文章编号: 1007-2985(2008) 01-0058-04

基于四粒子 GHZ 态的任意三粒子 GHZ 态 量子隐形传送

赵 晗,周小清

(吉首大学物理科学与信息工程学院,湖南 吉首 41600)

摘 要:量子隐形传态已成为量子信息学中的一个重要研究领域,笔者从节省量子纠缠资源的目的出发,通过极化分束器(PBS)将2 个EPR 对制备成单 个四粒子 GHZ 纠缠态,并将此四粒子 GHZ 纠缠态作为量子信道,从而实现三粒子纠缠 GHZ 态的量子隐形传输.

关键词:量子通信;隐形传态;GHZ态 中图分类号:TN201:0413

文献标识码:A

在20世纪末,量子力学拓展了新的领域——一量子信息学,其中量子纠缠是关键.作为量子纠缠的一个重要应用之一,量 子隐形传态已成为量子信息领域最重要的研究对象之一,并得到了一系列有意义的应用,如远程量子计算、远程量子克隆、量 子远程控制等.在这些应用中纠缠态起着十分关键的作用,并且被认为是量子信息领域最重要的资源.因此,如何传送一个纠 缠态,特别是多粒子纠缠态就成了一个很有意义的课题.自从 1993 年 Bennett 等提出了隐形传态的方案后^[1],隐形传态已成为 量子信息领域最重要的研究对象之一.量子隐形传态实验的实现^[2]极大地鼓舞了人们对这一领域的研究热情,量子隐形传态 在理论^[3-10]和实验^[11-16]上都取得了重要的进展.期间,WDUR等^[10]在研究三粒子纠缠时发现,可将任意的三粒子纠缠态转 换为 2 种基本形式——纠缠 GHZ 态或纠缠 W态:

$$| \phi_{\text{CHZ}} \rangle = \frac{1}{\sqrt{2}} (| 000 \rangle + | 111 \rangle), \qquad (1)$$

$$| \Psi_{w} \rangle = \frac{1}{\sqrt{3}} (| 001 \rangle + | 010 \rangle + | 100 \rangle).$$
⁽²⁾

这个发现使任意三粒子纠缠态的隐形传态可简化为纠缠 GHZ 态和纠缠 W 态的隐形传态,于是纠缠 GHZ 态的隐形传态就成为 值得研究的问题.在已有的三粒子纠缠态隐形传送方案中^[18-35],所采用的量子信道分别至少为 3 个两粒子纠缠态或 1 个两粒 子纠缠态和 1 个三粒子 GHZ 态或 2 个三粒子 W 态.笔者从节省量子纠缠资源的角度出发,考虑将 2 个 EPR 对制备成单个四粒 子纠缠态,并作为量子信道,并考虑量子信道为最大纠缠态的情况,从而实现三粒子纠缠 GHZ 态的量子隐形传输.

1 四粒子 GHZ 态的实验制备

以光子对为例制备¹⁴ 单个四粒子(第4,5,6,7)的 GHZ 态. 为此先从2个极化纠缠光子对4~ 5,6~ 7开始, 它们分别处于 + $\phi^+ \lambda_{45}$, + $\phi^+ \lambda_{67}$ (如图 1). 用通常的 Bell 基表示为

$$\begin{cases} \mid \phi^{\pm} \rangle_{ij} = \frac{1}{2} (\mid 00 \rangle_{ij} \pm 11 \rangle_{ij}), \\ \phi^{\pm} \rangle_{ij} = \frac{1}{2} (\mid 01 \rangle_{ij} \pm 10 \rangle_{ij}). \end{cases}$$
(3)

* 收稿日期: 2007-11-12 基金项目: 国家重点实验室资助项目(T152504); 湖南省教育厅科学研究项目(06C653)

◎ 1994-2012 China Academic Bound Electromic Publishing House. All upins reserved. http://www.cnki.net

