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Abstract: The Cauchy problem for a dlass of coupled hyperbolic system of conservation laws is studied. Using corr

vex hull of a potential function, the global solution including delta shock waves is constructed explicitly, and is t hen

proved to be a measure solution directly.
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Consider the coupled hyperbolic system
vit (of (u))e =0,
(vu)i+ (vyf (u))s = 0,

where f(u) is a smooth monotone function, the sign

(1)

of v is assumed to be unchangeable. T he system (1)
is coinciding with the one dimensional transportation
equations (1. e., zerc pressuregas dynamics) when
f(u)= u,v 20and u are thought as the density
and velocity, respectively.

T he Riemann problem for (1) was solved com-
pletely in Ref.[ 1]. A distinctive feature is that delta
shock waves develop in solutions. In earlier paper
[ 2], the delta shock waves were found independently
for a simplified mathem atical model of Euler system.
T his kind of waves has been studied by many au-
thors. The generalized Rankine- Hugoniot condition
for a delta shock wave was proposed to describe the
relationship among the location, propagation speed,
weight and assignment of u on its discontinuity rela-
tive to the deltashock [ 1—3]. In particular, the

weight denotes the mass of concentrated particles.
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Thus the deltashock may be interpreted as the
galaxies in the universe, or the concentration of par-
ticles.

As for the Cauchy problem involving the delta
shock solutions, by introducing convex hull of a po-
tential function, Chen et al (see [ 4]) obtained ex
plicit construction of global measure solutions of
Cauchy problem for the transportation equations.
Making use of the method in [ 4], the present paper
consider Cauchy problem of (1) with the initial data

(uw,v)(0,x)= (uo(x), vo(x)), (2)
where vo(x ) expresses the mass distribution at ¢=
0. uo(x ) is assumed to be boundedly measurable

with respect to vo (x ) and the total mass
IRlvo(dx) <+ ©oo.If supp (v) is unbounded, we
assume

ﬁ)%o(dﬂ) T4 ooas| x|+ oo (3)

Definition 1 A pair (u(x,t), v( A t)) is
called a measure solution of (1- 2),if (u(=x, ),

v( A, 1)) satisfies
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‘LO‘P(x,O)vo(dx) = 0,
(4)
J.Rzu(4)¢+f(u)‘bx)y(dx’.t)dl+

Lzouo(x) O(x,0)(dx) = 0,

for all test functions ®, ¢ € CSO(RE)(RJ%: R x
[0, ©)), where v ( A t) 20 denote the mass distri-
bution on Borel measurable set A at ¢t and w( x, ¢)

is boundedly measurable with respect to v( A;¢).
1 Construction of solution and main result

T he system (1) has a double eigenvalue A=
f(u)and only one right eigenvector r= (1, 0) T,
furthermore vV A r =0, which shows (1) is non-
strictly hyperbolic. The characteristic equations of
(1) are

da _
dt = flu),

du
dt

ooy L)),

For simplicity, we suppose
F(u)> 0 v 20 (6)
The rest

u o(x)> 0, then the characteristics do not inter

= 0, (5)

\

cases are considered similarly. If

sect. If u'o( x) < 0, the characteristics will overlap
and the &shock will appear in the solutions. To

solve (1—2), we need to construct a convex hull.

Introduce two projections F: R' 7 R' and B:

1— 1

R R
Fleot) = [ (e f (uof())vofdn.

