α-(2,5-二甲基-3,4-二乙酰基吡咯基)萘的 合成和晶体结构^{*}

郑品官¹,朱洪友¹,杨宗璐¹,黄 坤¹,刘 春¹,刘复初¹,郁开 北² (1. 云南大学 化学系,云南 昆明 650091;2. 中国科学院成都分院 分析测试中心,四川 成都 610041)

摘要: 在酸性介质中, 3, 4-二乙酰基-2, 5-己二酮与萘胺作用, 合成得到了 α -(2, 5-二甲基-3, 4-二乙酰基吡咯基) 萘, 用 IR, ¹H-NMR, MS, HRMS 对其进行了表征, 并用 X 射线衍射测定了 α -(2, 5-二甲基-3, 4-二乙酰基吡咯基) 萘的晶体结构. 该晶体属三斜晶系, Pr空间群, 晶体学数据为: $a \ge 0.8045(1)$ nm, $b \ge 1.0018(1)$ nm, $c \ge 2.0757(2)$ nm, $\alpha \ge 80.09(1)^\circ$, $\beta \ge 82.66(1)^\circ$, Y $\ge 83.81(1)^\circ$, V $\ge 1.6281(3)$ nm³, Z ≥ 4 , $M_r \ge 305.36$, $D_e \ge 1.246 \times 10^3$ kg/m³, μ (M_o Ka) ≥ 0.080 mm⁻¹, $F(000) \ge 648$, $\alpha \ge 25(1)$ 的独立可观测衍 射点为 3 669个, 最终偏差因子 R ≥ 0.0406 , $W_R \ge 0.0962$.

关键词: 吡咯; 3, 4- 二乙酰基-2, 5- 己二酮; α- 萘胺; 晶体结构 中图分类号: 0741.6 文献标识码: A 文章编号: 0258-7971(2002)05-0370-05

含吡咯环的化合物广泛存在于生物碱、蛋白质 等天然产物中,其中一些具有较强的生理活性^[1], 近年来,发现许多1- 芳基取代吡咯衍生物在止 痛、局部麻醉、降低血液中的胆固醇、抗炎、抗白血 病和降血压等方面具有明显的生理活性和可贵的 药理性质,因而合成了一系列的吡咯化合物^[2~4], 对形成吡咯化合物的机制^[5]、波谱结构表征^[6]进 行了研究.为研究该类化合物结构与性能的关系, 我们在研究活性亚甲基化合物电解氧化偶联反应 的基础上^[7],以乙酰丙酮的电解偶联产物3,4-二 乙酰基-2,5-己二酮为原料^[8],合成了一系列的 多取代化合物^[9],发现一些吡咯化合物具有良好 的结晶行为,并对部分化合物的晶体结构进行了研 究^[10,11],在晶体中均存在一个对称中心,本文根据 前人总结的分子结构与晶体结构之间存在的关 系^[12], 以 3, 4- 二乙酰基-2, 5- 己二酮为原料与 α- 萘胺反应, 以期在吡咯环的 1- 位引入具有较 大空间阻碍的萘环,以获得有机非线性光学晶体, 本文报道这一研究结果,标题化合物的合成及其晶 体结构属首次报道. 合成路线如下:

1 实验部分

1.1 仪器及试剂 XLC-1型显微熔点测定仪 (温度计未校正); IR-450s 红外分光光度计; VG Autospec-3000型质谱仪(70 eV); DRX-500 核 磁共振仪(CDCl3 为溶剂, TMS 为内标); Siemens-P4 四圆衍射仪.

3,4- 二乙酰基-2,5- 己二酮用电化学的方 法自制^[8],α- 萘胺由新中化学股份有限公司生产 (化学纯),其他试剂均为分析纯.

1.2 实验方法及结构表征 将4.0g(20 mmol) 3,4-二乙酰基-2,5-己二酮溶解在20 mL 冰乙 酸和 30 mL 乙醇的混合液中,在回流状态下逐滴 加入2.86g(20 mmol)α-萘胺的饱和乙酸溶液,然

* 收稿日期:2002-04-11
 基金项目: 云南省自然科学基金资助项目(97B007M); 云南省中青年学术带头人专项基金资助课题.
 作者简介: 郑品官(1977-), 男, 福建人, 硕士生, 主要从事有机合成方面的研究.