其中: 0 和1 分别表示水平极化和垂直极化; *i*, *j* 标志光子的空 间模. 将5 和6 光子投射至极化分束器(PBS), 并调整两光子的 路径长度以便它们同时到达, 由于 PBS 只能透射水平极化光 子或者只能反射水平极化光子, 故经 PBS₅₆ 交叠后的两光子极 化方向一定能保持一致的, 都只能是水平极化或垂直极化, 因 此产生的四光子纠缠态是一个二维的希尔伯特子空间: $| 0 \rangle_4$ $| 0 \rangle_5 | 0 \rangle_6 | 0 \rangle_7$ 和 $| 1 \rangle_4 | 1 \rangle_5 | 1 \rangle_6 | 1 \rangle_7$, 经过 PBS₅₆ 作用后, 可 以得到 4 光子 CHZ 态²⁶:

$$\Psi_{4567} = \frac{1}{\sqrt{2}} (\mid 0000\rangle_{4567} + \mid 1111\rangle_{4567}) . \tag{4}$$

2 利用四粒子 GHZ 态传送任意三粒子GHZ 态

T

假设粒子 1, 2, 3 处于某个未知的三粒子 GHZ 态上

$$|\phi\rangle_{123} = \alpha |000\rangle_{123} + \beta |111\rangle_{123}, (|\alpha|^2 + |\beta|^2 = 1).$$
(5)

发送者 Alice 要把这个未知的三粒子 GHZ 态传送给远处的 接收者 Bob, 但粒子 1、2 和 3 始终要 留在 Alice 一方. 现在要实现 | φ⟩₁₂₃ 这个未知量子态的隐形传态, 其具体过程可以分为以下 3 个步骤来完成:

2.1 量子通道的建立

I

量子通道的建立, 即四粒子 GHZ 态的制备. Alice 和 Bob 共享这个四粒子 GHZ 态作为量子信道

$$| \psi \rangle_{4567} = \frac{1}{\sqrt{2}} (| 0000 \rangle_{4567} + | 1111 \rangle_{4567}).$$
 (6)

此时, 2 个 GHZ 态发生关联. 因此, 由它们构成的量子体系的复合波函数, 即量子态 | $\Psi\rangle_{1234567}$ 可以写成 | $\phi\rangle_{123}$ 与 | $\phi\rangle_{467}$ 的直积 状态:

$$\Psi \rangle_{1234567} = | \phi \rangle_{123} | \psi \rangle_{4567}, | \Psi \rangle_{1234567} = (\alpha | 000 \rangle_{123} + \beta | 111 \rangle_{12}) [\frac{1}{\sqrt{2}} (| 0000 \rangle_{4567} + | 1111 \rangle_{4567})],$$
(7)

$$|\Psi\rangle_{1234567} = \frac{1}{\sqrt{2}} (\alpha + 000\rangle_{123} + 0\rangle_{4} + 000\rangle_{567} + \alpha + 000\rangle_{123} + 1\rangle_{4} + 111\rangle_{567} + \beta + 111\rangle_{123} + 0\rangle_{4} + 000\rangle_{567} + \beta + 111\rangle_{123} + 1\rangle_{4} + 111\rangle_{567}).$$
(8)

Alice 持有粒子 4, 将粒子 5、6、7 发送给 Bob. 为了完成隐形传态, Alice 对粒子 1 和 4 进行 Bell 基测量, 然后对粒子 2, 3 也进行 Bell 基测量, Alice 进行测量的 Bell 基为

$$| \phi^{\pm} \rangle = \frac{1}{2} (| 00 \rangle \pm | 11 \rangle), | \psi^{\pm} \rangle = \frac{1}{2} (| 01 \rangle \pm | 10 \rangle), \qquad (9)$$