2= B(xo)= L:yo(dn),
(7)
in which A= [0, xo) if xo> 0,and A = [x0, 0) if
x0< 0. It is obvious that B ( x0) is nondecreasing,

L -1
then there exists nverse B (z )= x0= xo(z ). Let

G(z)= Fxo(z) = FoB '(z), (8)

and when xo= B '(z)= «x (constant) (z €
[z1,z2]) ,we define
G(z)= F(xo(z1))+
F(xo(z2))- F(xo(z1))

z2— z1 (2= z1),

2 €(z1,22), (9
where z1= B(x0- 0), z2= B(xo+ 0). Noting

(6),weget G(z) is convex if only uo(x ) is nonde

creasing and

(10)
where x can be explained as the particle location of
xoat ¢. If uo(x) is decreasing, particles will inter
act and stick together at time ¢, i. e., &shock will
appear. To get the global solution, we now construct
the convex hull H (z ) of G( z)

H(z)= inf{(G(z),G(z)):GC(z)= G(z1)+
Glzy= Gl

Z1— 22

Vzi,z2 € [:vo(dﬂ)}, (11)

which is tuitively a rubber band covering G (z)
tightly, and has the property

H(z-0) <H (z+0). (12)

Then R' can be divided into two kinds intervals

L1 and L2, where Li= {x0; G(z (x0)) =

H(z(x0))).For any xo € L ,the convex hull sat-

isfies
G (z-0) SH (z-0) SH (z+0) <
G(z+ 0). (13)
If ¢ (z— 0)= G (z+ 0), then
dH _ d¢ _
dz 2= B(x ) dz = B(x,)
x0+ if (u(x0)) hold a. e. (14)

Ly= {x0 €R H(z(x0)) ZG(z(x0))}
constructed by normrintersecting intervals A, which
are open sets and Al A= @i Zj). It is obvious
that A are countable . On every 4 , the tangent of

H (z) is a constant

Q. _ Clz2)= G(z1) _

dz ~ zZ2— 21
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J‘ (M 4f (wo()))vo( dN) h(xi;t) Sh(x2t),then x1 S xo.
(x)- %) Lemma2 ForO< ¢ < ¢, then
J.(x],xz)vo(drl) hil(.;l*) C hil(.; l).
(15) Lemma3 Ifxo€ h™'(x;t),then
- <

where z1 = B(x1),z2= B(x2), (x1,x2) = A. | wo= x| \?gfxllf(uo(x)) o (17)

Then we can define reflection h(*; t): R’ ” R'

dezZ (16)

h(xo;t) =

X = N
z= B(xo)

which reflects a point or a set to a point. Thus
h™'(*; t) maps a point to a point or a set. We now
give some properties about h(xo; ¢ ).

Lemma 1 For fixed ¢ 20 and x1, x2 € Rl,if

w(xit) = J.(x x)uo(rl)vo(drl)

I’ 2

J.(x o1y ’

Y2

v(At) = vo(hT (A1),
where v denotes the mass distribution on Borel mea-

surable set A at ¢.
2  Proof of theorem

For convenience, denote h(h™ '(x;t), t+ &)=
h(x;t, t+ §),which presents the location of parti-
cle x from time ¢ to t+ §.We first introduce some
lemmas before we proof the theorem.

Lemma4 For Vi ,0<: <u,if

R Yw:t) is a open set (x1, x2),then

J’h((xl’xz):t* )(fl+ (t= " )f(uw(N ¢ )))v(dn, )

. ov(dn; "
J.h((x].xz):t )1)( )

X =

(19)
It can be verified easily by (15).
Lemma5 Supposex € h(h™'(x;t);1 ),
(0< ¢ < t),then
| x— x| <rréaR)§|f(u(x, ) (=1 ).

(20)

Lemma 6 Suppose u(t) = max| u(x,t)!,
xER!

then u(t) is monotone and norr increasing.

Based on the above analysis, the follow ing main
result can be obtained.
If the initial data (2) satisfies the

condition imposed, then Cauchy problem ( 1—2)

Theorem 1

possesses a measure solution (v (A t), u(x, t))

constructed as follows

uo(x0), hold on Rla.e., h_l(x;t) = xo,

Wl (x:t) = (21, x2), (18)

Proof of Theorem Let s first verify the solur
tion (18) satisfying the first equation of (4). For
any ¢ € C5°(R?), 3 T and (a, b) having

b)(‘P(x, T)v(da; T)- ®(x,0)vo(dx)) +

J(

o) ®(x)vo(dx) = 0. (21)

