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Abstract: In order to so lve the problems ex ist ing in the current antenna for high pow er m icrow ave w eap-

on, the idea of a magnet ized plasma channel used as antenna for radiat ing elect romagnet ic pulse is pr esen-

ted. The normal modes o f Magnet ized Plasma Channel Antenna ( MPCA ) in lossy gas are analyzed. T he

concr ete r ealizat ion method of this antenna is simply descr ibed. T he geometric- model of M PCA is created

based on the operat ing principle o f this antenna. T he st rictest dispersion equat ion o f M PCA is deduced by

applying the boundary condit ions of electr omagnetic f ields. Discussion is st ressed on the variat ions of

propagat ion constants w ith plasma parameters, surrounding material and external magnet ic f ield. T he a-

nalysis show s that M PCA in a finite magnet ic f ield possesses some dif ferent propert ies compared w ith a

plasma channel antenna where infinite external magnet ic f ield ex ists. These results are useful for pract ical

application of the antenna.
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1 � Introduction
Plasma as the fourth fo rm of the substance, the techno logy of plasma has been w idely used in many

fields. In military fields, it can be used in aircr af t stealthy , thr ust, communicat ion and detect ion etc. If the

w ave frequency is less than the plasma frequency, the electr omagnetic w ave cannot propagate in the bulk

plasma. The ax isymmetric surface w ave pr opagates along the cylindrical plasma column. For high density

plasma, it is a perfect conductor and therefo re can be used as antenna elements. Because plasma can ref lect

and absorb elect romagnet ic w aves, plasma antenna has the advantag e of stealth.

In recent y ears, w ith the advancement of H igh Pow er M icrow ave Sour ce ( HPM S) theor y and tech-

nique, it has become possible to manufactur e H igh Power M icrow ave Weapon ( HPMW) . T he st rongest

countr ies in the w orld ar e act ively developing the HPMW
[ 1- 2]

. The antenna system has become a rest rict-

ed HPMW development bo tt leneck
[ 3- 6]

. So the research on the antenna system of HPMW stares us in the

face. It is w ell know n that the plasma channel can be induced by ult ra sho rt intense laser pulse in low-

pressure gas
[ 7]
. T o solv e this problem, the idea of a magnet ized plasma channel used as antenna for radia-

t ing elect romagnet ic pulse is presented. T he physical base o f P lasma Channel Antenna ( PCA) invo lves e-

lectr omagnetic w aves pr opagat ing in plasma channel. Because know ing the characterist ics o f the eig en

modes is the prer equisites for applicat ion in engineering[ 8] , the deduce and analysis of the disper sion equa-
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t ion is necessary and significat ive.

In this paper, the geometric-model o f M PCA is created. T he w ave equat ions for the longitudinal com-

ponents of M PCA in cylindrical coordinate ar e started w ith. The relations betw een the t ransverse compo-

nents and long itudinal ones of MPCA in circular cy lindrical coordinate are given. The str ictest character-

ist ic equation of modes fo r M PCA is deduced by applying the boundary condit ions o f elect romagnet ic

fields. T he variat ions o f propagat ion constants w ith plasma parameters, surrounding material and ex ter nal

magnetic f ield are analyzed by using numerical method. T he analyses show that there are some main

dif ferences o f PCA betw een infinite and finite magnet ic field. F irst ly, the PCA in a f inite magnet ic f ield

could only pr opagate EH o r HE models. Second, the phase constant of PCA in finite magnet ic field is

hardly related to sur rounding material.

2 �MPCA�s Implementation
The goal of PCA is guiding and radiat ing electr omagnetic pulse ( EM P) to hit tar gets by using the

plasma channel inducing by ult ra shor t intense laser pulse in low-pressure gas. T he schemat ic diag ram of

MPCA is show n in fig . 1. On the condit ion of know ing the azimuth info rmat ion of the targ et , high pow er

pulse laser emits ul tra short intense laser pulse tow ards some near range targ et , and the plasma channel

point ing to targ et is fo rmed. A t the same time, high pow er elect romagnet ic pulses ( HPEMP) are genera-

ted by synchronous signal cont ro lling HPEMP generator, and H PEMP are coupled to plasma channel via

antenna coupling dev ice. On the one hand, HPEMP and plasma beam is t ransmit ting synchronously, and

HPEMP head- on attack accurately target . On the other hand, the plasma channel is used as antenna for

radiating HPEMP, and HPEMP being radiated f rom side of plasma channel dest roy tar get.