后回流 5 h, 减压蒸去溶剂, 残留物经柱层析(V(G)油醚): V(丙酮) = 5 2) 得到淡黄色晶体, 在苯-乙酸中重结晶得白色结晶 4.2 g, 产率 59. 1%. m. p. 142~143 °C. IR(V_{max}): 3 090, 2 921, 1 672, 1 644, 1 412, 1 339, 776 cm⁻¹; ¹H- NMR(δ): 8. 01(1H, d), 7. 98(1H, d), 7. 57(2H, m), 7. 53(1H, t), 7. 38 (1H, d), 7. 16(1H, d), 2. 50(6H, s), 2. 01(6H, s); MS(m/z, EI, %): 305(M⁺, 78), 290(M - CH3, 100), 272(6), 262(M - CH₃CO, 13), 246(5), 232 (7), 218(30), 204(20), 168(24), 127(63); HRMS (EI): C₂₀H ¹⁹NO₂, 测定值: 305. 142 1, 计算值: 305. 141 6.

1.3 单晶的培养 将纯品配成在 30℃左右时的乙 酸饱和溶液,让其缓慢自发结晶,几天后从中选出透 明完整的小晶体作为籽晶.用恒温蒸发培养单晶,经 过约 20 d 的生长周期,培养出 0.68 mm×0.60 mm ×0.56 mm 无色透明、外观完整的单晶体.

1.4 晶体结构的测定 选取线度为 0.68 mm ×
 0.60 mm×0.56 mm 的无色透明单晶置于 Siemens P4 四圆衍射仪上,用石墨单色器获得 λ= 0.071 073 nm 的 M₀K_a 辐射线,在 296(2) K 下由随机寻得的 36

个 3. 37° < θ< 17. 37° 的衍射点确定并精修了晶胞参 数. 以 w 扫描方式在 θ= 2. 07~ 25. 00° 范围内收集到 衍射点 6 041 个, 其中 $I > 2^{o}(I)$ 内独立可观测点 3 669个(R_{int} = 0. 012 1)用于结构计算和修正,所有 强度经 LP 因子校正. 全部氢原子坐标在差值 Fourier 合成中得到,所有非氢原子、氢原子的坐标及各向异 性、各向同性热参数经全矩阵最小乘法修正至收敛, 参加修正的最小二乘参数为 567 个,末轮修正的最 大参数位移(Δ / δ) max= 0. 062, 在 $I > I(2^{o})$ 内最终偏 差因子 R = 0.040 6, $W_R = 0.096$ 2, 权重因子 $W = [\sigma^2 (F_0^2) + (0.065 0 P)^2]^{-1}$, $P = [\max (F_0^2, 0) + 2F_c^2] / 3$, S = 0.895, 差值 Fourier 残峰 $\Delta P_{max} = 172 \text{ e}/$ nm³, $\Delta P_{min} = -162 \text{ e}/ \text{ nm}^3$,用于解结构和修正结构的 计算程序分别是 SHWLXS- 86^[13]和 SHELXLL-93^[14]. 分子间未发现氢键.

2 结构描述与讨论

标题化合物的晶体结构中非对称单位由 2 个 分子组成,其非氢原子坐标及热参数见表 1,部分 键长和键角见表 2,非对称单位的 2 个分子的分子 结构及晶胞的空间分布图见图 1、图 2.

