS estimates and the 

Kurant estimates. The correlation factors between the two estimates under different 

circumstances (RW & RDS; homophily ratio = 1, 2; activity ratio = 0.5, 1, 2) have been 

calculated and the numbers are all above 0.95 for sampling proportion <= 0.7. When the 

sampling proportion > 0.7 and activity ratio is far from 1, the correlation factors drop below 0.95 

but still are greater than 0.5. Therefore, the two estimates are interchangeable under “regular” 

circumstances. 

A temporary conclusion is that the traversal methods works best with approximate bias 

corrections, while with-replacement sampling is acceptable, though they generally yield larger 

errors. More investigation should be made into the nature of the errors and how to minimize 

them. Various factors that influence the estimation should also be identified. 

4.1.3 Stability Regarding Population Size 

Because online social networks are often of very large size, it is beneficial to discuss the change 

of the error when the population size increases. We can see from below that the errors are quite 

stable when the population size increases and the sampling size keeps the same. The following 

table indicates the relative standard errors for simplified Kurant method and Gile’s SS method on 

RDS when sample size equals 700, 1000, 1300, 1700, 2000 and sample size remains 100: 



Population size 700 1000 1300 1700 2000 

Kurant 14.6% 15.0% 15.1% 15.2% 15.3% 

Gile’s SS 14.6% 15.0% 15.1% 15.2% 15.3% 

Table 4.1 Sampling errors under different population sizes. 

From these results, we can observe that the sampling errors increase quite slowly with population 

size increasing, and the increasing trend tend to diminish as population increases. Therefore, the 

results obtained are quite stable, which provide some evidence that the results will be 

asymptotically stable as well. Therefore, we are sure to some extent that the RDS estimates for 

the characteristics of networks of large population size are also reliable. 

4.2 Confidence Interval Estimation (Naive, Bootstrap and Gile’s SS Confidence Intervals) 

Constructing confidence intervals for node properties should be another point of interest. While 

“naive” confidence intervals
‡
 do not perform satisfactorily generally because of the bias of the 

mean in RDS search, there are currently two types of bootstrap confidence intervals which are 

acceptable for RDS sampling on networks.  

4.2.1 Available Confidence Intervals 

The first type is Salganik’s bootstrap confidence interval [23]. We first take out a sample from a 

network using the RDS method and then resample on the sample with replacements for   times. 

The resampling procedure is that if the last resampled node is of category 1, we resample the 

next node from all sampled nodes referred by category 1, and vice versa. Then we calculate the 

values  ̂ , ...,  ̂  of an estimator of whichever type for each of the resampled samples and hence 

obtain the standard deviation (estimated) for the estimator. Bootstrap confidence intervals are 

then constructed using [ ̂       ̂   ̂       ̂ ]. It is also suggested that taking the percentiles of 

 ̂ , ...,  ̂  is also acceptable, which can be regarded as an alternative way of constructing 

bootstrap confidence intervals. 

The second type is Gile’s bootstrap confidence interval [31]. Because high homophily can 

significantly increasing the errors of the estimates, as is shown previously, reliable confidence 

intervals should take the homophily factor into account, while the Salganik’s bootstrap 

confidence interval fails to do so directly. To solve this problem, the following set of procedures 

(outline) is proposed for estimating category proportions, categories denoted as 0 and 1. The 

essence is to mimic the process of sampling a network of high homophily ratio: 

(1) Estimate the node degree distribution of the network and simulate a network with same 

population and estimated node degree distribution. 

(2) Denote current number of nodes with category   and degree   as  ̂   ; number of edges from 

category   to category   as the  -  th entry of   ; estimate          ̅ ∑  ̂     ,         

 ̅ ∑  ̂         ,                 [ ̅ ∑  ̂       ̅ ∑  ̂         ]  , mean degree 

 ̅  ∑  ̂      ∑  ̂    ,    be the sample proportion of edges from   to 1 in all edges from  . 

                                                           
‡ The “naive” confidence interval is the normal confidence interval with formula [ ̅           ̂  √   ̅           ̂  √ ]. 



(3) Select    nodes with probabilities proportional to degree, update       total degrees of 

nodes unsampled / total node degrees; 

(4) While resample size < observed sample size, make the  -th sampled node active in the  -th 

iteration: 

(5) Denote the number of nodes we wish to sample from the active node as  ; set   to be 

the average number of referrals in the original sample; repeat   times: 

(6) Select the category 1 with odds H (active node category, 1) / H (active node 

category, 0); sample an additional node with the desired category with probabilities 

proportional to degree; update   as before. 

(7) Finish the algorithm and create one bootstrap sample. We calculate the bootstrap confidence 

intervals just as we do in the Salganik’s method. 

[31] has showed that Gile’s procedures tend to slightly overestimate the standard variance, and 

therefore can be viewed as a little conservative. Yet it is also shown that the coverage 

probabilities of the Gile’s SS confidence intervals can fall below the nominal confidence levels, 

especially when the sampling procedures are biased. This phenomenon can only be caused by the 

fact that the estimator itself can be biased, and is almost negligible as a whole according to [31]. 