3 �Derivation of the Dispersion Relation
Based on the operat ing principle of the plasma channel guiding and r adiat ing HPEMP, tw o factor s

ar e under considerat ion: one is that the plasma channel is approx imately inf inite plasma cylindrical for

HPEMP alw ays lagging behind ult ra shor t intense laser pulse; the other is that the plasma channel is

thought to be density uniformity plasma cylindrical along z-ax is. In order to be typical, the surrounding

material is dielect ric or magnet ic lo ssy gas. The plasma in channel is magnet ized plasma for being the geo-

magnet ic field. So the PCA is thought approx imately to be inf inite uniform magnet ized plasma cy lindrical

in lossy material. T he geometry of the pr oblem is show n schematically in f ig. 2.

Fig. 1� Schematic Diagram of MPCA� � � � � � � � � � � � Fig. 2 � Geometry of the Problem
Fo r laser plasma channel, the plasma in channel is co ld plasma. T he direct ion o f an external magnet-

ic f ield B0 is par allel to the direction of w ave pr opagat ion in plasma channel. The plasma is characterized

by the permeability �0 and the follow ing perm it t ivity tensors
[ 9]
:

��= �0

�1 - �2 0

�2 �1 0

0 0 �3

, (1)
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where �1 = 1-
�2p / �2

1 - �2c / �2
, �2 = j

�2p �c/ �3

1- �2c / �2
= - j�g , �3 = 1- �2p / �2 , �p = n0e

2
/ ( me�0) is the elect ron plas-

ma angular fr equency, �c= eB0 / me is the electr on cyclot ron angular f requency , n0 , e and me are the elec-

tron number density, the elect ric charge and mass of an elect ron, r espect ively, B 0 is the ex ternal magnet ic

field, and � is the electr omagnetic angular f requency.

From equation ( 1) and M axw ell�s equat ion, the w ave equat ion for longitudinal f ield components in

plasma channel E pz and H pz can be obtained:
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, �0 , �0 and k0 ar e the permit t ivity , permeability, and w avenumber in free space, respectively. Equa-

t ions ( 2) are the w el-l known set of coupled second part ical dif ferent equat ions and their so lut ions in cy-

l indr ical coordinate sy stem are
[ 10- 12]

E pz = A 1J n( p p1r ) + A 2J 2 ( p p 2r) , (3)

H pz = A 1q1J n( p p1 r) + A 2q2 J n( p p2r ) . (4)

where p
2
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, J n( � ) is the Bessel

funct ion, A 1 , A 2 are unknown coeff icients.

By the same procedur e, w e let �1 = �3= �mr , �2= 0 in ( 1) and �0 �mr replace �0 , and the w ave equation

fo r long itudinal f ield components in lossy gas ELz and H Lz can be obtained:

E Lz = B1 H
( 2)
n ( p Lr ) , (5)

H Lz = B2 H
( 2)
n ( p Lr ) . (6)

where p L = k
2
L- k

2
, kL = � �m�m , �m= �0�mr , �m= �0 �mr are the permit t iv ity, permeability of surrounding

gas, respectively, and B1 , B2 are unknown coef ficients. T he w ave factor exp( - jk z+ jn�) has been neg lec-

ted in ( 3) ~ ( 6) .

