研究简报

单个总体方差差异的 U 统计量检验法

陆媛媛, 宋立新

(吉林师范大学 数学学院, 吉林 四平 136000)

摘要:给出一种利用非参数统计中U统计量构造检验单个总体方差差异的方法,与 χ^2 检验法相比,该方法不仅适用于更宽泛的场合,而且其渐近相对效率为1.

关键词: U 统计量; 方差检验; 渐近正态性; 渐近相对效率

中图分类号: 0212.7 文献标志码: A 文章编号: 1671-5489(2011)06-1064-04

U-Statistics Testing Method in Testing Variance Differences of a Single Population

LU Yuan-yuan, SONG Li-xin

(College of Mathematics, Jilin Normal University, Siping 136000, Jilin Province, China)

Abstract: A method about testing variance differences of a single population was constructed based on U-statistics. This method, compared with the χ^2 testing, can be applied to more general situations, and its asymptotic relative efficiency is 1.

Key words: U-statistics; variance testing; asymptotic normality; asymptotic relative efficiency

由于方差反映随机变量取值的离散程度,因此,在实际应用中检验单个总体方差差异问题较常见。设统计总体为 X,分布函数为 $F(x;\mu,\sigma^2)$, $EX=\mu$, $DX=\sigma^2$, $0<\sigma^2<\infty$ 均未知, $EX^4<\infty$. 从总体 X 中抽取样本 X_1,X_2,\cdots,X_n ,欲检验原假设 $H_0:\sigma^2=\sigma_0^2$ (已知) vs 备择假设 $H_1:\sigma^2>\sigma_0^2$. 当 X 服从正态分布时, χ^2 检验法是解决该问题最常用的典型方法。但在非正态的一般情况下,目前尚未见解决这类问题的报道。

关于 U 统计量的研究目前已取得了一些成果^[14]. 本文利用 U 统计量构造了解决上述问题的一种检验方法,与 χ^2 检验法相比,不仅适用于更宽泛的场合,而且渐近相对效率为 1.

1 U 统计量的建立

对于样本 X_1, X_2, \dots, X_n 及任意的 $1 \leq \alpha_1, \alpha_2 \leq n$, $\Leftrightarrow h(X_{\alpha_1}, X_{\alpha_2}) = \frac{1}{2} [(X_{\alpha_1} - X_{\alpha_2})^2]$, 又令 $U_n = \frac{1}{2C_n^2} \sum_{\alpha_1 \neq \alpha_2} h(X_{\alpha_1}, X_{\alpha_2}) = \frac{1}{C_n^2} \sum_{\alpha_1 < \alpha_2} h(X_{\alpha_1}, X_{\alpha_2}) = \frac{1}{C_n^2} \sum_{\alpha_1 < \alpha_2} \frac{1}{2} [(X_{\alpha_1} - X_{\alpha_2})^2] = \frac{1}{n(n-1)} \sum_{\alpha_1 < \alpha_2} (X_{\alpha_1} - X_{\alpha_2})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = S_n^2,$

其中 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. 可以证明 U_n 是 U 统计量,因为 $Eh(X_{\alpha_1}, X_{\alpha_2}) = \sigma^2$,所以 $h(X_{\alpha_1}, X_{\alpha_2})$ 是核函数,而

收稿日期: 2011-03-18.

作者简介: 陆媛媛(1978—), 女, 汉族, 博士, 讲师, 从事运筹学与数理统计的研究, E-mail: luyuanyuan_2006@ sina. com. 通讯作者: 宋立新(1954—), 男, 汉族, 教授, 从事数理统计的研究, E-mail: slx3290773@163. com.

基金项目: 国家自然科学基金(批准号: 10971084) 和吉林省教育厅"十一五"规划重点项目(批准号: 吉教科合字[2010]141).

