乙酰苯胺分子的拉曼、红外光谱和简正振动分析

梁会琴1,陶亚萍1,韩礼刚1,韩运侠1,莫育俊1,2

1. 洛阳师范学院物理与电子信息学院,河南洛阳 471022

2. 河南大学物理与电子学院,光学与光电子技术研究所,河南开封 475004

摘 要 分别在 3 500~50 和 3 500~600 cm⁻¹范围内实验测量了乙酰苯胺(ACN)分子的拉曼和红外光谱。 运用密度泛函理论(DFT)采用 B3LYP 混合泛函和 6-311G(d, p)基函数组,计算了该分子的平衡构型和振动 频率。结果表明:理论计算的分子最优化构型参数与以往文献报道的实验数据吻合,优于以往由 6-31G(d) 基函数组计算得到的参数;理论计算的振动频率值和本实验的观测值吻合得较好。运用简正振动分析方法 得到了 ACN 分子各振动频率的势能分布(PED),对 ACN 分子的振动频率归属做出了全面、准确指认。

关键词 乙酰苯胺; 拉曼和红外光谱; 简正振动分析; 频率归属 中图分类号: O657.3 文献标识码: A DOI: 10.3964/j.issn.1000-0593(2012)10-2706-04

引 言

乙酰苯胺(Acetanilide, ACN, C₈H₉NO)是磺胺类药物 的原料,常用作止痛剂、退热剂、防腐剂和染料中间体。 ACN 及其衍生物还是研究除草剂、多肽甚至自然蛋白质的 物理化学性质常用的模型体系^[1-4]。不少早期的文章报道了 ACN 分子的结构、性质和振动光谱^[3-5],但在这些报道中没 有关于 ACN 分子振动光谱全面的归属和指认。

密度泛函理论(density functional theory, DFT)近年来 在计算分子几何构型和振动光谱方面得到了广泛的应 用^[6,7]。Caminati等和Binoy等分别用DFT方法计算了ACN 分子的几何构型和振动频率^[6,7],但是仅靠DFT计算难以对 振动频率做出准确地指认。本工作用DFT计算了ACN分子 的几何构型和简正振动频率,并与实验测得的振动光谱频率 (拉曼和红外)进行了对比,运用简正振动分析方法采用 GAR2PED程序^[8]得到了各振动频率的势能分布(potential energy distribution, PED),从而对ACN分子的振动频率归 属做出了全面、准确地指认。研究结果可以提供ACN分子 新的信息,对于深入研究与ACN相关的药物、与生物学问 题以及ACN类化合物除草剂等方面具有重要意义。 光谱测量用法国 Jobin-Yvon 公司生产的 LabRam HR800 型 共焦显微拉曼光谱仪, 50 倍物镜,激发波长为氩离子激光器 的 514.5 nm,到达样品表面的功率为 3 mW,衍射光栅为 1 800 gr•mm⁻¹的闪耀光栅,针孔直径 300 μ m,数据采集时 间为 30 s,数据采集范围为 3 500~50 cm⁻¹。红外光谱是在 美国 Nicolet 公司生产的 NEXUS 670 型傅里叶变换红外光 谱仪上完成的,采用 KBr 压片方法,光谱分辨率约为 2 cm⁻¹,数据采集范围 3 500~600 cm⁻¹。图 1 和图 2 分别为 实验测得的 ACN 分子的拉曼和红外光谱。

Fig. 1 Experimental Raman spectrum of ACN powder

1 实验部分

实验所用的 ACN 粉末为分析纯试剂, 纯度 99%。拉曼

收稿日期: 2011-09-12, 修订日期: 2011-11-16

基金项目:国家自然科学基金项目(10674041)和洛阳市科技发展计划项目(1101041A)资助 作者简介:梁会琴,1956年生,洛阳师范学院物理与电子信息学院教授 e-mail: huiqinliang@yeah.net

Fig. 2 Experimental IR spectrum of ACN powder

2 理论计算

利用 Gaussian 03 程序^[9]包,采用密度泛函 B3LYP 和 6-311G(d, p)基组,计算得到 ACN 分子能量最低的平衡构型 (图 3)。基于此构型,计算出该分子的简正振动频率。以实 验测量的拉曼频率为基准对计算出的频率用Chruszcz等

and atom labeling of ACN

提出的方法^[10]计算出拟合频率。并将计算所得的拉曼活性转换^[11]为拉曼光谱的谱峰强度。

ACN 分子共有 19 个原子, 51 个简正频率。选择了该分子的 66 个内坐标,基于这 66 个内坐标并根据分子的对称性和 Pulay 等提出的方法^[12],构造出了一套共 51 个独立、完备的局域对称坐标 $S_1 \sim S_{51}$ 。最后由 GAR2PED 程序得到每个简正频率在各个对称坐标 S_i 上的势能分布百分比,从而完成各简正频率的归属指认。