则7个粒子系统的波函数由(8)式可得

$$\begin{split} | \Psi \rangle_{123467} &= \frac{1}{2} \left[| \Psi^{-} \rangle_{123,4} \left(- \alpha + 000 \right\rangle_{567} - \beta + 111 \rangle_{567} \right) + | \Psi^{+} \rangle_{123,4} \left(- \alpha + 000 \right\rangle_{567} + \beta + 111 \rangle_{567} \right) + \\ &+ | \Psi^{-} \rangle_{123,4} \left(\alpha + 111 \right\rangle_{567} + \beta + 000 \rangle_{567} \right) + | \Psi^{-} \rangle_{123,4} \left(\alpha + 111 \right)_{567} - \beta + 000 \rangle_{567} \right) \right], \\ &+ | \Psi \rangle_{1234567} &= \frac{1}{2\sqrt{2}} \left[(| 01 \rangle_{14} + 00 \rangle_{23} - | 10 \rangle_{14} + 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ (| 01 \rangle_{14} + 00 \rangle_{23} + | 10 \rangle_{14} + 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ (| 00 \rangle_{14} + 00 \rangle_{23} - | 11 \rangle_{14} + 11 \rangle_{23} \right) \left(\alpha + 111 \rangle_{567} - \beta + 000 \rangle_{567} \right) + \\ &+ (| 00 \rangle_{14} + 00 \rangle_{23} + | 11 \rangle_{14} + 11 \rangle_{23} \right) \left(\alpha + 111 \rangle_{567} - \beta + 000 \rangle_{567} \right) + \\ &+ (| 01 \rangle_{14} - 10 \rangle_{14} + 10 \rangle_{14} \right) (| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ (| 01 \rangle_{14} - | 10 \rangle_{14} (| 00 \rangle_{23} + | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ (| 01 \rangle_{14} - | 10 \rangle_{14} (| 00 \rangle_{23} + | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ (| 01 \rangle_{14} - | 10 \rangle_{14} (| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 01 \rangle_{14} + | 10 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 01 \rangle_{14} + | 10 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 01 \rangle_{14} + | 10 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} - \beta + 111 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 01 \rangle_{14} + | 10 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} + \beta + 111 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 00 \rangle_{14} + | 11 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} + \beta + 000 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 00 \rangle_{14} + | 11 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} + \beta + 000 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 00 \rangle_{14} + | 11 \rangle_{14} \right) \left(| 00 \rangle_{23} - | 11 \rangle_{23} \right) \left(- \alpha + 000 \rangle_{567} + \beta + 000 \rangle_{567} \right) + \\ &+ \frac{1}{2} \left[(| 00 \rangle_{$$

 $(100)_{\mu} - (111)_{\mu}(100)_{\mu} + (111)_{\mu}(100)_{\mu} + (111)_{\mu}(\alpha + 111)_{\mu}) + \beta + \beta + 000)_{567} + \beta + 000)_{567} + \beta + 000)_{567} + \beta + 0000_{567} + \beta + 0000_{567} + \beta + 0000_{567} +$

$$\frac{1}{2} [(|00\rangle_{14} + |11\rangle_{14}) (|00\rangle_{23} + |11\rangle_{23}) (\alpha + |111\rangle_{567} - \beta + |000\rangle_{567} + (|00\rangle_{14} - |11\rangle_{14}) (|00\rangle_{23} - |11\rangle_{23}) (\alpha + |111\rangle_{567} - \beta + |000\rangle_{567})] \},$$

$$|\Psi\rangle_{1234567} = \frac{1}{2\sqrt{2}} [(|\Phi^{+}\rangle_{14} + \Phi^{-}\rangle_{23} + |\Phi^{-}\rangle_{14} + \Phi^{+}\rangle_{23}) (-\alpha + |000\rangle_{567} - \beta + |111\rangle_{567}) + (|\Phi^{+}\rangle_{14} + \Phi^{+}\rangle_{23} + |\Phi^{-}\rangle_{14} + \Phi^{+}\rangle_{23}) (-\alpha + |000\rangle_{567} + \beta + |111\rangle_{567}) + (|\Phi^{+}\rangle_{14} + \Phi^{+}\rangle_{23} + |\Phi^{-}\rangle_{23}) (-\alpha + |000\rangle_{567} + \beta + |111\rangle_{567}) + (|\Phi^{+}\rangle_{14} + \Phi^{+}\rangle_{23} + |\Phi^{-}\rangle_{14} + \Phi^{+}\rangle_{23}) (\alpha + |111\rangle_{567} + \beta + |000\rangle_{567}) + (|\Phi^{+}\rangle_{14} + \Phi^{+}\rangle_{23} + |\Phi^{-}\rangle_{14} + \Phi^{+}\rangle_{23}) (\alpha + |111\rangle_{567} - \beta + |000\rangle_{567}) + (|\Phi^{+}\rangle_{14} + \Phi^{+}\rangle_{27} + |\Phi^{-}\rangle_{14} + \Phi^{+}\rangle_{27}) (\alpha + |111\rangle_{567} - \beta + |000\rangle_{567})].$$

