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On nonparametric inference forP (X < Y ) for paired

variables

J. A. Montoya∗and F. J. Rubio†

Abstract

We propose a class of nonparametric point estimators forθ = P (X < Y ) for the

case where(X,Y ) are paired, possibly dependent, continuous random variables. We make

use of the pairing structure for linking the estimation ofθ with the estimation of the sur-

vival function and density function ofY −X. We consider the use of bootstrap to obtain

confidence intervals forθ based on the proposed estimators. The performance of these

estimators is illustrated using simulated and real data. The example with real data shows

that not accounting for pairing and dependence might lead todifferent conclusions about

the relationship betweenX andY .
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1 Introduction

The study of stress–strength models have received considerable attention for many years due

to its applicability in diverse areas. The main interest in this kind of models is the quantity

θ = P (X < Y ), whereX andY are random variables. In medicine for example, ifX and

Y are the outcomes of a control and an experimental treatment respectively, the parameterθ

can be interpreted as the effectiveness of treatmentY (Ventura et al., 2011). This quantity is

also related to the Receiver Operating Characteristic (ROC) curves, whereθ is interpreted as

an index of accuracy (Zhou, 2008). In engineering and reliability studiesθ is also a quantity of

interest because it may represent the probability that the strength of a component (Y ) exceeds

the stress (X) coming from external factors (Kotz et al., 2003).

Stress-strength models were introduced by Birnbaum (1956)who proposed a nonparametric

estimator forθ based on the Mann-Whitney statistic for the case whereX andY are indepen-

dent. There is a large amount of literature related to the study of point and interval estimation
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of θ using different approaches (see Kotz et al., 2003 for a good survey on this). For instance,

in the case whereX andY are independent, Sun et al. (1998) proposes a Bayesian approach

using reference priors; Baklizi and Eidous (2006) propose an estimator based on kernel esti-

mators of the densities ofX andY (which can be straightforwardly generalised to the use of

other nonparametric density estimators); Zhou (2008) proposes the use of bootstrap and asymp-

totic intervals; Jing et al. (2009) estimateθ using the empirical likelihood; Montoya (2008) and

Dı́az–Francés and Montoya (2012) propose the use of the profile likelihood for conducting in-

ference aboutθ; and Ventura et al. (2011) propose the use of Bayesian inference with Jeffreys

and matching priors as well as modified profile likelihoods for the cases whereX andY are

normal or exponential random variables.

It is important to mention that the parameterθ may not be available in a closed form in

many cases (see Azzalini and Chiogna, 2004 and Gupta and Brown, 2001 for an example of

this). This makes difficult (if at all feasible) to find a reparameterisation involvingθ, which

complicates the use of the classical approach. In particular, the use of the profile likelihood

might be difficult if this reparameterisation is not available (Dı́az–Francés and Montoya, 2012).

Alternative inferential approaches that overcome this difficulty are Bayesian inference, non-

parametric estimation, and bootstrap; given that using these approaches it is possible to obtain

bootstrap confidence intervals and credible intervals fromthe corresponding samples ofθ̂ and

θ, respectively (Baklizi and Eidous, 2006; Zhou, 2008; Rubioand Steel, 2012).

New interest has been focused on the estimation ofθ in the case whereX andY are de-

pendent random variables. For example Barbiero (2011) assumes that(X, Y ) are jointly nor-

mally distributed; Rubio and Steel (2012) suppose thatX andY are marginally distributed as

skewed scale mixture of normals and construct the corresponding joint distribution using a

Gaussian Copula; Domma and Giordano (2012a) construct the joint distribution of(X, Y ) us-

ing a Farlie-Gumbel-Morgenstern copula with marginal distributions belonging to the Burr sys-

tem; Domma and Giordano (2012b) consider Dagum distributedmarginals and construct their

joint distribution using a Frank copula; among others (Nadarajah, 2005; Gupta et al., 2012). In

these papers, the importance of taking the assumption of dependence betweenX andY into

account is illustrated using simulated and real data sets.

We propose a class of nonparametric estimators ofθ for the case where(X, Y ) are paired,

possibly dependent, continuous random variables. This scenario is of interest given that paired

observations are produced in many experimental designs (see e.g. Sprott, 2000 and Cox and Reid,

2000 for examples of this). The estimators proposed here arebased on nonparametric estima-

tors of the survival function and density function ofY − X. This approach avoids making

distributional assumptions over(X, Y ) and allows interval estimation ofθ via nonparamet-

ric bootstrap. In addition, this method can be easily implemented in R using already existing

packages. In Section 2 we introduce these estimators and discuss some of their properties. In

Section 3 we present two examples, using simulated and real data, which illustrate the impor-
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tance of accounting for pairing and dependence of the observations when conducting inference

aboutθ.