3 结果与讨论

3.1 ACN 分子的平衡构型

计算结果显示,除了 CH₃ 基团的 H₁₇和 H₁₈以外,ACN 分子的其他所有原子都位于同一平面内,而 H₁₇和 H₁₈分别 位于该平面的两侧,到该平面的距离为 0.088 00 和0.087 63 nm,这与中子散射实验^[1]所得的结果基本一致。计算的 ACN 分子的所有键长和键角与实验数据^[1]的平均偏差分别 为 0.000 71 nm 和 0.8°,最大偏差分别为 0.002 40 nm 和 2.5°。以上分析表明,所得优化后的几何构型参数可靠。进 一步比较显示,采用 6-311G(d, p) 基函数组要比采用 6-31G*^[8]和 6-31G(d)^[9]计算的结果与实验数据吻合的更好。

3.2 振动频率和归属

表1给出了红外、拉曼实验频率以及计算得到的频率和 势能分布(仅给出了能量占比大于10%的振动模)。将拉曼、 红外频率的实验值分别与拟合频率值进行了对比,得到拉 曼、红外频率实验值与拟合频率的比值分别在0.96~1.04 和0.97~1.01之间,显示计算得到的结果与实验结果吻合 的较好。存在的少许差别可能来自于实际测量样品分子之间 存在有相互作用,而理论模拟的是单分子理想化模型。根据 计算和实验结果,将 ACN 分子的振动频率分为以下几个部 分进行归属和讨论。

Table 1	Calculated and	observed f	frequencies	$(cm^{-1}),$	PED and	assignments

计算值 实验值		金值	执张八左	 	
拟合前	拟合后	红外	拉曼	穷胞灯仰	归馮
3 626w	3 445	3 291w	3 294w	$S_{14}(100)$	N ₇ H ₁₆ 伸缩
3 247sh	3 089	3 136sh	3 100sh	$S_{11}(98)$	C5H15伸缩
3 191s	3 036	3 061sh	3 069m	$S_7(58)S_5(25)S_9(14)$	C_3H_{13} , C_2H_{12} , C_4H_{14} 伸缩
3 176w	3 022		3 059m	$S_5(53)S_9(37)$	C_2H_{12}, C_4H_{14} 伸缩
3 167w	3 013	3 022vw	3 026sh	$S_9(46)S_7(37)S_5(12)$	C_4H_{14} , C_3H_{13} , C_2H_{12} 伸缩
3 147 w	2 995		3 003sh	$S_{3}(89)$	C1H11伸缩
3 116m	2 965	2 975 vw	2 985vw	$S_{18}(52)S_{17}(47)$	CH3 反对称伸缩 A、对称伸缩
3 115m	2 965			$S_{19}(56)S_{17}(25)S_{18}(19)$	CH3 反对称伸缩 B、对称伸缩、反对称伸缩 A
3 042s	2 896	2 929vw	2 929 m	S19(44) S17(28) S18(18)	CH3 反对称伸缩 B、对称伸缩、反对称伸缩 A
1 771m	1 700	1 661s	1.664s	$S_{15}(76)$	C ₈ O9 伸缩
1 646s	1 583	1 596s	1 602s	$S_1(23)S_8(20)$	C_1C_2 , C_4C_5 伸缩
1 636m	1 573	1 553s	1~540w	$S_{10}(16)S_4(16)S_2(15)S_6(14)$	C_5C_6 , C_2C_3 , C_1C_6 , C_3C_4 伸缩
1 558m	1 500	1 499m	1 502sh	$S_{35}(39)S_{13}(13)$	H ₁₆ N7 摇摆 N7C8 伸缩
1 529sh	$1 \ 473$	1 487m	1 489sh	$S_{43}(18)S_{37}(17)S_{39}(12)$	$H_{14}C_4$, $H_{11}C_1$, $H_{12}C_2$ 面内弯曲
1 491sh	1 437			$S_{21}(81)$	CH3 反对称变形 A
1 469m	1 416	1 434s	$1~435 \mathrm{vw}$	$S_{22}(91)$	CH3 反对称变形 B