表 1 原子坐标及其热参数

原子	$X / \times 10^4 \mathrm{nm}^2$	$Y/ \times 10^4 \mathrm{nm}^2$	$Z/ \times 10^4 \mathrm{nm}^2$	$U_{\rm e} \not (\times 10 \ {\rm nm^2}$	原子	$X/ \times 10^4 \text{ nm}^2$	$Y/ \times 10^4 \text{ nm}^2$	$Z/ \times 10^4 \text{ nm}^2$	$U_{\rm eq}$ / × 10 nm ²
0(1)	8 958(2)	12 514(2)	3 500(1)	78(1)	C(18)	6 769(4)	11 142(3)	3 498(1)	77(1)
0(2)	8 590(2)	8 874(1)	4 331(1)	63(1)	C(19)	8 029(2)	9 047(2)	4891(1)	48(1)
O(3)	- 3 149(2)	10 284(1)	303(1)	66(1)	C(20)	7 633(4)	7 844(2)	5403(1)	75(1)
O(4)	- 1 617(2)	10 658(2)	1 828(1)	94(1)	C(21)	4 270(3)	6 846(2)	760(1)	63(1)
N(1)	7 436(2)	12 250(1)	5 544(1)	39(1)	C(22)	5 686(3)	5 908(3)	842(1)	76(1)
N(2)	1 266(2)	7 437(1)	930(1)	44(1)	C(23)	5 495(3)	4 624(3)	1 158(1)	73(1)
C(1)	8 554(2)	13 812(2)	6 106(1)	47(1)	C(24)	3 896(3)	4 198(2)	1 408(1)	58(1)
C(2)	8 353(3)	14 777(2)	6 535(1)	52(1)	C(25)	3 667(5)	2 875(2)	1754(1)	81(1)
C(3)	6 841(3)	15 011(2)	6 887(1)	52(1)	C(26)	2 113(6)	2 500(3)	1997(1)	95(1)
C(4)	5 446(2)	14 304(2)	6 834(1)	44(1)	C(27)	690(5)	3 414(3)	1907(1)	83(1)
C(5)	3 856(3)	14 517(2)	7 199(1)	58(1)	C(28)	847(3)	4 705(2)	1578(1)	60(1)
C(6)	2 544(3)	13 829(2)	7 133(1)	62(1)	C(29)	2 449(2)	5 131(2)	1 327(1)	48(1)
C(7)	2 725(3)	12 899(2)	6 693(1)	54(1)	C(30)	2 713(2)	6 468(2)	998(1)	46(1)
C(8)	4 222(2)	12 670(2)	6 327(1)	44(1)	C(31)	307(2)	7 654(2)	414(1)	44(1)
C(9)	5 629(2)	13 348(2)	6 392(1)	38(1)	C(32)	- 1 041(2)	8 570(2)	564(1)	42(1)
C(10)	7 232(2)	13 135(2)	6 029(1)	38(1)	C(33)	- 865(2)	8 906(2)	1 197(1)	43(1)
C(11)	7 585(2)	12 731(2)	4 874(1)	42(1)	C(34)	563(2)	8 210(2)	1 409(1)	44(1)
C(12)	7 778(2)	11 634(2)	4 557(1)	41(1)	C(35)	1 365(3)	8 172(3)	2023(1)	60(1)
C(13)	7 721(2)	10 430(2)	5 048(1)	41(1)	C(36)	879(4)	6 985(3)	- 175(1)	66(1)
C(14)	7 535(2)	10 851(2)	5 657(1)	39(1)	C(37)	- 2 291(2)	9 282(2)	143(1)	49(1)
C(15)	7 611(3)	10 123(2)	6 343(1)	53(1)	C(38)	- 2 527(3)	8 813(3)	- 486(1)	67(1)
C(16)	7 434(3)	14 213(2)	4 612(1)	59(1)	C(39)	- 2 069(3)	9 748(2)	1 599(1)	54(1)
C(17)	7 942(2)	11 788(2)	3 825(1)	50(1)	C(40)	-3832(3)	9 350(3)	1764(1)	68(1)