 $h(X_{\alpha_1},X_{\alpha_2})$ 根据构造还是对称函数,且其求和是对 $X_1,X_2\cdots,X_n$ 中任取两个组合求和,则 U_n 是样本 X_1,X_2,\cdots,X_n 关于参数 σ^2 的 U 统计量. 下面求 U_n 的数学期望和方差,显然有 $EU_n=ES_n^2=\sigma^2$,表明 U_n 还是 σ^2 的无偏估计. 如果用 $DU_n=DS_n^2$ 求出 U_n 的方差,则过于繁杂,且不利于求出 U_n 的渐近分布.

1) 按求 U 统计量方差的方法求出 Var $U_n^{[5]}$.

$$\operatorname{Var} U_{n} = \operatorname{Var} \left(\frac{1}{C_{n\alpha_{1} < \alpha_{2}}^{2}} h(X_{\alpha_{1}}, X_{\alpha_{2}}) \right) = \frac{1}{(C_{n}^{2})^{2}} \sum_{\alpha_{1} < \alpha_{2}} \sum_{\beta_{1} < \beta_{2}} \operatorname{Cov} \left(h(X_{\alpha_{1}}, X_{\alpha_{2}}), h(X_{\beta_{1}}, X_{\beta_{2}}) \right). \tag{1}$$

若令
$$\tau_c^2 = \operatorname{Cov}(h(X_{\alpha_1}, X_{\alpha_2}), h(X_{\beta_1}, X_{\beta_2})), c = \begin{cases} 0, & \alpha_1 \neq \beta_1, \alpha_2 \neq \beta_2, \\ 1, & \alpha_1 = \beta_1, \alpha_2 \neq \beta_2 & 或 \alpha_1 \neq \beta_1, \alpha_2 = \beta_2, \\ 2, & \alpha_1 = \beta_1, \alpha_2 = \beta_2. \end{cases}$$

则由 $\alpha_1 \neq \alpha_2$, $\beta_1 \neq \beta_2$ 知, τ_c^2 是两个涉及样本中恰有 c 个相同两个核的协方差, 即

$$\vec{\mathcal{R}}(1) = \frac{1}{(C_n^2)^2} \sum_{c=0}^2 C_n^2 C_n^c C_{n-2}^{2-c} \tau_c^2 = \frac{1}{C_n^2} \sum_{c=0}^2 C_2^c C_{n-2}^{2-c} \tau_c^2.$$

2) 下证 $0 = \tau_0^2 < \tau_1^2 \le \tau_2^2 < \infty$. $\tau_0^2 = \text{Cov}(h(X_{\alpha_1}, X_{\alpha_2}), h(X_{\beta_1}, X_{\beta_2}))$. 此时, $\alpha_1 \ne \beta_1$, $\alpha_2 \ne \beta_2$,且 $\alpha_1 \ne \alpha_2$, $\beta_1 \ne \beta_2$,所以 $(X_{\alpha_1}, X_{\alpha_2})$ 与 $(X_{\beta_1}, X_{\beta_2})$ 独立,从而 $h(X_{\alpha_1}, X_{\alpha_2})$ 与 $h(X_{\beta_1}, X_{\beta_2})$ 也独立,即 $\tau_0^2 = 0$.

 $au_1^2 = \text{Cov}(h(X_{\alpha_1}, X_{\alpha_2}), h(X_{\alpha_1}, X_{\alpha_3}))$. 因为 X_1, X_2, \cdots, X_n i. i. d, $h(X_{\alpha_1}, X_{\alpha_2})$ 是对称核函数,所以可取 X_1, X_2, X_3 代替 $X_{\alpha_1}, X_{\alpha_2}, X_{\alpha_3}$,则有

$$\tau_{1}^{2} = \operatorname{Cov}\left(\frac{1}{2}(X_{1} - X_{2})^{2}, \frac{1}{2}(X_{1} - X_{3})^{2}\right) = \frac{1}{4}\left[E(X_{1} - X_{2})^{2}(X_{1} - X_{3})^{2}\right] - \left[E((X_{1} - EX_{1})^{2})\right]^{2} = \frac{1}{4}\left\{E((X - EX)^{2})^{2} - \left[E(X - EX)^{2}\right]^{2}\right\} = \frac{1}{4}\operatorname{Var}((X - EX)^{2}),$$
(2)

$$\tau_2^2 = \text{Var}\left(\frac{1}{2}(X_1 - X_2)^2\right) = \frac{1}{4}E(X_1 - X_2)^4 - [E(X_1 - EX_1)^2]^2 =$$

$$\frac{1}{2} \text{Var}((X - EX)^2) + [E(X - EX)^2]^2.$$
 (3)