2.2 隐形传态的实现

Alice 测量后, 通过经典信道将测量结果传给 Bob. 假设 Alice 欲将三粒子 GHZ 所处的未知量子态传送给 Bob, 传送过 程如图 2 所示. 图中 MBS 表示 Bell 态测量. U 表示 幺正操作. 传送之前, 两者之间共享四粒子 GHZ 态, Alice 采用能识别 Bell 基的分析仪对粒子 1.4 以及粒子 2.3 进行联合量(MBS), 测量 的结果将出现在8种可能的量子态中的任意一个,其几率是 ↓ 8. 当然, Alice 进行一次测量只能得到一个结果, 亦即粒子 1, 4 以及粒子 2.3 的这 2 个子系统在测量之后将各自坍缩到其 中的一个 Bell 基上, 并与粒子 5,6,7 消纠缠.

基于量子非局域性, Alice 的测量结果将使得粒子 5、6、7 图 2

量子隐形传态原理图

由原来的纠缠态坍缩到相应的量子态上.其 Alice 测量的结果和被发送粒子 5.6.7 可能的量子态的对应关系如表 1 所示. 表 1 Alice 的测量结果与 Bob 的操作

Aliœ 对粒子 1、4 和 2、3 的 Bell 基测量结果	测量后粒子 5、6、7 可能的量子态	Bob 对粒子恢复时分别对粒子 5、6、7 所作的幺正操作 U
$ \begin{vmatrix} \phi^+ \rangle_{14} & \phi^- \rangle_{23} \\ \phi^- \rangle_{14} & \phi^+ \rangle_{23} $	$ \phi_1 \rangle_{567} = - \alpha 000 \rangle_{567} - \beta 111 \rangle_{567}$	$-\begin{pmatrix}1&0\\0&1\end{pmatrix}_{5,6,7}$
$ \begin{vmatrix} \phi^+ \rangle_{14} & \phi^+ \rangle_{23} \\ \phi^- \rangle_{14} & \phi^- \rangle_{23} $	$\mid \phi_2 \rangle_{567} = - \alpha \mid 000 \rangle_{567} + \beta \mid 111 \rangle_{567}$	$ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_{5,6,7} $
$ \begin{vmatrix} \phi^{+} \rangle_{14} & \phi^{-} \rangle_{23} \\ \phi^{-} \rangle_{14} & \phi^{+} \rangle_{23} $	$ \phi_3 \rangle_{567} = \alpha 111 \rangle_{567} + \beta 000 \rangle_{567}$	$ \begin{pmatrix} 0 & l \\ 1 & 0 \end{pmatrix}_{5.6.7} $
$ \begin{vmatrix} \phi^{+} \rangle_{14} \mid \phi^{+} \rangle_{23} \\ \mid \phi^{-} \rangle_{14} \mid \phi^{-} \rangle_{23} $	$ \phi_4 \rangle_{567} = \alpha 111 \rangle_{567} - \beta 000 \rangle_{567}$	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{5,6,7} $

2.3 讨论

Alice 将对粒子1和4以及粒子2和3测量结果告诉 Bob, Bob 根据这个结果对粒子5、6和7实施相应的幺正变换U(见表1 第3列),就可以使粒子5,6和7变换到粒子1,2和3的精确复制态Iか>₅₀,即恢复原态,从而实现了量子隐形传态.如当Alice 测得粒子 1 和 4 以及粒子 2 和 3 的量子态为| ψ⁺ ⟩₁₄, | φ⁻ ⟩₂₃, 则粒子 5,6 和 7 将处于| ψ⟩₅₆₇上, Bob 只要对其实施幺正变换- 1, 便可使粒子 5,6和 7 处于欲传送的量子态 🖉 🖉 🕂 , 而留在 Alice 处的粒子 1,4 以及粒子 2,3 分别在联合测量之后,原始的量子 态已被破坏掉了,这样就实现了将未知三粒子GHZ态从Alice处传送到 Bob 处.

