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Abstract: The problem of fault detection and estimation for a class of markov neutral jump systems with time- delay and
noms bounded uncertainties is considered. By re-constructing the system, the dynamics of the overall augmented error
systems is obtained which involves unknown inputs represented by disturbances, model uncertainty and time-delays.
Both the conditions for the existence of the fault detection filter and roust fault detection filter are presented in tems of
linear matrix inequalities. The proposed mode- dependent fault detection filter makes the systems have stochastically sta-
bility and has better ability of minimizing the effects of disturbances and enhancing the effects of faults to the residuals.
Simulation results illustrate the effectiveness of the developed approaches.
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1 Introduction

Since the pioneering work on quadratic control of Markov jump systems in the mid 1960s, these systems regain in-
creasing interest owing to the application of them being more comprehensive, for instance, economic systems, solar thes
mal receiver systems and communication systems etc. As a special class of hybrid systems, markov jump systems include
two components which are the mode and the state in state vectors. The existing results about markov jump systems cover
a great number of problems such as stochastic stability[ "2 stochastic controllabilitym , robust filteringm and referene-
es therein. Compared with these, however, very few literatures " consider the fault detection problems for markov
jump systems. As for the fault detection problems in [ 5— 7], it is worth noticing that some of them didn’ t consider the
time-delay cases in Markov jump models, and while considered, the system time-delay is the retarded one which only
contains time-delay in its states. In practice, the neutral time-delay systems which contains time- delay both in its states
and in the derivatives of its states are frequently encountered in many dynamic systems and their presence must be tale
en into account in realistic design. Neutral systems often appear in the study of automatic control, circuit systems and
population dynamics, ete, and many results* ) have been presented.

In this paper, we discuss the problem of fault detection and estimation for a class of neutral jump system with
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time-delay and norm+bounded uncertainties. The augmented dynamic system is corstructed based on the robust filter
which parameters depend on the system mode. By selecting the appropriate Lyapunow-Krasovskii function, it gives the
sufficient condition for the existence of the mode-dependent fault detection filter to the nominal system case and the
system considering the time-delay and uncertainties case respectively. The design criterions are presented in the form of
linear matrix inequalities (LMIs) .

nXx m

In the sequel, the following notion will be used: R" and R"™" denote dimensional Euclidean space, and the set of
all the n x m real matrices, A' and A~ denote the transpose and the inverse of any matrix or vector, diag { A, B}
demotes the block-diagonal matrix of A and B, I+ Il denotes the Fuclidean norm of vectors, E{*} denotes the math-
ematics statistical expectation of the stochastic process or vector, L32[ 0, + ©9) is the space of n-dimensional square in-
tegrable function vector over [ 0, + ©0), P> 0 stands for a positive- definite matrix, I is the unit matrix with appropri-

ate dimensions, “* ” means the symmetric terms in a symmetric matrix.

2 System Description
Given a probability space ( Q, F, P) where Q is the sample space, F' is the algebra of events and P is the prob-
ability measure defined on F'. Let the random form process {r:, ¢ 20} be the Markov stochastic process taking values
on a finite set M= {1,2, ..., N} with transition rate matrix Il= { 75}, i, j € M and define the following transition
probability from mode ¢ at time to mode j at time ¢+ At as
T At + o(At) i ~J,

Pi':PrrH/\L:.lr[:.: 1
: { / D=V s o(ar) = (D

N
with transition probability rates Tl 20 for i,jEM, % and Z_ﬂy = — T; where At> 0 and A]g’llno(l( At)/ AL 0.
j=Luzi

Corsidering a class of wntinuous markov neutral jump system (MNJS) with time-delay and uncertainties over the

space ( Q, F, P) by

x(t)- J(r)x(t— d) = A(r)x(t)+ Au(r)x(t— d)+ Bu(r)d(t)+ B(r)f(1)+
g(x (1), x(t— d).d(1).f(1).1),

y(t) = C(r)x(t)+ Cau(r)x(t— d)+ Da(r)d(t)+ Di(r)f(e) + (2)
h(x (1), x(t— d),d(1).f(1), 1),

x(t+ 0)= A0  0E€[-4,0].

where x (1) €R" is the state, y (1) € R is the measured output, d(t) €L5[0, + ) is the unknown iput, f( 1) €

L5[ 0, + o) is the fault to be detected, 2> 0 is the unknown delay constant, g (*), h(*) are norm-bounded uncer
tainties in the systems. A 0) €L2[— d 0] is a contimous vector valued initial function. J(r), A(r), Ad(r),
Bi(r), B(r),C(r),Cu(r:), Di(r.), Dy (r) are known mode dependent constant matrices with appropriate di
mensions. For notational simplicity, when r,= i, i €M, J(r,), A(r),As(r.),B.s(r), B(r), C(r),Ci(r),
D, r),D(r) are respectively denoted as J;, A;, Au, Bai, By, C, Cii, Dy, Dy. While without the uncertainties,
i.e.,g(*)= h(*) =0, system (2) is labeled as nominal MNJS.