又因为 $EX^4 < \infty$,所以 $\sigma_2^2 < \infty$,相比较有 $0 = \tau_0^2 < \tau_1^2 \le \tau_2^2 < \infty$.

2 U_n 的大样本性质

定理 $\mathbf{1}^{[5]}$ U_n 是 σ^2 的一致最小方差无偏估计(UMVUE),且在几乎处处意义下是唯一的.

定理 $\mathbf{2}^{[5]}$ 设随机变量 X_1, X_2, \cdots, X_n 是来自 F(x) 的简单样本, U_n 是 σ^2 的 U 统计量,其核为 $h(X_1, X_2)$,且有 $Eh(X_1, X_2)^2 < + \infty$,则 $\lim_{n \to \infty} n \operatorname{Var} U_n = 4\tau_1^2$,即 U_n 均方收敛于 σ^2 ,从而有 $U_n \stackrel{p}{\longrightarrow} \sigma^2$.

定理 $\mathbf{3}^{[5]}$ 如果 $Eh^2(X_1, X_2) < \infty$,且 $\tau_1^2 > 0$,则当 $n \to \infty$ 时,有 $\sqrt{n}(U_n - \sigma^2) \xrightarrow{L} N(0, 4\tau_1^2)$.

3 元的估计

根据 U_n 的渐近正态性,可对假设进行大样本近似检验,但由于 τ_1^2 与 F 有关,是未知的,不能直接进行假设检验,因此,需利用样本 $X_1, X_2 \cdots, X_n$ 对 τ_1^2 给出一个相合估计 $\hat{\tau}_1^{2[6]}$,根据式(2),有

$$4\tau_1^2 = \text{Var}((X - EX)^2) = E(X - EX)^4 - [E(X - EX)^2]^2 = E(X - \mu)^4 - (\sigma^2)^2.$$

根据大数定律和 Slutsky 定理,因为 $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^4\stackrel{p}{\longrightarrow}E(X-\mu)^4$, $S_n^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})\stackrel{p}{\longrightarrow}\sigma^2$,所以若令

$$4\hat{\tau}_{1}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{4} - \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \right]^{2} = A_{4} - (S_{n}^{2})^{2},$$
 (4)

则 $4\hat{\tau}_1^2 = A_4 - (S_n^2)^2 \xrightarrow{p} 4\tau_1^2$,再根据 Slutsky 定理知, $\sqrt{n}(U_n - \sigma^2) \xrightarrow{L} N(0, 4\hat{\tau}_1^2)$.

4 假设检验

对于 H_0 : $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 > \sigma_0^2$, 在 H_0 成立时, 取 $T_n = \sqrt{n}(U_n - \sigma_0^2)/\sqrt{4\hat{\tau}_1^2}$, 对于给定的显著性水

平 α , 拒绝域为 $W = \{(X_1, X_2 \cdots, X_n) \mid T_n \ge u_{1-\alpha}\}$, 其中 $u_{1-\alpha} \not = N(0,1)$ 下侧 $1-\alpha$ 分位数,同理,另一种 单侧检验和双侧检验均可类似求出.

5 检验的渐近相对效率

给出一个总体分布方差的 U 统计量检验方法,自然要研究其功效,但由于其备择假设不是简单假设,较复杂,求其功效较困难,此时可以与已知该类问题的典型方法进行比较,因此,需要求出比较它们优劣的 Pitman 渐近相对效率[7-8].