3 结语

从节约量子信道纠缠资源的角度出发,提出了利用单个四粒子 GHZ 纠缠态传送任意三粒子 GHZ 态的方案.在方案中,笔 者采用单个四粒子最大 CHZ 态作为量子信道,发送方进行 2 次 Bell 基测量后将测量结果通过经典信道传送给接收方,接收方 根据所得经典信息实施相应的幺正变换,即可确定性地实现任意三粒子 GHZ 态的精确隐形传送.在已有的三粒子纠缠态隐形 传送方案中,所采用的量子信道分别至少为3个两粒子纠缠态或1个两粒子纠缠态和1个三粒子CHZ态或2个三粒子W态. 与之相比较..笔者提出的方案具有如下特点:利用两对粒子制备成单个四粒子的最大 GHZ 态. 可以用较少的量子纠缠资源完

成任意三粒子 GHZ 态的隐形传送, 从而达到了节省量子纠缠资源的目的.

参考文献:

- BENNETT C H, BRASSARD G, GREPEAU C, et al. Teleporting an Unkown Quantum State Via Dual Classical and Einstein Podolsky – Rosen Channels [J] . Phys. Rev. Lett., 1993, 70(13): 1 895– 1 899.
- [2] BOUWMEESTER J, PAN W, MATTLE K, et al. Experimental Quantum Teleportation [J]. Nature, 1997, (390): 575-579.
- [3] HILLERY M. Quantum Secret Sharing [J]. Phys. Rev. A, 1999, 59(3): 1 829-1 834.
- [4] IKRAM M, S Y ZHU, ZUBAIRY S. Quantum Teleportation of an Entangled State [J]. Phys. Rev. A , 2000, 62(2): 22 307- 22 315.
- [5] CAO Z L, YANG M. Entanglement Distillation for Atomic States Via Cavity QED [J]. Physica A, 2004, 337(1-2): 132-140.
- [6] ZHAN Y B. Teleportation of N-particle Entangled W State Via Entanglement Swapping [J]. Chin. Phys., 2004, 13(11): 1 801 1 805.
- [7] YANG C P, CHU S I, HAN S. Efficient Many- party Controlled Teleportation of Multiqubit Quantum Iinformation Via Entanglement [J]. Phys. Rev. A, 2004, 70(2): 22 329- 22 336.
- [8] MARY M C, MATTO G A P. Telepotetion of Bipartite State Using a Single Entangled Pair[J]. Phys. Lett. A, 2005, 337(1): 10-16.
- [9] ZHOU X Q, Wu Y W. Discussion on Building the Net of Quantum Teleportation Using Three-Particle Entangled State [J]. Acta Physica Sinica, 2007, 56(4): 1 881-1 887.
- [10] ZHOU X Q, WU Y W, LING J C. Theoretical Basis and Circuitry Implementation of Quartum Communication [J]. Journal of Jishou University: Natural Science Edition, 2006, 27(5): 39–44.
- [11] BOUWMEETER D. Experimental Quantum Teleporation [J]. Nature, 1997, 390(6 660): 575-579.
- [12] NIELSEN M A, KNILL E, LAFLAMME R. Complete Quantum Teleportation Using Nuclear Magnetic Resonance [J]. Nature, 1998, 396 (6706): 52-55.
- [13] FURUSAWA A. Unconditional Quantum Teleportation [J]. Science, 1998, 282(5 389): 706-709.
- [14] ZHAO Z, PAN J W. Experimental Demonstration of Five Photon Entanglement and Open-Destination Teleportation [J]. Nature, 2004, 430(6 995): 54–58.
- [15] RIEBE M. Deterministic Quantum Teleportation with Atoms [J]. Nature, 2004, 429(6 993): 734-739.
- [16] BARRET M D. Deterministic Quantum Teleportation of Atomic Qubits [J]. Nature, 2004, 429(6 993): 737-739.
- [17] W DUR, VIDAL G, CIRAC J I. Three Qubits Can Be Entangled in Two Inequivalent Ways [J]. Phys. Rev. A, 2000, 62: 62 314– 62 325.
- [18] YANG C P, GUO G C. A Proposal of Teleportation for Three-Particle Entangled State [J]. Chin. Phys. Lett., 1999, 16: 628.
- [19] LU H. Probabilistic Teleportation of the Three-Particle Entangled State Via Entanglement Swapping [J]. Chin. Phys. Lett., 2001, 18: 1 004.
- [20] ZHENG Y Z, GU Y J, GUO G C. Teleportation of a Three Particle Entangled W State [J]. Chin. Phys., 2002, 11(6): 537-542.
- [21] LIU J M, GUO G C. Quantum Teleportantion of a Three-Particle Entangled State [J]. Chin. Phys. Lett., 2002, 19:456-459.
- [22] ZHENG Y Z, DAI L Y, GUO G C. Teleportation of a Three-Particle Entangled W State Through Two-Particle Entangled Quantum Channels [J]. Acta. Physica Sinica, 2003, 52(11): 2 678-2 682.
- [23] HUANG Y C, LIU M. General WGHZ State and Its Disentanglement and Probabilistic Teleportation [J]. Acta. Physica Sinica, 2005, 54 (10): 4 517.
- [24] YANG H Q, XIE S S, LU Z K, et al. Teleportation of a Three-Particle GHZ State Via Three-Particle W States [J]. Acta. Opt. Sin., 2006, 26(2): 300-304.
- [25] II Y L, FENG J. Teleportation of Arbitrary Three-Particle GHZ State UsingSingle Three-Particle Maximal GHZ State or Two EPR States [J]. Acta. Physica Sinica, 2007, 56(4): 1 888-1 894.
- [26] PAN J W, et al. Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation [J]. Phys. Rev. Lett., 2001, 86: 4 435-4 438.

