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Abstract; The positive solutions of a nonlinear third-order periodic boundary value problem with variable
coefficient are studied. The nonlinear term may be singular with respect to the space variable. By making
use of a suitable transformation,the problem is transformed into a Hammerstein integral equation, By ap-
plying Guo-Krasnosel'skii fixed point theorem on cone, the existence of one and two po sitive solutions is
proved.,
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1 Introduction

In this paper, we study positive solutions of the following nonlinear third-order periodic boundary
value problem with variable coefficient
(D) +h(Du(t) = f(t,ul®)) 0t < 2m,

A A ¢y
u(’)(O) zu(l)(ZR') i=20,1,2,

where h€ C[0,2x] is a nonnegative function and 0<< max h(t)<—1—. Here, the function " € C*[0,1] is

01 en 3 ﬁ

called positive solution of the problem (1) if u* (¢) satisfies (1) and u” (¢£)>0,0<t< 2.

When h(t)=p’ is a positive constant and 0<p<~/l§,the problem (1) has the special form

() +pu() = f(t,ut)) 0<t < 2n,y
u?(0) = u"” (2n) i=0,1,2.
The positive solutions of nonlinear third-order periodic boundary value problem with constant coefficient
¢’ have been studied by some authors. For example,see ref. [1-4].
To our best knowledge, the positive solutions of problem (1) have not been considered by any au-
thors when &(#) is not a constant,
Throughout this paper, we always assume that f;[0,2x]X (0, +o0)—=[0,+o0) is a continuous
function. The assumption implies that the nonlinear term f(t,u) may be singular at u=0.
The purpose of this paper is to establish the existence of one and two positive solutions for the problem (1).

In the study,we do not require the existence of upper and lower solutions and do not impose any monotonicity
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conditions on the nonlinear term f(¢,u). By making use of the ingenious transformation constructed in ref. [1],
we will change the problem (1) into ‘a Hammerstein integral equation. By applying Guo-Krasnosel’ skii fixed
point theorem on cone,we will establish two local existence theorems of positive solutions. Finally, we will illus-
trate that this paper presents new results by an example. For other nonlinear periodic boundary value problems,

we refer readers to the ref. [5— 8] and the references therein.

2 Preliminaries

3
Let p= /orélé)zcnh(t) and let

1 _ eler _ 2sin(y/3pn) 2 _ 1 _ sin® (3pn)
< _eSINWIeR) af - & == S _\Wopn/)

m = —5———» = ] = ’ = 'O W02 = .
P 7 T g — 1 ﬁp(e"’-{—l)z z ﬁpsin («/gpﬂ) P et (e 4+ 1)°
So o0 =;nTi 962=K1722 and 3 90'26 (091).
Let C[0,2x] be the Banach space with the norm | « || = max lu() |,

K, ={ue Cl0,2n]:u(t) Za [l 0 <t << 2n},

K, = {u€ CL0,2x]):u(t) =0, || u | ,0 <t < 21}
Then K, and K, are cone of nonnegative functions in C[0,2x]. For 0<r,<r; ,write K;[r, 7. ]|={uE K
n<lul <r}yi=1,2,

Define the operator J as follows

Juw)(@®) =J'hg(t,s)u(s)ds 0t < 2x,
[}

where
ep(rl)
ﬁ 0Lt s < 2n,
g(tys) = e 2x+en
w -0 < s < t < 2n.

Simple calculations give that

2x 2x

max j g(t.s)dszj. glt,s)ds=p" 0t < 2n.

02 JO 0

For u€ K;\{0} ,define the operator T as follows
2x
(Tw) () = J Gty f(sy (Ju) () + (o’ —h(s))Ju)(s)]ds 0t < 2n,

0

where

2ele/DERt [gin %gp(s — 1) +e"sin “/gp(h —s5+8)]
«/?:p(e”" + e ™ — 2cos «/gpn)

G(t,s) =<
et/ D= [Sin */7§‘0(21r —t—+s)+ e *sin %gp(t - s)]

«/gp(e”‘ + e — 2cos «/?;pu)

Lemma 1 m <g(t,s)<M, ,m, <G(1,5)<M, ,2,5€[0,2x].