因为 χ^2 检验法是最典型的一个正态总体分布方差的参数假设检验方法, 所以应与 χ^2 检验法进行比较.

5.1 χ² 检验法

引理1 $\chi^2(n-1)$ 可用正态分布近似, 其关系式为 $\chi^2(n-1)-(n-1)$ $\xrightarrow{L} N(0,1)$, 其中: $E\chi^2(n-1)=(n-1)$; $D\chi^2(n-1)=2(n-1)$.

当 $X \sim N(\mu, \sigma^2)$ 时,从X中抽取 X_1, X_2, \cdots, X_n 。令 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,则 $\chi^2 = \frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1).$

欲检验 H_0 : $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 > \sigma_0^2$. 当 H_0 成立时, $\chi^2 = \frac{(n-1)S_n^2}{\sigma_0^2} \sim \chi^2(n-1)$,给定显著性水平 α ,则检验的 拒绝 域 $W = \{\chi^2 \geq \chi_{1-\alpha}^2 (n-1)\}$. 由引理 1 知, χ^2 检验的大样本近似拒绝域为 $W = \left\{\frac{\chi^2(n-1) - (n-1)}{\sqrt{2(n-1)}} \geq u_{1-\alpha}\right\}.$

5.2 本文检验法与 χ^2 检验的渐近相对效率比较 若设 $\theta = \sigma^2 - \sigma_0^2$,则原假设和备择假设可变为 $H_0: \theta = 0$ vs $H_1: \theta > 0$.

1) 当
$$\chi^2$$
 检验法在 H_0 成立时,其检验统计量为 $\chi^2 = \frac{(n-1)S_n^2}{\sigma_0^2} \sim \chi^2(n-1)$. 若 $n \to \infty$,则
$$\frac{\chi^2(n-1) - (n-1)}{\sqrt{2(n-1)}} = \frac{(n-1)S_n^2/\sigma_0^2 - (n-1)}{\sqrt{2(n-1)}} = \sqrt{\frac{n-1}{2}} \left(\frac{S_n^2 - \sigma_0^2}{\sigma_0^2}\right) \xrightarrow{L} N(0,1),$$

其近似拒绝域为 $W = \left\{ \sqrt{\frac{n-1}{2}} \left(\frac{S_n^2 - \sigma_0^2}{\sigma_0^2} \right) \geqslant u_{1-\alpha} \right\}.$

计算功效的参数 θ 与样本容量有关,而且样本容量 n 越大,计算功效的参数与原假设即原点 0 越接近. 因此,取一个参数序列 $\theta_1 \ge \theta_2 \ge \cdots \ge \theta_n \ge \cdots > 0$,其中 $\theta_n = \frac{\delta}{\sqrt{n}} = \sigma_n^2 - \sigma_0^2$, $\delta > 0$. 显然 n 越大, θ_n 越接近于原点 θ ,且当 $n \to \infty$ 时, $\theta_n \to 0$.

下面计算在参数 θ_n 处的功效,并使得该功效等于给定的 β . 即在备择假设成立时计算概率 $P\left\{\sqrt{\frac{n-1}{2}}\left(\frac{S_n^2-\sigma_0^2}{\sigma_0^2}\right)\geqslant u_{1-\alpha}\right\}$. 当备择假设成立时, $\sqrt{\frac{n-1}{2}}\left(\frac{S_n^2-\sigma_n^2}{\sigma_n^2}\right) \xrightarrow{L} N(0,1) (n \to \infty)$.