					续表1
1 467w	1 414			$S_{41}(18)S_{39}(16)S_8(12)S_{35}(12)$	H ₁₃ C ₃ , H ₁₂ C ₂ 面内弯曲 C ₄ C ₅ 伸缩 H ₁₆ N ₇ 摇摆
1 401m	1 352	1 367m	1 368 m	$S_{20}(86)$	CH3 对称变形
1 357 s	1 311	1 320s	1 320s	$S_{45}(22)S_{37}(21)S_{41}(11)$	$H_{15}C_5$, $H_{11}C_1$, $H_{13}C_3$ 面内弯曲
1 338vw	1 293	1 262m	1.265m	$S_{10}(17)S_2(11)$	C5C6 伸缩 C1C6 伸缩
1 266s	1 225	1 228w	1 233s	$S_{12}(21)S_{35}(15)S_2(15)$	C ₆ N ₇ 伸缩 H ₁₆ N ₇ 摇摆 C ₁ C ₆ 伸缩
1 237 vw	1 198		1 206m	$S_{13}(19)S_{12}(14)S_{16}(14)S_{50}(13)$	N ₇ C ₈ , C ₆ N ₇ , C ₈ C ₁₀ 伸缩 O ₉ C ₈ 摇摆
$1\ 204w$	1 167	1 180w	1 176s	$S_{37}(23)S_{45}(20)S_{43}(17)S_{39}(16)$	H ₁₁ C ₁ , H ₁₅ C ₅ , H ₁₄ C ₄ , H ₁₂ C ₂ 面内弯曲
1 183sh	1 147	1 160sh	1 160m	$S_{41}(34)S_{39}(21)S_{43}(19)$	$H_{13}C_3$, $H_{12}C_2$, $H_{14}C_4$ 面内弯曲
1 113vw	1 082	1 081sh	$1 \ 080 \mathrm{sh}$	$S_1(16)S_{41}(15)S_8(14)S_{45}(13)$	C1C2 伸缩 H13C3 面内弯曲 C4C5 伸缩 H15C5 面内弯曲
$1 054 \mathrm{sh}$	1 026			$S_6(28)S_4(28)$	C ₃ C ₄ , C ₂ C ₃ 伸缩
$1 \ 052w$	1 024	1 040w	1 033m	$S_{23}(55)S_{24}(19)S_{51}(16)$	CH3 摇摆 A CH3 摇摆 B O9C8 面外弯曲
1 015m	989	1 013m		$S_{25}(52)S_{24}(21)$	环呼吸 CH3 摇摆 B
1 011s	986	998w	1 001s	$S_{24}(26)S_{25}(18)$	CH3 摇摆 B 环呼吸
1 008m	983		988sh	$S_{44}(39)S_{46}(30)S_{42}(13)S_{28}(12)$	$H_{14}C_4$, $H_{15}C_5$, $H_{13}C_3$ 面外弯曲环折叠
974vw	951	962w	961sh	$S_{40}(47)S_{42}(18)S_{46}(13)S_{38}(11)$	$H_{12}C_2$, $H_{13}C_3$, $H_{15}C_5$, $H_{11}C_1$ 面外弯曲
961vw	939			$S_{16}(29)S_{13}(17)S_{34}(16)S_{50}(12)$	C ₈ C ₁₀ , N ₇ C ₈ 伸缩 C ₆ N ₇ C ₈ 变形 O ₉ C ₈ 摇摆
918vw	898	907w	907 vw	$S_{46}(26)S_{38}(23)S_{42}(19)$	$H_{15}C_5$, $H_{11}C_1$, $H_{13}C_3$ 面外弯曲
846w	830	839sh	838m	$S_{10}(17)S_{12}(15)S_{34}(15)S_{25}(11)$	C ₅ C ₆ , C ₆ N ₇ 伸缩 C ₆ N ₇ C ₈ 变形环呼吸
842vw	827			$S_{38}(46)S_{44}(25)S_{46}(13)$	$H_{11}C_1$, $H_{14}C_4$, $H_{15}C_5$ 面外弯曲
771vw	760	750s	751sh	$S_{28}(30)S_{42}(26)S_{48}(18)$	环折叠 H ₁₃ C ₃ , N ₇ C ₆ 面外弯曲
708vw	701	693s	697vw	$S_{28}(64)S_{40}(15)S_{44}(12)$	环折叠 H ₁₂ C ₂ , H ₁₄ C ₄ 面外弯曲
672w	667	664m	664m	$S_{27}(27)S_{16}(22)S_{50}(13)S_{26}(11)$	环反对称变形 B C ₈ C ₁₀ 伸缩 O ₉ C ₈ 摇摆环反对称变形 A
633vw	630			$S_{26}(56)S_{27}(31)$	环反对称变形 A, B
629w	626		616m	$S_{51}(57)S_{32}(15)S_{23}(12)$	O ₉ C ₈ 面外弯曲 N ₇ C ₈ 扭转 CH ₃ 摇摆 A
541sh	544			$S_{36}(40)S_{48}(15)S_{32}(13)$	H ₁₆ N7, N7C6 面外弯曲 N7C8 扭转
536w	539		532w	$S_{50}(36)S_{27}(16)S_{49}(14)S_{26}(11)$	O ₉ C ₈ 摇摆环反对称变形 B N ₇ C ₈ C ₁₀ 变形环反对称变形 A
514vw	518		510vw	$S_{48}(28)S_{30}(26)$	N ₇ C ₆ 面外弯曲、环反对称扭曲 B
419vw	429		413vw	$S_{29}(63)S_{30}(18)$	环反对称扭曲 A 环反对称扭曲 B
354vw	368		369sh	$S_{47}(44)S_{49}(29)$	C ₆ N ₇ 面内弯曲 N ₇ C ₈ C ₁₀ 变形
339m	354		346m	$S_{49}(19)S_{50}(16)S_{12}(12)$	N7C8C10变形 O9C8 摇摆 C6N7 伸缩
258m	277		276sh	$S_{30}(47)S_{29}(13)$	环反对称扭曲 B 环反对称扭曲 A
175sh	199		178sh	$S_{34}(52)S_{47}(26)S_{49}(15)$	C ₆ N ₇ C ₈ 变形 C ₆ N ₇ 面内弯曲 N ₇ C ₈ C ₁₀ 变形
92s	121		125s	$S_{32}(33)S_{36}(26)S_{48}(12)$	N7C8 扭转 H16N7 面外弯曲 N7C6 面外弯曲
57s	88		91s	$S_{31}(78)$	C ₆ N7 扭转
29s	62			$S_{33}(57)S_{51}(19)$	C8C10扭转 O9C8 面外弯曲