Proof m,<g(t,s)<<M, is direct. For the proof of m,< G(t,s)<<M,,see lemma 3 in ref. [1].
Lemma 2 For any u€K,,Ju€K, and ap ' | u | < | Jull <p7' lul.

Proof Let u€K,.Thene, || u | <u()<| ull ,0<e<{2x. Since g:[0,2n]X[0,2x]—=>[0,+00) is

2x
continuous, Ju€C[0,2x] and || Ju || = max J g(tys)u(s)ds . Applying lemma 1,we get that
0

EIAY4

2% 2x
Juw) (@) = E-I—J. M,u(s)ds = 6, max j gtsdu(dds=a, || Ju || »

M, Jo 0<i<2x Jo
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2x
1Jull e lull max [“g(t9ds = o I ul

0<i2r JO

2x
1l < lull max [“gtods =g lull.

RIS

Lemma 3 T:K,[r ,r,]—=K, is completely continuous.
Proof Let u€ K,[r,r,]. Then < || u || <r,. By lemma 2,Ju€ K, and a2p ' i <azp ' || u || <
| Jull <p™' Il ull <p7'r..It follows that J:K,[r,,r; 1>Ki[62p""r1,p 7' 72 ]. Now,let

2x
(Fu) (@) = f(t,u(®)) + (0 —h€e))ule) , (Su) (1) =J G(tys)u(s)ds.

Obviously,
J:K:[risr; ] = K\ loep ' 1100 ' 1 o F: K (025 ' 11007 12 ] = C[0, 2]
are continuous. Moreover,S:C[0,2x]— C[0,2x] is completely continuous by Arzela-Ascoli theorem.
Since T=S¢<F-J,we see that T:K,[r, ,r, ] C[0,2x] is completely continuous. On the other hand,

by lemma 1,

2x
(T = [ GO F(s Ju) () + ' —h(s) Ju)(9)1ds >
2z
me[LfCs Jud () + G = h(s) U () 1ds =
2x
o] MG ) () + (= h(sD Uud(9)]ds >

2x
or max L Gt [ FCs» Ju) () + (o —

0<I<2x
h(s)) (Ju)()]ds =g, || Tu || .
Consequently, T:K,[r, y72J—> K;.

Lemma 4 If a€ K,[r,,r,] is a fixed point of the operator T,then u* =Ja € K, is a positive solution
of the problem (1).

The proof is direct.

In order to prove main results, we need the following Guo-Krasnosel'skii fixed point theorem of cone
expansion-compression type.

Lemma 5 Let X be a Banach space, KC X be a cone and 2, ,£2, be two bounded open subsets of K
with 0€ 0, CN,C N,. Assume that F:0,\ 2,—K is a completely continuous operator and one of the fol-
lowing conditions is satisfied:

Ci) IFull <Null,u€o0 and | Ful = ull ;u€80,.

i) [ Full Zull su€diand | Full <|[lul ,u€a80,.

Then F has a fixed point in 2,\0;.

3 Main Results
For r>0,we introduce the following control functions
o(tsr) = max{f(t,u) + (o° —h(t)u:u € [azp_lr,p_lr]} ,
$(tyr) = min{ f(t,u) + (0 —h()u:u € Lop 'ryp'r]}.
In geometry,(z,r) and ¢(¢,r) are maximum height function and minimum height function of function f
(t,w)+ (" —h())u on the set [0,2n] X [a,07 ' 7,0 'r] respectively.
Write Q(r)={u€K,: | ull <r},aQ(r)={u€K,: || ull =r}. Then K,[r, ,7. ]=0C)\Q2(r)).
In this paper,we obtain the following local existence theorems. These theorems show that the exist-
ence of positive solutions is independent of the state of nonlinear term f(¢,u) near u=0.