2 Nonparametric estimators of θ

Let (X, Y ) be a pair of continuous random variables. Let(x,y) be a sample from(X, Y ) of

sizen and suppose that these observations are collected in couples(xi, yi), i = 1, . . . , n. Define

the variableZ = Y −X and the vector of differencesz = y− x. By definition, we have that

θ = P(Z > 0) = 1− FZ(0) = SZ(0),

whereFZ andSZ are the cumulative distribution function and the survival function ofZ, re-

spectively. IfFZ or SZ are replaced by a nonparametric estimator, then we find an immediate

connection between the nonparametric estimation of the cumulative distribution function (or

the survival function) ofZ and the nonparametric estimation ofθ. Based on this, we propose

the following algorithm for estimatingθ.

Algorithm 1
1: Calculate the differencesz = y − x.
2: Using the samplez construct a nonparametric estimatorF̂Z of the distribution function of

Z and define the estimator̂θ = 1− F̂Z(0).

It is possible to define an alternative estimator ofθ in Step2 of Algorithm 1 by construct-

ing a nonparametric estimator̂fZ of the density ofZ, based on the samplez, and defining

the estimator̂θ =
∫

∞

0
f̂Z(z)dz. Several nonparametric estimatorsF̂Z and f̂Z can be consid-

ered for this purpose. For instance, kernel density estimators (Parzen, 1962), the empirical

distribution function, shape-restricted density estimators (Cule et al., 2010) and recently pro-

posed smoothed versions of these (Dümbeng and Rufibach, 2011; Rufibach, 2012). Note that

the asymptotic properties of the estimatorθ̂ are inherited from those of the estimatorF̂Z eval-

uated at0. For example, if we use the empirical distribution functionfor estimatingF̂Z(0),

then we have that̂θ
a.s.
→ θ asn → ∞. The use of nonparametric bootstrap on the samplez

together with Algorithm 1 allows us to obtain a variety of bootstrap confidence intervals forθ

(DiCiccio and Efron, 1996).

Note that this class of estimators avoids making assumptions on the distribution of(X, Y )

and the sort of dependence between the variablesX andY . The relationship between these

variables, which can be either dependent or independent, isimplicitly included by modelling

the differences between the observations which only requires a pairing of the observations.
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3 Examples

In this section, we illustrate the implementation of the estimators proposed in Section 2. In the

first example we use a sample simulated from a bivariate sinh-arcsinh distribution (Jones and Pewsey,

2009). As detailed in Jones and Pewsey (2009), this distribution contains parameters that con-

trol skewness, kurtosis and correlation of the marginals. This example illustrates the influence

of the assumptions of pairing and dependence on the bootstrap distributions ofθ̂ in terms of

their location and spread. In the second example we use a realdata set and show that not in-

cluding the assumptions of pairing and dependence may lead to opposite conclusions about the

relationship betweenX andY .

In both examples, we consider the following 6 types of estimators ofθ. Estimators based

on Algorithm 1 withθ̂ = 1 − F̂Z(0): (1) The estimator “Kernel”, based on a Gaussian kernel

estimator ofF̂Z; and (2) The estimator “ECDF”, based on the empirical distribution function

for estimatingF̂Z . Estimators based on Algorithm 1 witĥθ =
∫
∞

0
f̂Z(z)dz: (3) The estima-

tor “MLE”, where f̂Z is the shape-restricted density estimator described in Cule et al. (2010);

and (4) The estimator “SMLE”, wherêfZ is the smooth-shape-restricted density estimator pro-

posed in Dümbeng and Rufibach (2011). For comparison purposes, we also consider two esti-

mators based on the assumption of independence ofX andY : (5) The estimator “Independent”

proposed in Baklizi and Eidous (2006), based on a Gaussian kernel estimator of the marginal

densities ofX andY ; and (6) The estimator “Paired”, based on a Gaussian kernel estimator

of the marginal densities ofX andY (Baklizi and Eidous, 2006) but taking the pairing of the

observations into account in the bootstrap sampling.

Nonparametric density estimation is conducted using the R packages ‘LogConcDEAD’

(Cule et al., 2009) and ‘logcondens’ (Dümbeng and Rufibach,2011). Bootstrap samples and

bootstrap confidence intervals (Normal, Basic, Percentileand BCa) were obtained using the R

packages ‘boot’ (Canty and Ripley, 2012) and ‘simpleboot’ (Peng, 2008). R source code for

these examples is available upon request.

3.1 Simulated data

In this example we use a simulated sample of sizen = 100 from a bivariate sinh-arcsinh distri-

bution (Jones and Pewsey, 2009) with parameters(σ1, σ2, ρ, ǫ1, ǫ2, δ1, δ2) = (1, 1, 0.75, 0, 1, 1, 2).