So we just need to prove

-(a,b)(@(x’ T)v(dx; T) - ®(x,0)vo(dx)) =

(T

J‘((L,zl)(‘P"*f(u) @ )v(dx;t)de. (22)

Jo
We now separate [0, T] into n parts [ &, ti+ 1/

(i= 0,1, ..n— 1), where to= 0, t,= T, and denote

tiv 1— ti by A, then the right side of (22) is trans

formed into

n=1

i:Z()v[((t, h)( (.P(x’ Li+ I)U(dx; ti+ l) -

N, ti)v(dx;sti)) =

n1

Z[I( 1)( R, tiv1) — Pla, ti)v(da; tiv1)) +

i=0 a, b

Imb)(“’(x, ti)v(destivr) = Hx, ti)v(de;ti))] =



n—1

L:zo‘[."

( [)‘B(x,t_i)v(dx;tm)' A+

L y (TRt tur), 1) = ¥(x, ) v (dv; 6)] =
a,

Ji+ Jo, (23)

where 7; € (t;, tis 1) . Because

( [)‘B(x,t+ At)v(dx; e+ At) -

Colx,t)v(dx;t) =

oo (®lh(xst, e At) ) -

Colx,t))v(dx;t) =
Cu(x+ O(h(x;t,t+ N)— x), 1) °

J(a, b)
(h(x;t, 1+ N)— x)v(dx; 1), (24)
where 0 € (0,1), and

h(x:t,t+ N)— x  O( A 0), (25)
®(x,t)v(dx;t) is continuous, and

thenJ.
(a,b)
- J'TJ' -
@ . 0o
odias W(x, t)v(dx; t), n X

max( A;) 0. (26)

For J,, we have

Jo= X| et -

i=0d(a, b)

x)v(dx; i), (27)
where (a, b) can be separated into 2 U, 2=
fUR™ '(xsti, tie 1) b (x5 ti, tiv 1)= ()], and

o= Un; 6N y= qi#),
h( A;ti,tiv1)= x/.Then

n=1

J2 = Z[-[Z @, ti)(h(x;ti, tis1)— x) *
v(dx; ti) +
IZ (0, 1) (h(xs tis tivr) = x) *

2

v(de; ;)] = Ja+ Jo. (28)
From (10), we have
Joa = 1:;"‘21 @(x,t)f (u(x, t:))v(dxs t:) N

(29)

For J2, we have

Jaz = ZZJ C(x, )"

=0

'[A,(n_ x)v(dT; &)
j v(dl; t;)

'ZZf‘P(x ).

=0 j

v(dx; ti) +

[ reun i anay
Flutxt))o(dxs 1) i
5 ZL%‘, If (ulx, 1)) *

v(dusti) Ni= I+ J% + 1%,

(30)

We now prove J5 - O(mlaxAi - 0).For V&
ne u,

I - £1 <1 41 < 2m€ax|f( w(xit)) |l N S

2ma§|f(u0(x,tl))| N o= Cl Nl;
x€ER

(31)
inwhich | A/l is the Radon measurement of 4, C;
= 2max|f(uo(x, t;)) ! .Then

n—1

e 2

=02 w(dnn)

IJA(‘%MZH)(H— x )+
QM ti)(x - N))v(dx;t) =

>3

=0 2I U(drl i)

J‘%J‘Aj Pu(x, ti)(T= x)(N- x)

v (d; ¢;)v(dx; 6:), (32)
where = N+ O(h(M: ) - NY(0 €(0,1)),x €
(x, 1), then

n—1

Z(;sz v(d0; ;)

NN

L(N= x) | o(dMe)o(dx; i) <

(
IWEIIEN

Cu(x,t;) |l M= x|
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n1

2 2

3 LGl i), I(N1) = J.Au(fl,t)v(drl;t), (35)
: ZJAAJ.U(er' ti) the second equation of (4) can be verified in the
J.A J.Av(drl; i) v (dn; 1) = same way. The proof is omitted.

i=0
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