In order to solv e the t ransverse f ield, the r elat ions betw een the t ransverse components and longitud-i

nal ones in circular cy lindrical coor dinate must be deduced. Fr om equat ion ( 1) and M axw ell�s equat ion,

the t ransverse field in plasma channel Epr , p� and H pr , p�can be expressed in terms of Epz and H pz as
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By the same procedur e, w e let �1 = �3= �mr , �2= 0 in ( 1) and �0 �mr r eplace �0 , and the t ransverse f ield

in lossy gas ELr , L� and H Lr , L� can be expressed in terms of EL z and H L z as

ELr

EL�

H Lr

H L�

=
1

p
2
L

- jk 0 0 - j��m

0 - jk j ��m 0

0 j��m - jk 0

- j��m 0 0 - jk

�EL z / �r

�ELz / ( r��)

�H Lz / �r
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. (11)

Subst itut ing ( 3) ~ ( 6) into ( 7) ~ ( 11) , the four equat ions of the coef f icients ( A 1 , A 2 , B1 , B2 ) are
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derived by matching tangent ia-l f ield components at r= a. In order to obtain nonzero so lut ions to A 1 , A 2 ,

B1 , B2 the determinant must be zero. T his leads to the fol low ing dispersiv e equat ion:
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4 � Particular Cases
4. 1 Symmetric Mode

Subst itut ion of n= 0 into ( 12) then leads to

[ f 1 p
2
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2
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Equat ion ( 13) indicates that hybrid modes, i. e. , H E nm mode and EH nm mode, no longer degenerate

into TE0m and T M0m . This result is dif ferent from that in the case of no and inf inite ex ternal magnet ic

field.

4. 2 Infinite Magnetic Field

For inf inite ex ternal magnet ic field, the plasma is character ized by the permeabilityand the follow ing

permit t ivity tensors:

��= �0 � diag( 1, 1, �) . (14)

where �= 1- X
2
, X= �p / �, �p = n0e

2
/ ( me�0) is the elect ron plasma angular f requency , n0 , e and me are

the elect ron number density , the elect ric charg e and mass o f an electr on, respectively, � is the elect romag-

netic angular f requency. By the same procedure, the dispersive equat ion can be expressed as
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the w avenumber in sur rounding gas.

Subst itut ion of n= 0 into ( 15) then leads to

J ( x p2) - �mrH ( x m ) = 0 fo r TE , (16)

�J ( x p1) - �mr H ( x m) = 0 fo r TM , (17)

Equat ions ( 16) , ( 17) show s that the TM wave is related to plasma parameters and the TE w ave is inde-

pendent o f plasma par ameters. Under condit ions

- Im ( x m ) � 1, Im( x p 1, p2 ) � 1.
The approx imate so lut ions to Equations ( 16) , ( 17) approaches to

kTE = k0
�2mr - �mr�mr

�2mr - 1
for TE , (18)

kTM = k 0
�2mr - (1- X

2
) �mr�mr

�
2
mr + X

2
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fo r TM , (19)

When �p ��( X � 1) , p1 � p2 . T hus the dispersiv e equat ion ( 15) becomes
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5 �Numerical Results and Discussion
In order to compare the dif ference of inf inite and f inite ex ternal magnet ic f ield, fig. 3~ 6 gives the

propagat ion constants of M PCA as a funct ion of plasma frequency . These figur es show that , for inf inite or

finite ex ternal magnet ic f ield, the at tenuation constant tend to increase w ith the increase o f the order n

when �p / �< 0. 8. For inf inite external magnetic f ield, fig. 3- a and fig . 4- a show three aspects. F ir st ,

the characteristic of surrounding gas can not ef fect on the at tenuat ion constant of M PCA when �p / �<

0. 1. Second, for the same or der, w hen 0. 1< �p / �< 0. 8, the at tenuat ion constant of M PCA surrounding

by magnet ic lossy gas is alw ays smaller than that sur rounding by dielect ric lossy gas, and the at tenuation

constant of M PCA surrounding by magnet ic lossy gas reaches minimum value and that surrounding by d-i

elect ric lossy gas reaches maximum value. Third, w hen 0. 8< �p / �< 1, the change of the attenuat ion con-

stant o f MPCA sur rounding by magnet ic lossy gas is alway s acuter than that surr ounding by dielect ric

lossy gas. For f inite external magnetic f ield, f ig . 3- b and fig . 4- b show f iv e aspects. F irst, the charac-

terist ic of sur rounding lossy gas can not ef fect on the at tenuat ion constant of MPCA when �p / �< 0. 5.