Tab. 1 The atomic coordinates and the equivalent thermal parameters

表 2 主要键长和键角

Tab. 2 Selected bond lengths and angles

化学键	键长/nm	化学键	键长/ nm	化学键	键角/ (°)	化学键	键角/ (°)
O(1) - C(17)	0.1212(2)	O(2) - C(19)	0.1225(2)	C(14) - N(1) - C(11)	110. 26(13)	C(14) - N(1) - C(10)	127.05(13)
O(3) - C(37)	0.1225(2)	O(4) - C(39)	0.1207(2)	C(11) - N(1) - C(10)	122. 68(13)	C(31) - N(2) - C(34)	110.33(14)
N(1) - C(14)	0.137 6(2)	N(1) - C(11)	0.1387(2)	C(31) - N(2) - C(30)	125.35(14)	C(34) - N(2) - C(30)	124.13(14)
N(1) - C(10)	0. 143 6(2)	N(2) - C(31)	0.1373(2)	C(10) - C(1) - C(2)	120.6(2)	C(3) - C(2) - C(1)	119.7(2)
N(2) - C(34)	0. 139 1(2)	N(2) - C(30)	0. 143 8(2)	C(2) - C(3) - C(4)	121.5(2)	C(3) - C(4) - C(5)	122.8(2)
C(1) - C(10)	0.1361(2)	C(1) - C(2)	0. 140 7(3)	C(3) - C(4) - C(9)	119.1(2)	C(5) - C(4) - C(9)	118.1(2)
C(2) - C(3)	0. 135 6(3)	C(3) - C(4)	0.1415(3)	C(6) - C(5) - C(4)	121.2(2)	C(5) - C(6) - C(7)	120. 5(2)
C(4) - C(5)	0. 141 6(3)	C(4) - C(9)	0. 142 1(2)	C(8) - C(7) - C(6)	120. 4(2)	C(7) - C(8) - C(9)	120.8(2)
C(5) - C(6)	0.135 5(3)	C(6) - C(7)	0. 139 7(3)	C(8) - C(9) - C(4)	119.0(2)	C(8) - C(9) - C(10)	123.2(2)
C(7) - C(8)	0. 135 9(2)	C(8) - C(9)	0. 141 3(2)	C(4) - C(9) - C(10)	117.7(2)	C(1) - C(10) - C(9)	121.3(2)
C(9) - C(10)	0. 142 3(2)	C(11) - C(12)	0. 136 1(2)	C(1) - C(10) - N(1)	119.2(2)	C(9) - C(10) - N(1)	119.37(14)
C(11) - C(16)	0. 148 9(2)	C(12) - C(13)	0. 144 0(2)	C(12) - C(11) - N(1)	107.60(14)	C(12) - C(11) - C(16)	130.7(2)
C(12) - C(17)	0. 149 1(2)	C(13) - C(14)	0. 138 6(2)	N(1) - C(11) - C(16)	121.6(2)	C(11) - C(12) - C(13)	107.83(14)
C(13) - C(19)	0. 146 6(2)	C(14) - C(15)	0. 149 0(3)	C(11) - C(12) - C(17)	121.7(2)	C(13) - C(12) - C(17)	130. 4(2)
C(17) - C(18)	0. 148 8(3)	C(19) - C(20)	0. 149 6(3)	C(14) - C(13) - C(12)	107. 21(13)	C(14) - C(13) - C(19)	129.0(2)
C(21) - C(30)	0.135 5(3)	C(21) - C(22)	0. 140 5(3)	C(12) - C(13) - C(19)	123. 4(2)	N(1) - C(14) - C(13)	107.08(13)
C(22) - C(23)	0. 135 5(3)	C(23) - C(24)	0. 140 7(3)	N(1) - C(14) - C(15)	118.8(2)	C(13) - C(14) - C(15)	133.7(2)
C(24) - C(25)	0. 141 3(3)	C(24) - C(29)	0. 142 1(3)	O(1) - C(17) - C(18)	120. 5(2)	O(1) - C(17) - C(12)	119.5(2)
C(25) - C(26)	0. 135 3(4)	C(26) - C(27)	0. 139 8(4)	C(18) - C(17) - C(12)	119.9(2)	O(2) - C(19) - C(13)	119.7(2)
C(27) - C(28)	0. 136 5(3)	C(28) - C(29)	0. 140 9(3)	O(2) - C(19) - C(20)	119.6(2)	C(13) - C(19) - C(20)	120.7(2)
$C(29)-\ C(30)$	0. 141 9(2)	C(31) - C(32)	0.138 2(2)	C(30) - C(21) - C(22)	120.0(2)	C(23) - C(22) - C(21)	120.0(2)
C(31) - C(36)	0. 149 2(3)	C(32) - C(33)	0. 143 9(2)	C(22) - C(23) - C(24)	121.4(2)	C(23) - C(24) - C(25)	122. 5(2)
C(32) - C(37)	0. 146 3(2)	C(33) - C(34)	0. 136 0(2)	C(23) - C(24) - C(29)	119.4(2)	C(25) - C(24) - C(29)	118.1(2)
C(33) - C(39)	0. 148 4(2)	C(34) - C(35)	0. 149 3(3)	C(26) - C(25) - C(24)	121.1(3)	C(25) - C(26) - C(27)	120.6(2)
C(37) - C(38)	0.150 0(3)	C(39) - C(40)	0. 149 6(3)	C(28) - C(27) - C(26)	120. 4(3)	C(27) - C(28) - C(29)	120. 3(3)
				C(28) - C(29) - C(30)	123. 4(2)	C(28) - C(29) - C(24)	119.4(2)
				C(30) - C(29) - C(24)	117.2(2)	C(21) - C(30) - C(29)	122. 0(2)
				C(21) - C(30) - N(2)	120. 1(2)	C(29) - C(30) - N(2)	117.9(2)
				N(2) - C(31) - C(32)	107. 22(14)	N(2) - C(31) - C(36)	119. 5(2)
				C(32) - C(31) - C(36)	133. 2(2)	C(31) - C(32) - C(33)	107. 2(2)
				C(31) - C(32) - C(37)	129.0(2)	C(33) - C(32) - C(37)	123. 1(2)
				C(34) - C(33) - C(32)	108.0(2)	C(34) - C(33) - C(39)	123.9(2)
				C(32) - C(33) - C(39)	127.9(2)	C(33) - C(34) - N(2)	107. 25(14)