对于任意给定的 β ,有

$$\beta = P\left\{ \sqrt{\frac{n-1}{2}} \left(\frac{S_n^2 - \sigma_0^2}{\sigma_0^2} \right) \geqslant u_{1-\alpha} \right\} = P\left\{ \sqrt{\frac{n-1}{2}} \left(\frac{S_n^2 - \sigma_n^2 + \sigma_n^2 - \sigma_0^2}{\sigma_n^2} \cdot \frac{\sigma_n^2}{\sigma_0^2} \right) \geqslant u_{1-\alpha} \right\}.$$

当 $\theta_n \to 0$ 时, $\sigma_n^2 \to \sigma_0^2$, $\sigma_n^2 / \sigma_0^2 \to 1$, $\sqrt{n-1} / \sqrt{n} \to 1$,根据 Slutsky 定理的"去 0 律"和"去 1 律",有 $\sqrt{\frac{n-1}{2}} \cdot \left(\frac{S_n^2 - \sigma_n^2}{\sigma^2} + \frac{\sigma_n^2 - \sigma_0^2}{\sigma^2}\right) \left(\frac{\sigma_n^2}{\sigma_n^2}\right) = \sqrt{\frac{n-1}{2}} \cdot \left(\frac{S_n^2 - \sigma_n^2}{\sigma^2}\right) \left(\frac{\sigma_n^2}{\sigma_n^2}\right) + \frac{\sqrt{n-1}}{D} \left(\frac{\theta_n}{\sigma_n^2}\right) \stackrel{L}{\longrightarrow} N \left(\frac{\delta}{D\sigma_n^2}, 1\right),$

从而当
$$n \to \infty$$
 时,由 $\beta = P\left\{\left(\begin{array}{c} \sqrt{\frac{n-1}{2}} \cdot \frac{S_n^2 - \sigma_0^2}{\sigma_0^2}\right) \geqslant u_{1-\alpha}\right\}, \ \ \ \, \bar{l} \ u_{1-\alpha} - \frac{\delta}{\sqrt{2} \cdot \sigma_0^2} = u_{1-\beta}. \ \ - 般地,水平 α 较小$

时,功效 β 较大,故 $u_{1-\alpha} > 0$, $u_{1-\beta} < 0$,所以 $n_{\chi^2} = \frac{2\sigma_0^4(u_{1-\alpha} - u_{1-\beta})^2}{\theta^2}$. 在参数 θ 接近原点 θ 时,为了使其功效达到 β , χ^2 检验需要的样本容量为 n_{χ^2} .

2) U 统计量检验法. 当 H_0 在成立时,其检验统计量为 $T_n = \frac{U_n - \sigma_0^2}{\sqrt{\operatorname{Var} U_n}} \sim N(0,1) (n \to \infty)$,近似拒

绝域为 $W = \left\{ \frac{U_n - \sigma_0^2}{\sqrt{\text{Var } U_n}} \geqslant u_{1-\alpha} \right\}$. 下面计算在参数 θ_n 处的功效,并使得该功效等于给定的 β . 即在备择

假设成立时计算概率
$$P\left\{\frac{U_n - \sigma_0^2}{\sqrt{\operatorname{Var} U_n}} \ge u_{1-\alpha}\right\}$$
. 当备择假设成立时, $\frac{U_n - \sigma_n^2}{\sqrt{\operatorname{Var} U_n}} \sim N(0,1)$,则

$$\beta = P\left\{\frac{U_n - \sigma_0^2}{\sqrt{\operatorname{Var}\,U_n}} = \frac{U_n - \sigma_n^2}{\sqrt{\operatorname{Var}\,U_n}} + \frac{\sigma_n^2 - \sigma_0^2}{\sqrt{\operatorname{Var}\,U_n}} \geqslant u_{1-\alpha}\right\} = P\left\{\left(\frac{U_n - \sigma_n^2}{\sqrt{\operatorname{Var}\,U_n}} + \frac{\delta/\sqrt{n}}{\sqrt{4\hat{\tau}_n^2/n}}\right) \geqslant u_{1-\alpha}\right\} = P\left\{\left(\frac{U_n - \sigma_n^2}{\sqrt{\operatorname{Var}\,U_n}} + \frac{\delta}{2\hat{\tau}_1}\right) \geqslant u_{1-\alpha}\right\}.$$