Assumption I The matrices Ji, i €M, satisfy Ji Z0and 1 Ji Il < 1.

Assumption 2 The markov process is ireducible and system mode r: is available at time ¢.

Assumption 3 For the sake of clarity, we consider that stochastic nonlinear MNJS (2) is supposed to be sto-
chastically stable, D; is full rank matrix and p I, and [ C; A;] is supposed to be observable.

Definition 1 The nominal neutral jump system (2) (setting d(t),f(¢) =0) is said to be stochastically stable,
if for any initial x(z+ 0)= & 0) and mode ro, then

}ingoE{J:Hx(t,#G),ro) 1Pde | ro,x(t+ 0) = ¢(0),0 E[- d 0]} < oo. (3)
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Definition 2'”  In the Fuclidean space { R" x M x R, } ,we introduce the stochastic Lyapunov-Krasovskii fune-
tion of system (2) as V(x(¢),r,= i, t> 0), the weak infinitesimal operator of which satisfies
1

CV(x(t),i) = meOE[E{ Wx(t+ At),Fuon,t+ At) 1 x(t)= x,r,= 1} = V(x(t),i,t)] =
(%V(x(t),i,t)+ %V(x(;),i,t)'x(t,in Zﬂﬂ(x(;),j,;). (4)

As to systan (2),we set up the following fault detection filter:
x ()= Jx (1= d) = Ax(1) + Awx(1- d)+ Hi[y(1) - y(1)],
y(1) = Cx(1),
where x (1) €ER",y (1) € R', are respectively represent the fault detection filter state and system output, and the

(5)

mode- dependent matrix H;, i € M is the unknown filter parameters to be designed.

Similar to literature'"” " , to design the fault detection filter Hi, i € M, for the positive scalars ¥ and A we can
propose the following performance index formulated from the viewpoint of Lz gain for all nor-zero d(t) ,f(t) €L2[0,
o9) and T~ oo,

-

J(T) = E{er"‘(t)r(t)dt— yzﬂd“(t)d(t)dz- )ff)f"'(t)f(t)dt} <0 A7 min. (6)

For mode} based fault detection, the remaining important task for fault detection filter design is the evaluation of
the generated residual. In order to detect the faults, the widely adopted approach is to choose an appropriate threshold
Jun and determine the evaluation function f( 7). Under the assumption that unknown input d is Lz=norm bounded, the

threshold J; can be set as:

Ju = <1ESL];1?=0{J‘;O+ rT(t)r(t)dt}. (7)
The evaluation function is f ( r) determined by
f(r) = J’O r(t)r(e)de. (8)

where [ to, to+ T| is the finite-time window, T denotes the length and ¢¢ denotes the mitial evaluation time. The eval-
uation time window T is limited because the evaluation of residual signal over the whole time range is impractical.
Therefore, the following logic can be made for fault detection
f(r) 2 Ju ~ with fault ~ alam,
F(r) < Ju  mnoalam (fault  free). (9)

3 Robust Fault Detection for Time delay Markov Neutral Jump System with Un-

certain Parameters Case
In this section,we consider the robust fault detection filter design problems for MNJS (2) while considering the
time-delay and uncertainties, which can be described as
g(x(t),xa,d(t).f(t),i) = A(t,i)x(t)+ Aa(t,i)xa+ ABa(t,i)d(t)+ ABr(t,)f (1),
h(x(t),xa,d(8),f(1),1) = AC(t,0)x(t) + ACi(¢,1)xa+ ADi(t,1)d(t)+ ADY(¢,0)f(¢), (10)

where
[AA(t, i) AA.(t,1) AB.(t,1) AB(i,1)

M;
. ' ' _]: [ ’:|Ei(t)[Ni N, Ni Nil, (11)
AC(t,1) ACy(t,i) AD.(t,i) AD(t,1)

M,

where Mi, Myi, Ni, Ny, Nai, Nri are corstant matrices of appropriate dimensions and Ei(t) is time- varying unknown
matrix with Lebesgue measurable elements satisfying || Ei(¢) Il <1, i € M. In the sequel, do as previous section, let-
ting AAi, A, ABai, ABri, ACi, ACui, ADui, ADyi and Ei represent AA(i,t), AMa(1,t), ABa(t,1), AB/(t,