图 1 非对称单位的 2 个分子的分子结构

Fig. 1 Structure of two asymmetric molecular

图 2 晶胞的空间分布 Fig. 2 Structure of cell

晶体结构测定表明,标题化合物的萘环、吡咯 环的内角和依次为 719.9°和 540°,采用最小乘法 拟合了分子 1的萘环和吡咯环(下称平面 1 和平面 2),分子 2 的萘环和吡咯环(下称平面 3 和平面 4) 的平面方程,并计算了参与拟合方程的原子相对平 面方程的平均偏差以及部分原子对于平面方程的 偏差(见表 3).

表 3 最小二乘平面方程

1 ab. 3	Least	squares	plane	equations	

NO		平均偏差/	偏差/ nm				
	平面万程(止交法(25))	nm	W 1	C 10	N_2	C 30	
1	$- 0.269 1X_0 + 0.715 8 Y_0 - 0.655 4 Z_0 = - 2.210 6$	0. 000 83	0. 009 29				
2	0. 992 9 X_0 + 0. 049 Y_0 + 0. 108 7 Z_0 = 8. 053 0	0. 000 59		0. 001 7			
3	0. 085 4 X_0 + 0. 306 4 Y_0 + 0. 948 1 Z_0 = 5. 470 1	0. 001 05			0 006 1		
4	0. 530 7 X_0 + 0. 807 6 Y_0 - 0. 257 1 Z_0 = 5. 677 5	0. 000 31				- 0. 115 8	

*:所有原子的重量为1.0000

由平面方程计算出分子 1,2 中萘环与吡咯环 的二面角分别为 107.7 和 87.2°,由表 3 可以看出 萘环与吡咯环之间的键联原子对于该键的环平面 的偏差均不大,在 0.000 17~0.011 58 nm 之间,这 将有利于 π电子在环间流动.

与萘^[16]相比较,标题化合物分子中的萘环的 键长、键角均不再呈现左右对称、上下对称,C-C 键的平均键长有所减少,减少幅度为0.00067 nm, 键角更加偏离 120°, 平均偏差幅度为 ± 1°. 与吡 咯^[17]相比较,标题化合物的吡咯环及其侧基的键 长亦有变化,吡咯环的键长键角亦不再呈现左右对 称(相对于 N 原子),其中 N-C 键的键长改变不 明显,C-C 键的键长平均增加 0.000 46 nm,侧链 上所有的 C-C 键的键长均低于 0.154 nm,C-O 键的键长平均减少 0.007 28 nm.以上变化可以归 结为 π 电子流动的影响,从键长改变的趋势还可以 粗略地估计出, 分子中 π 电子流向为从萘环到吡咯 环及其侧基.