因为 $\frac{U_n - \sigma_n^2}{\sqrt{\operatorname{Var} U_n}} + \frac{\delta}{2\hat{\tau}_1} \sim N\left(\frac{\delta}{2\hat{\tau}_1}, 1\right)$,所以当 $n \to \infty$ 时, $\beta = P\left\{N\left(\frac{\delta}{2\hat{\tau}_1}, 1\right) \geqslant u_{1-\alpha}\right\}$, $u_{1-\beta} = u_{1-\alpha} - \frac{\delta}{2\hat{\tau}_1}$,当总体为正态分布时,

$$4\hat{\tau}_{1}^{2} = \operatorname{Var}((X - EX)^{2}) = E(X - EX)^{4} - [E(X - EX)^{2}]^{2} = 3\sigma_{0}^{4} - 2\sigma_{0}^{4} = \sigma_{0}^{4},$$

$$\frac{\delta}{\sqrt{2\sigma_{0}^{4}}} = u_{1-\alpha} - u_{1-\beta}, \quad \delta^{2} = 2\sigma_{0}^{4}(u_{1-\alpha} - u_{1-\beta})^{2}, \quad n_{U_{n}} = \frac{2\sigma_{0}^{4}(u_{1-\alpha} - u_{1-\beta})^{2}}{\theta^{2}}.$$

当参数 θ 接近原点时,为使其功效达到 β , U 统计量检验法需要的样本容量为 n_{U_n} . 由 $\lim_{n\to\infty}(n_{\chi^2}/n_{U_n})=1$ 知,当总体为正态分布时,U 统计量检验法与 χ^2 检验法的渐近相对效率为 1.

综上可见: 当总体服从正态分布时, 本文构造的 U 统计量检验与 χ^2 检验法具有相同的功效; 本文构造的 U 统计量检验与 χ^2 检验法相比适合于 4 阶矩存在的总体更加宽泛的场合, 因此, 它是一种检验单个总体方差差异的实用方法.

参考文献

- [1] WANG Fang, CHENG Shi-hong. Almost Sure Central Limit Theorems for *U*-Statistics [J]. Chinese Annals of Mathematics: Ser A, 2003, 24(6): 735-742. (王芳,程士宏. *U*-统计量的几乎处处中心极限定理 [J]. 数学年刊: A 辑, 2003, 24(6): 735-742.)
- [2] WANG Fang, CUI Heng-jian, JIN Jiao. Symmetric Center Test by Using *U*-Statistics [J]. Journal of Beijing Normal University: Natural Science, 2009, 45(1): 17-21. (王芳, 崔恒建, 金蛟. 分布对称中心的 *U* 检验方法 [J]. 北京师范大学学报: 自然科学版, 2009, 45(1): 17-21.)
- [3] Bentkus Vidmantas, JING Bing-yi, ZHOU Wang. On Normal Approximations to *U*-Statistics [J]. Annals of Probability, 2009, 37(6); 2174-2199.
- [4] Dehling H, Wendler M. Central Limit Theorem and the Bootstrap for *U*-Statistics of Strongly Mixing Data [J]. Journal of Multivariate Analysis, 2010, 101(1): 126-137.
- [5] 孙山泽. 非参数统计讲义 [M]. 北京: 北京大学出版社, 2000: 29-41.
- [6] 陈希孺. 数理统计引论 [M]. 北京: 科学出版社, 2007: 82-95.
- [7] 王静龙, 梁小筠. 非参数统计分析 [M]. 北京: 高等教育出版社, 2006: 154-155.
- [8] SONG Li-xin, ZHAO Zhi-wen, CHEN Kun. *U*-Statistics Testing Method in Testing the Equality of Two Population Means [J]. Journal of Jilin University: Science Edition, 2010, 48(6): 957-960. (宋立新, 赵志文, 陈鲲. 两总体分布均值相等的 *U* 统计量检验法 [J]. 吉林大学学报: 理学版, 2010, 48(6): 957-960.)