Furthermore, Gile used the method of simulating one network instead of taking an average on 

different networks. To know whether the main variance comes from inside the networks or 

between the networks, we perform an ANOVA analysis on proportion estimation of 20 networks 

with size 1000 with 25 samples with size 100 on each network, with the same assumptions as 

before. The result shows that the right-tail probability of the F statistic is 0.3725. Therefore, it is 

reasonable to hypothesize that there is not a significant structural difference between different 

networks, and Gile’s approach is reasonable and should be continued. 

4.2.2 A Faster Confidence Interval for RDS Sampling 

Gile’s confidence intervals used the mixing matrix to mimic the process of sampling a network 

of higher homophily. Nevertheless, we can directly simulate a network with given mean degree, 

homophily ratio and activity ratio, which includes all information in the mixing matrix [32]. Our  

new confidence interval should be based on sampling on such a network.  

It is not difficult to estimate the mean degree  ̅ using the previous simplified Kurant estimates or 

Gile’s SS estimates. To estimate the homophily ratio, we assume that every link is sampled with 

the same probability, and then the proportion of links between category 1 and 0 on average 

should be 
    

        
;    and    are the estimated sample population of categories 1 and 0. Then, 

given number of referrals   and number of referrals between category 1 and 0:    , the estimated 

homophily ratio  ̂  
     

           
  Similarly, the activity ratio  ̂   ̅   ̅ ;  ̅  and  ̅  are the 

estimated mean degrees of nodes of category 1 and 0 using simplified Kurant estimates or Gile’s 

SS estimates. 

From these results, we can now construct a faster confidence interval for the RDS sampling with 

the following steps: 



(1) Simulate a network with the same sample size and population, estimated mean degree  ̅, 

homophily ratio  ̂ and activity ratio  ̂; 

(2) Sample from the network   times and create   samples of the simplified Kurant estimator; 

(3) Compute the sample variance using the values of the estimator and hence construct the 

desired confidence interval as before. 

To increase the speed of the computation, we use the simplified Kurant estimates, which are 

about three times as fast as Gile’s SS estimates under R console.  

4.2.3 Discussion 

To investigate on the performance of different confidence intervals, we should know about their 

coverage probabilities. Moreover, to provide more information, the estimated standard deviation 

used the generate the confidence intervals are also presented. The simulation results for all three 

different kinds of confidence intervals are as follows: 

 

 Coverage 

probabilities 

(Salganik’s) 

Standard 

deviation 

(Salganik’s) 

Coverage 

probabilities 

(Gile’s SS) 

Standard 

deviation 

(Gile’s SS) 

Coverage 

probabilities 

 (new) 

Standard 

deviation 

 (new) 

Case A 94.8% 0.046 94.0% 0.045 95.0% 0.046 

Case B 96.1% 0.032 94.2% 0.030 94.4% 0.028 

Case C 91.3% 0.041 93.2% 0.043 89.2% 0.042 

 

Table 4.2 Performance of different kinds of 95% bootstrap confidence intervals using 

traversal RDS (n=3), based on an average of the results from simulated networks. Case A: 

homophily ratio = 1, activity ratio = 1. Case B: homophily ratio = 1, activity ratio = 2. Case 

C: homophily ratio = 2, activity ratio = 2. 

It can be observed that when the network is without specific characteristics such as activity ratio 

and homophily, the new confidence intervals tend to outperform the original ones. However, 

when there is such properties, especially homophily, the new confidence intervals are more 

inaccurate, also with shorter lengths. The fluctuations in the coverage probabilities indicate the 

complexity of this problem. Still, the three sets of confidence intervals do not differ by a great 

amount in terms of coverage probabilities. Therefore, the new confidence intervals con be 

applied when the sampled network does not specific characteristics, or the requirement for 

accuracy is not high and faster computational speed is desired. 

 

 

 

 

 

 

 



4.3. Bootstrap Accuracy for RDS 

We should also investigate on how well the distribution of a sample represents the total. Again 

we use node degree as an example.  [7] showed that often hundreds of nodes had to be sampled 

in order to make the estimated sampling probabilities close to the sampling probabilities. We 

now consider the node degree distribution and have found similar results:  

(a) Sample = 50.                       (b) Sample = 100.                       (c) Sample = 200. 

Figure 4.4 The approximation of node degree distribution by RDS (n=3) under different 

sample sizes, mean network degree = 20. act: actual node degree distribution; rep: 

sampling with replacements; tra: traversal sampling. 

It is observed that it is only with a sample size of 200 (20%) that the sample node degree 

distribution is relatively close to the actual node degree distribution. Therefore, both crawling 

methods do not converge fast enough to resemble the actual distribution. Nevertheless, there 

exists many ways to increase the convergence speed for random walks, which can be found in 

[24-28]. 

5. Conclusion 

We have discussed a number of sampling methods for social networking services and many of 

these methods prove to be useful in analyzing the structure of online social networks. While 

some methods are typically used for some special purposes, other methods can work for general 

purposes. The characteristics of methods of statistical inference for RDS sampling are also 

discussed, and a faster confidence interval for RDS sampling is also proposed. The remaining 

questions are the properties of these procedures and how to refine them.  
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