Second, for the same order, w hen 0. 5< �p < �< 0. 8, the at tenuat ion constant of M PCA surrounding by

dielect ric lossy gas is alw ays smal ler than that surr ounding by magnetic lossy gas, and the at tenuation

constants o f MPCA surr ounding by both magnet ic and dielect ric lossy gas reach m inimum value. T hird,

the numerical r esults show that the plasma frequency of minimum at tenuation is related to the st reng th of

ex ter nal magnet ic f ield. Fo rth, w hen 0. 8< �p / �< 0. 9, increasing �p / � r esults in the severe increasing at-

tenuat ion of M PCA, and the change of at tenuat ion constant tend to fast w ith the increase of the o rder n.

Fif th, w hen �p / �� 1, the at tenuat ion of M PCA becomes inf inite, and this means that the inner modes of

MPCA do not ex ist .

Fig. 3 � Attenuation Constant of MPCA in Magnetic Lossy Gas Against Plasma Frequency for Various Hybrid Modes

Fig. 4 � Attenuation Constant of MPCA in Dielectric Lossy Gas Against Plasma Frequency for Various Hybrid modes
For inf inite ex ternal magnet ic f ield, fig. 5 show s three aspects. F irst , the ef fect of the plasma fre-

quency on the phase constant is minute comparing w ith the attenuat ion constant. Second, w hen 0. 1<

�p / �< 0. 8, the phase constant of M PCA in lossy dielect ric lo ssy gas tend to increase with the increase of

�p / �, and that in lo ssy magnetic lossy gas tend to decrease. T hird, w hen �p / �< 0. 3, the phase constant of

MPCA in lossy dielect ric lossy gas is agreement w ith that in lossy magnetic lossy gas. Fo r f inite ex ter nal
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Fig. 5 � Phase Constant of MPCA in Infinite External Magnetic Field Against Plasma Frequency for Various Hybrid Modes
magnetic f ield, fig . 6 show s that the phase constant o f M PCA in dielect ric lossy gas is equal to that in

magnetic lossy gas and the phase constant tends to decrease w ith the increase o f the o rder n.

Fig. 6� Phase Constan of MPCA in Finite Exteral Magnetic Field� Fig. 7� Finite External Magnetic Field, Attenuation Constant

Against Plasma Frequency for Various HybridModes of MPCAAgainst - Im (�r ) for Various Hybrid Modes

Fig. 8� Finite External Magnetic Field, Attenuation Constant of � � Fig. 9� Finite External Magnetic Field, Phase Constant of MPCAAgainst

MPCAAgainst - Im (�r ) for Various Hybrid Modes - Im (�r ) or - Im(�r ) for Various Hybrid Modes

Fig. 10� Finite External Magnetic Field,Attenuation Constant of � Fig. 11� Finite External Magnetic Field, Attenuation Constant of MPCA

MPCAAgainst - Im ( �c/ �) for Various HybridModes Against - Im (�c/ �) for Various Hybrid Modes

In order to control leng th of this paper, propagation constants o f M PCA in finite ex ternal magnet ic

field is only show n in fig. 7~ 11 as funct ions of surrounding material parameter s and ex ternal magnet ic-

intensity . F ig . 7~ 9 g ives the propagat ion constants of MPCA as a function of surrounding gas loss. T hese
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fig ures show four aspects. First, the at tenuat ion constants of MPCA reach maximum value w ith - Im( �r )

= M ax1 and - Im ( �r)= M ax2, and Max1< M ax2. Second, incr easing the or der n results in the increasing

at tenuation of MPCA. T hird, for the same order n, the at tenuat ion constant o f M PCA surrounding by die-

lectr ic lossy gas is alw ays greater than that surrounding by magnetic lossy gas w hen �c / �= Max2, and the

result is reverse w hen �c/ �= M ax2. Fo rth, the ef fect of surrounding gas loss on the phase constant is m-i

nute, and the phase constant tend to w eakly decrease w ith the increase of the order n.