Theorem 1 Assume that there exist two positive numbers a<(b such that one of the following condi-
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tions is satisfied:

Ci )J o(tsa)de < M;! a,J "¢(t,b)dt>m 'b

Cil )J c/;(t,a)dt)mz_la,J olt,0)de < M;'b
0

Then problem (1) has at least one positive solution »* € K, and o;p™'a<C [ u” || <p 7'
Proof Without loss of generality, we only prove the case ( | ).
Let u€930(a). Then | u|| =a and aw<u(t)<m9<t<2m So for any 0<{t< 2=,
2n 2x 2x
arap”! azaJ g(tys)ds < J g(t,s)uls)ds < aJ g(t,)ds < ap'.
0 0
This implies that g,0~ fa<K(Jw) () <p ™ a, 0t<(2n. By the definition of ¢(z,a),
FG&,Juw @) + (0 —h(©)) (Ju) (1) < ¢ltya) 0t < 2n.
By lemma 1,0ne has

| Tull = max J Gty [f (s Ju) (D) + (o — (D) Ju) ()]ds <

MZJ p(s,a)ds<M, *Mi'a=a= | ul.
0
Let u€302(8). Then || u || =a. So g:b6u(t)<<b and a,0p7 ' <(Ju) () <bp ™!, 0Kt 2n. By the defi-

nition of ¢(¢,b),
F@Jud () + (0° — h(D)) (Ju) () = ¢(2,b) 0 <t < 2n.

It follows that
I Tull > min |GG U9 + (o = b)) (]ds >

mgj $(s,0)ds =m, e mz'b=b= | ul.
0

By lemma 3 and lemma 5, we assert that the operator T has a fixed point # € 2(6)\2(a) =K;[a,b].
By lemma 2 and lemma 4, the problem (1) has one positive solution «* =Ja€ K, and g,p”'a<< || u* || <
p ‘b ' ‘

Theorem 2 Assume that there exist four positive numbers a<{6<(c<{d such that 6< g;c and one of

the following conditions is satisfied;

% 2 2n
( | )J‘ ¢(tya)dt M_la,J gb(t,b)dt}mz_l 9-[0 ¢(tvC)dt>mz_lC,Jo ¢(t9d)dt<M;1d;

2% 2n 2x
(D [ ptarde = mita, [ p,0de < Mo, [ psrdt < Mpe [ gt drde > mirtd,
0 0 0 0

Then problem (1) has at least two positive solutions u;' ,u; € K; and
gt < lul | <pbronge< || s | <.
Proof By theorem 1,the problem (1) has two positive solutions u; ,u, € K, satisfying g,p™ ' a<<
ur | <p 'bs00p ' c< || w7 || <p7'd. Since b<<g;c,we have p '6<la,p”'c. Therefore, | u; | > || u |

and u; Fu, .

4 An Example
The following example illustrates that main results are applicable to more general cases, Therefore,
our results extend and improve the existing results,

Consider the third-order periodic problem

{u ® + 5 (1+sm—)u(t) —111%)“—(2 0<t < 2n,

u®(0) = u®2n)  i=0,1,2.
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ﬁ% which is singular at ¥=0.

Here,h(t)=5%(1+sin %) and the nonlinear term f(t,u)=

Letp= % \/— max (1 + sin —) Then M,==3. 569 0. Moreover,

54 o<i<on

o + (@ —hu =1L L —gin Ly, 0<i< om0 <u<too,

)
Applying the expression we get that,for any r>0,

2 i | 2(x— Dr J"
L ptrde < 1 4 HELDE [ Ty de >

It follows that

2(x—1) 2(n—1) 1 .
llm sup J p(tyr)de << ll{llf;lp[ - >+ 13 1= TRy 2025<Mz
.01
lll’:}lg’lf 7J (t,r)de = lim meT =0.

This shows that there exist 0<Ca<{b such that
2r 2n
J gb(t;a)dt}mg_la,J ¢(t9b)dt<M;1b.
[} 1]

By theorem 1 (ji ),the problem has a positive solution u* € K;.

Because the coefficient h(t) is not a constant,the conclusion can not be derived from ref. [1-4].
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