(下转第82页)

图 5 DS1624 读取温度值的流程图 何立民.I²C 总线应用系统设计 [M].北京:北京航空航天大学出版社,1995.

[2] 林毓梁,李 颖, 数字式 I²C 总线温度传感器 DS1624 在温度检测中的应用 [J]. 世界电子源器件, 2003, 12:66-67.

[3] 石宗义. I²C 总线时序及其模拟 [J]. 太原理工大学学报, 2004, 35(1): 53-56.

Application of I²C Bus in Serial Extension of Microcontroller

GAO Xiao-hong

(Changsha Normal College, Changsha 410100, China)

Abstract: On the basis of introduction of the structure, principle and mode of data trassmission of I^2C bus, the paper summarizes the advantages of I^2C bus. As for the microcontroller without I^2C bus interface, it can use the microcontroller's I/O interface to simulate I^2C bus, which provides a simple way to realize serial extension. According to the application of I^2C bus to the temperature controlling system, the design of hardware and the software program in assemble language are introduced in detail.

Key word: $I^{2}C$ bus; microcontroller; DS 1624

(责任编辑 陈炳权)

(上接第61页)

Teleportation of Arbitrary Three-Particle GHZ State Using Four-Particle GHZ State

ZHAO Han, ZHOU Xiao qing

(College of Physics Science & Information Engineering, Jishou University, Jishou 416000, Hunan China)

Abstract: Quantum teleportation plays an important role in the field of quantum information. For reduced number of entangled states as quantum channels, the authors execute the entanglement of four particle from the two EPR states by polarization beam splitter, and use it as quantum channels to realize quantum teleportation of a three particle entangled GHZ state.

Key words: quantum communication; teleportation; Greenberger-Horne-Zeilinger state

(责任编辑 陈炳权)

[1]