Fig. 10~ 11 g ives the propagation constants o f MPCA as a funct ion of �c / �. F ig. 10 show s three as-

pects. First, the at tenuat ion constant of M PCA reaches minimum value w ith �c / �= M in. Second, the at-

tenuat ion constant of M PCA surrounding by dielect ric lossy gas is alw ays g reater than that surrounding

by magnet ic lossy gas w hen �c / �< Min, and the changes of at tenuat ion cur ves are slow . Third, the at ten-

uat ion constant of M PCA in lossy dielect ric lossy gas is almost equal to that in lo ssy magnet ic lossy gas

w hen �c/ �> M in, and the changes of at tenuation curves ar e very fast . Fig. 11 show s three aspects, to o.

First , the at tenuation constant of M PCA reaches max imum value w ith �c / �= M ax. Second, the changes of

phase cur ves are slow when �c/ �< M ax, and the changes of phase curves are fast w hen �c / �> Max .

Third, for the same order n, the phase constant of M PCA in dielect ric lossy gas is almost equal to that in

magnetic lossy gas, and the phase constant tend to w eakly decrease w ith the incr ease of the order n.

6 �Conclusion
The ef ficient method fo r formulat ing the characterist ic equat ion is developed to analyze the propaga-

t ion characteristics of M PCA. T he disper sion equat ion for the eigenvalue problem of M PCA is obtained.

For infinite ex ternal magnet ic field, the TE 0m mode and T M0m mode can exist in the symmetric mode.

How ever , for f inite ex ter nal magnet ic field, the hybr id modes, i. e. , HEnm mode and EHnm mode, no lon-

ger degenerate into T E0m and TM 0m in the symmetric mode. T he effects o f the cyclo t ron f requency , plasma

frequency and surrounding mater ial parameters on the pr opagat ion characterist ics are show n. The at tenu-

at ion constant of MPCA is r elated to the plasma parameters. So the propagation characterist ics of M PCA

may be controlled by changing the ex ternal magnet ic st reng th.
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磁化等离子体通道天线中电磁波的色散特性

夏新仁
1
,尹成友

1
,王守杰

2
,金贤龙
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( 1.合肥电子工程学院,安徽 合肥� 230037; 2.空军驻合肥地区军事代表室,安徽 合肥� 230000)

摘� 要:针对现有高功率微波武器辐射天线的不足 ,提出了将磁化等离子体通道用作电磁脉冲辐射天线的思想��� 磁

化等离子体通道天线( M PCA) ,分析了 MPCA 周围为有耗气体媒质时 MPCA 所传播的一般模式. 简单阐述了 MPCA 的具

体实现方法,根据 M PCA 的工作原理,建立了 MPCA 的几何模型, 利用边界条件导出了 MPCA 最严格的色散方程.重点讨

论了传播常数随等离子体参数、周围介质参数和外加磁场的变化. 结果表明,有限磁场中的 MPCA 与无穷大磁场时具有一

些不同的传播特性,这些结果对于该天线的实现很有参考价值.

关键词:磁化等离子体通道天线; 色散方程;电磁波
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Improved K-Means Algorithm Based on a Simple Genetic Algorithm

YIN Peng- fei1 , ZHANG Xiao-dan2

( 1. Office of Education Administr ation, Jishou Univ ersity , Jishou 416000, H unan China; 2. Co llege of

M athemat ics and Computer Science, Jishou University, Jishou 416000, H unan China)

Abstract:K-means algorithm is sensit ive to init ial value, easy to fall into local m inimum value. In response

to these shor tcomings, the idea of g enetic algo rithm is proposed based on genetic alg orithm and k-means

algorithm for hybrid clustering method. In order to test the performance of clustering algorithm, a set of

experiments are conducted by using k-means algo rithm and the improved alg orithm, and the clustering re-

sults by the tw o algo rithms are compar ed. It is show ed that the clustering alg orithm can effect ively solve

the cluster ing problem .

Key words: data mining; cluster analysis; g enet ic algo rithm; k-means algo rithm
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