1) ,AC(i,¢t),ACi(i,¢), ADy(1i,t),ADs(1i,t) respedively.
Here, we set up the same filter (5) , and define the state estimate error as e( t)= x(t)— x(t) and the output
error as r(t)= y(t) -y (t) similarly, then the overall dynamic error system equation can be presented as follows:
e(t)- Jes = [Ai— HGCle(t)+ Ases+ (A — HAC)x(t)+ [Au— H,(Cyu+ ACy)]xq+
[ Bi+ ABu— Hi(Di+ ADy)]d(t)+ [Bi+ ABi— Hi(Di+ ADy)1f (1), (12)
r(t) = Ge(t)+ (Cui+ ACy)xi+ ACx(t)+ (Du+ ADy)d(t)+ (Di+ ADy)f(1).
By defining z(¢) = [xT( t) eT( t)]T, and combining (2) and (12), the augmented system will be:
2(1) = Jz(t- d) = Az(1) + Auz(1- d)+ Bad(1) + Bif (1),

r(1)= Cz(1)+ Ciz(i- d)+ Dud(1)+ Dif (1), (19
where
_ |:Ji o] [ A+ M 0 } [ A+ M 0
“lo 2 Laas moae a- mel 7 Laan Hi( Ci + ACa) AdJ;
_ B, + ABy _ B; + AB;
B = [Bm ABy— H,(Dy+ ADdi)] B = [Bﬂ+ AB, - H.(D; + ADf,-)];

Ci= [AC: Ci];Ci= [Ci+ ACs O0];Disi = Di+ ADai;Di = Di + ADy.
Lemma 1'" Stochastically stable means almost surely (asymptotically) stable.
Lemma 2 The nominal MNJS (2) is said to be stochastically stable, if there exist a set of mode- dependent post
tive- define symmetric matrices Pi, i € M and positive-define symmetric marix Q, such that

N N
AP+ PAi+ Q+ DIP, PAi- AiPJ - DTPJ
Q J_Z j L] d J J_Z j ./J./
I = N < 0. (14)
* - ATiiPJi - JTPiArIi - Q+ ZﬂyJ,TP/J/
j=

Lemma 3" lLet T, U, F and V be real matrices of appropriate dimension with T' F <I, then for ascalar a
>O0wecanget T+ UFV+ VF U <T+ o' UU + aV V.

Theorem 1 For the given scalars, MNJS (12) will be asymptotically stochastically stable, and for all nor zero d
(1) €L,[0, 09, it satisfies inequality (6) while without considering the uncertainties, if there exist a set of mode-de-
pendent symmetric positive- definite matrices Pi, i € M, matrices Hi= P:H:, i € M and symmetric positive definite
matrix @, such that
[ by by b3 Pu o

=% %= _ VI 0 Dyl < 0, (15)
* * * - XI D
L * * * - L

where

b= APi+ PA - CH: - HC + Z]Tijpj + Q,%:= PBi—- HDai, s = PBi — HD;,

J
N

N
o= PAi~ APJi~ CHJ ~ DTPJ. b= AwPi)i~ JiPAi~ Q+ DTJP;.
7= J=
¢y =~ JiPBs+ JiHDi, %5 =~ J\PB:+ J.HD;.
Theorem 2 The MNJS (13) will be asymptotically stochastically stable, and for all nom-zero d () € La[ 0,
o), satisfy inequality (6), if there exist a set of mode- dependent symmetric positive- definite matrices P;= diag{ R;
S}, i €M, matrices H= SH,, i €M, symmetric positive-definite matrix (), and a positive scalar a> 0, such that
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min P
[ @ e @ Py Ps P |
* Cr Py Cy Py P
* * @3 (]iNT{iMi D 0 )
subject to: T < 0,with P= A, (16)
* * * ¢, D r 0
ES ES * ES _ I Mu,
L ES ES * *k *k _ G,I_
where
N
AR+ RA+ DR+ aNIN. 0
¢ = " N + 0O;
0 AlSi+ SiA- HC - CH' + Zn,-,-s,-
j=
N
RAi - ARJ: ~ DTRJ; + NNy 0
¢, = " N 5
- HC, SA;—- ASJ. - CH; - Zm-st,-
j=
RBi + aNiNu RB; + aNiN; 0 RM,
‘P13 = _ H "P]4 = _ 5 ('P]s = T 5 ('P](, = _ 5
SiBi — HiDu SiBi — H:Dy C; SM; — HiM,:
m m ‘\ m m m B
AuRJi+ JRA: = DTiJiPJy+ GNuN, ~ C.M.J;
(.P22 == Q - " N H
* ABL’SJL' + .]?SiAdi— Z]TyJ]T»S;J,
j:

- JiRBi + aNyNa
' e 5 Pu
— JiSiBai + JiH:Dui

T

- JiRM, 2 T 2 T

Pre = T T ; P == YT+ QNaNa; Paa=— NT+ aNiNsi.
- JiSiMi+ JiHiMyi

[— JIRB + aN'f;iMi} o [Cﬁ]
_JisBi+ JEHD: | ~ Lol

4 Numerical Example
Corsidering a class of time-delay and uncertain MNJS (2) with parameters given by:

1.2 2 -0.2 0.2 0.2 0.01 0.2 0.2
Mode 1 A1=|: 3],14111:[ Z-|,J1=[ l-|,B(11=[ ‘:I,B_/'1=|: ‘:|7
-2 - -0.1 -0. 0.01 0.0 - 0. 0.

0
C=[0.2 0.2],Ca=1[-0.1 0.15],Diar=[- 0.1], Dn=1[0. 1], M:1= |: 0 2-| ,Myu=10.2],Ni=[0.2

0.1], Ny=[0.1 0.2], Na=1[0.2], Na= [~ 0. 1].

-35 - -0.2 0.3 0.01 0.02 0.1
Mode 2 A:= |: :;|,A(12 |: 3i|,.]1:|: ‘:|,B(12: |: ‘:|,B_/‘2=
-0.1 -0. 0.02 0.0 0.

2 —
-0.2 0.1
|:0 1 ],CZZ[—O.I O 2],C[12= [01 0.12],Ddz= [O.l],DﬁZ[—O. 2],M2= |:0 1i|,M,2= [—01],

No=[0.1 =0.1],N,=[0.2 0.1], No=[- 0.1], Na=[0. 1].

-7 7
The transition rate matrix is defined by Il= |: 6 6] .
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By solving the IMIs ( 16) ,we can get and the mode-dependent fault detection filter gain matrices are as follows:
[0.9662-| [0.6554 ‘:|
H| = N H2= .
0. 46 - 0.291
Suppose the fault signal f(¢) is the unit square wave from the 8, second to the 12 second. The additional noise

d(t) is white noise ( variance is 0. 1), which is shown in Fig. 1. Fig. 2 gives the residual evaluation function (the

fault case and the faultfree case) .

1.0 L £ 009
= — fault case
0.8 1 e,
= 0.8 'g - fault -free casefg/
< 0.6 g 0.7
=
5 Z 0.6
= 0.4 1 ~ Y.
o =
£ 02 H o 0.5
e s 0.4
£ 00 f =
£ | s 0.3
E 0.2 )
-0.4r1 _§ 0.1 o
-0.6 T g 0.0 . N~
-0.8 1 | | 1 J [~ 0.1 1 1 1 ! 1
0 5 10 15 20 25 0 5 10 15 20 25
t/s t/s
Fig. 1 Unknown Input d( ) Fig. 2 Residual Evaluation Function f( r)

8

With the selected threshold Ju = sup_ E| J: r(t)r(t)dt} = 0.08, Fig. 2 shows that f(r) =

8
E{ﬁ rT( t)r(t)dt} = 0.12> Jwm. Thus, the appeared fault will be detected less than 1. 0 second after its occur

rence.

5 Conclusions
In the paper, we have addressed the design of fault detection filter in two cases for the markov neutral jump system

(MNJS) with time-delays. It ensures asymptotically stable for the overall dynamic error system and a prescribed bound

on the gain from the unknown noise to the estimation error. By selecting the appropriate Lyapunow-Krasovskii function

and applying matrix transformation and variable substitution, the main results are provided in terms of IMIs form. Simu

lation example demonstrates the contribution of the main results.
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The Implementation of User Interface of Voice Dialing Software on
Smart Phone Based on Symbian Operating System

ZHANG Hong xin, WANG Xiang
( E&E, Beijing Unwersity of Posts and T el ecommunicatons, Beijing 100876, China)

Abstract: Based on Symbian operating system, the user interface of voice dialing software on smart phone is implement
ed in VC+ + 6.0 compiler environment. Through the software compiling and simulation with a simulator, the validity
of the sofiware design is tested. At last,when the software is down loaded to the mobile phone platform through Blue-
tooth and infrared format, the feasibility of the project is validated.

Key words: smart- phone; user interface; operating system
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