参考文献:

- [1] 赵雁来,何森泉,徐长德.杂环化学导论[M].第1版. 北京:高等教育出版社,1992.
- [2] 李 葆, 张振礼, 李连忠, 等. 多取代吡咯基脂肪酸的 合成[J]. 有机化学, 1990, 10(10):58-61.
- [3] 花文廷,朱明英.多取代空间阻碍吡咯的合成[J].化
 学通报,1982, (5):25-28.
- [4] ANGEL A, JOSE M A, ALFONSO G. Some observation on the reactivity of β-aminoenones towards phenacylamine hydrochloride[J]. Heterocycles, 1989, 29(10): 1 973-1975.
- [5] 曾广植, 严家 ⅔ , 沈 定璋. Knorr- Paal 缩合反应机制的研究(I)[J]. 化学学报, 1981, 39(3): 215-227.
- [6] 赵成志,李 葆,张书文. 几种多取代吡咯的 NMR 研究(II)[J]. 高等学校化学学报, 1986, 7(7): 625-628.
- [7] 朱洪友,张成敏,刘复初.活性亚甲基化合物的电解氧 化偶联反应[J].化学通报,1999,(7):46-48.
- [8] 朱洪友,杨宗璐,刘复初.3,4-二乙酰基-2,5-己二 酮的电化学合成及晶体结构[J].人工晶体学报, 1998,27(1):100-104.
- [9] 朱洪友,刘复初,何红平.2,5-二甲基-3,4-二乙酰

基-1-芳基吡咯的合成[J]. 应用化学, 1999, 16(3): 71-72.

- [10] 朱洪友,谢小光,杨宗璐,等.4-(2,5-二甲基-3,4
 -二乙酰基)-1-吡咯基苯甲胺的合成及晶体结构
 [J].人工晶体学报,1998,27(4):353-357.
- [11] 朱洪友,杨宗璐,刘复初.2,5-二甲基-3,4-二乙
 酰基-1-(3-硝基苯基)吡咯的合成及晶体结构
 [J].人工晶体学报,2000,29(2):171-175.
- [12] 秦金贵,刘道玉.具有特殊电子性能的有机固体[J]. 有机化学,1991,11(3):240-252.
- [13] SHELDRICK G M. SHELXS 86. A program for crystal structure determination [M]. University of Gottingen, 1990.
- [14] SHELDRICK G M. SHELXL 93. A program for crystal structure determination [M]. University of Gottingen, 1993.
- [15] 肖序刚. 晶体结构的几何理论[M]. 北京: 高等教育 出版社, 1993.
- [16] CRUICKSHANK D W J. A detailed refinement of the crystal and molecular structure of naphthalene[J]. A cta Cryst, 1957, (10): 504-508.
- [17] BAK B, CHRISTENSEN D, HANSEN L. Microwave determination of the structure of Pyrrole [J]. J Chem Phys, 1956, 60(24): 720-725.

Synthesis and crystal structure of α- (2, 5- dimethyl- 3, 4- diacetyl- pyrryl) naphthaline

ZHENG Pir guan¹, ZHU Hong-you¹, YANG Zong-lu¹, HUANG Kun¹, LIU Chun¹, LIU Fur chu¹, YU Kar bei²

(1. Department of Chemistry, Yunnan University, Kunming 650091, China;

2. Institute of Center of Analysis and Determination, Chinese Academy of Sciences, Chengdu 610041, China)

Abstract: α - (2, 5- dimethyl- 3, 4- diacetyl- pyrryl) naphthaline was synthesized through the reaction of 3, 4- diacetyl- 2, 5- hexanedione with α - naphthylamine in acidic medium. The chemical structure was characterized by IR, ¹H- NMR, and HRMS. The crystal structure of the target molecule was determined by X - ray diffraction analysis. The crystal is triclinic with space group P₁. The unit cell parameters are as follow: *a* is 0. 804 5(1) nm, *b* is 1. 001 8(1) nm, *c* is 2. 075 7(2) nm, α is 80. 09(1)°, β is 82. 66(1)°, γ is 83. 81(1)°, *V* is 1. 628 1(3) nm³, *Z* is 4, *M*_T is 305. 36, *D*_c is 1. 246 × 10³ kg/m³, μ (M_oK₀) is 0.080 mm⁻¹ and F(000) is 648.

Key words: pyrrol; 3, 4- diacetyl- 2, 5- hexanedione; a- naphthylamine; crystal structure