Figure 1a shows a contour plot of the corresponding density.This is a complex scenario where

the entries present departure from normality and correlation. The population correlation co-

efficient of this sample is0.737 and the theoretical correlation is0.743. The parameterθ in

this family of distributions is not generally tractable. The theoretical value ofθ, obtained by

numerical integration, is0.78. Figure 1b shows the bootstrap distribution ofθ̂ using several

nonparametric estimators. We can observe a considerable influence of the assumptions of pair-

ing and dependence in the location and spread of the bootstrap distributions of̂θ. We can also
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notice the influence of these assumptions in the point estimators and bootstrap confidence in-

tervals shown in Table 1. In this case, not including these assumptions leads to underestimating

θ.
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Figure 1: (a) Contour plot: sinh-arcsinh distribution; (b) Simulated data: bootstrap distributions of̂θ
using different estimators; “Independent” (bold-dashed line), “Paired” (bold line), “Kernel” (solid line),
“ECDF” (dashed line), “MLE” (dotted line), “SMLE” (dotted–dashed line).

Estimator θ̂ Normal Basic Percentile BCa
Independent 0.65 (0.560, 0.724) (0.559, 0.723) (0.568, 0.732) (0.562, 0.727)

Paired 0.65 (0.606, 0.695) (0.606, 0.696) (0.607, 0.697) (0.604, 0.694)
Kernel 0.76 (0.690, 0.825) (0.692, 0.827) (0.690, 0.824) (0.684, 0.819)
ECDF 0.81 (0.734, 0.886) (0.740, 0.890) (0.730, 0.880) (0.720, 0.870)
MLE 0.78 (0.707, 0.853) (0.709, 0.854) (0.705, 0.850) (0.701, 0.847)

SMLE 0.77 (0.704, 0.844) (0.707, 0.847) (0.694, 0.835) (0.694, 0.835)

Table 1:Simulated data: Estimators and95% bootstrap confidence intervals.
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3.2 Real data

In this section we study the data set presented in Venkatraman and Begg (1996), which contains

72 lesion scores obtained using both a clinical scheme without a dermoscope (X Test), and a

dermoscopic scoring scheme (Y Test). Their main interest is to assess the information pro-

vided by the use of the dermoscope. Here, we analyse the subset of 51 non-diseased patients

(diagnosed using a biopsy) and compare the nonparametric inferences forθ obtained under

three assumptions: independence, pairing and independence, and dependence of the tests us-

ing the estimators described in the introduction of this section. It is important to note that the

population correlation coefficient of this sample is0.794, which suggests that the entries are

correlated.

Table 2 shows point estimators and four types of bootstrap confidence intervals ofθ. Figure

2 shows the bootstrap distributions ofθ̂ corresponding to the models described in Table 2.

We can note a discrepancy of the point estimators under the assumptions of dependence and

independence of the tests. Interval inference is also different; in the cases where pairing and

dependence are not considered we can note that the valueθ = 0.5 is included in some of

the bootstrap confidence intervals, leading to different conclusions about the relationship of

the tests. This is in line with the conclusions in Rubio and Steel (2012) and emphasises the

importance of the dependence and pairing assumptions.

Estimator θ̂ Normal Basic Percentile BCa
Independent 0.55 (0.469, 0.678) (0.467, 0.672) (0.450, 0.656) (0.474, 0.691)

Paired 0.55 (0.498, 0.597) (0.497, 0.596) (0.501, 0.601) (0.499, 0.598)
Kernel 0.63 (0.5245, 0.737) (0.525, 0.738) (0.528, 0.741) (0.519, 0.732)
ECDF 0.69 (0.559, 0.813) (0.569, 0.823) (0.549, 0.804) (0.529, 0.784)
MLE 0.65 (0.543, 0.776) (0.544, 0.776) (0.532, 0.765) (0.537, 0.768)

SMLE 0.64 (0.538, 0.756) (0.539, 0.757) (0.527, 0.744) (0.533, 0.749)

Table 2:Melanoma data: Estimators and95% bootstrap confidence intervals.
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Figure 2:Melanoma data: bootstrap distributions ofθ̂ using different estimators; “Independent” (bold-
dashed line), “Paired” (bold line), “Kernel” (solid line),“ECDF” (dashed line), “MLE” (dotted line),
“SMLE” (dotted–dashed line).

4 Discussion

We presented a class of nonparametric estimators forθ = P (X < Y ) for the case of paired,

possibly dependent, observations. This class of estimators avoids making assumptions on the

distribution and the dependence structure of(X, Y ), which are implicitly included in the esti-

mation by modelling the differences of the observations. Confidence intervals forθ, based on

these estimators, can be obtained using bootstrap methods which are easy to implement in R.

It was illustrated, using a real data set, that not accounting for these assumptions might lead

to opposite conclusions aboutθ = 0.5, and consequently about the relationship between the

variablesX andY .

A possible extension of this work consists of estimatingθ in the context of censored and

missing observations. The ideas presented here can be extended to these scenarios by using

that

θ =

∫
R

∫ y

−∞

fX,Y (x, y)dxdy,

and replacing the joint densityfX,Y with a nonparametric density estimator. The use of kernel

density estimators in these contexts has been studied, for example, in Titterington and Mill

(1983) and Wells and Yeo (1996).
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