s: strong, m: medium, w: weak, sh: shoulder, vw: very weak

位于 3 445 cm⁻¹(理论计算频率,下同)处的峰是频率最高的峰,它是与分子中 NH 键伸缩有关的振动,这与以往文献报道的 NH 伸缩振动位于 3 500~3 000 cm⁻¹吻合^[13]。1 500 cm⁻¹处的峰对应于 NH 摇摆振动,同时掺杂少量的 CN 伸缩振动。544 cm⁻¹的峰对应 NH 面外弯曲振动,并伴 有 CN 面外弯曲振动。

位于 3 089, 3 036, 3 022, 3 013, 2 995 cm⁻¹处的峰归 属于与六元环相连的 5 个 CH 键的伸缩振动,这与以往文献 报道的芳香烃的 CH 伸缩振动一般在 3 150~3 000 cm^{-1[2]} 范围内基本一致。而与六元环相连的 5 个 CH 键的面内弯曲 振动对应频率为 1 473, 1 414, 1 311, 1 167, 1 147 cm⁻¹。与 六元环相连的 5 个 CH 键的面外弯曲振动对应频率为 983, 951, 898, 827 cm⁻¹。

位于 2 965, 2 964, 2 896 cm⁻¹的峰归属于甲基中的 CH 伸缩振动,这与以往文献中指出的甲基中的 CH 伸缩振动频 率比环中低^[2]的报道相符。位于 1 437, 1 416, 1 352 cm⁻¹处

的峰均属于甲基的变形振动。位于1024,989,986 cm⁻¹处的峰均是与甲基摇摆有关的振动。其中989 cm⁻¹处的峰是拉曼实验强度最大的峰,是环的呼吸振动和甲基面外摇摆振动强烈耦合的振动模式。文献[1,14]也报道了这个峰,频率非常相近,只是他们把这个峰归属为单纯的环呼吸振动,而计算结果显示,甲基摇摆振动也有21%的势能贡献。

位于1583,1573,1293,1082,1026和830 cm⁻¹的峰 主要归属于六元环的 CC 伸缩振动。

701 cm⁻¹的峰归属于六元环的折叠和环上 CH 面外运 动。630 cm⁻¹处的峰主要归属于环变形振动。429 cm⁻¹处的 峰归属于环扭曲振动。

位于 1 700 cm⁻¹处的峰归属于 CO 伸缩振动。539 cm⁻¹ 处的峰主要归属于 CO 摇摆振动。626 cm⁻¹处的峰归属于 CO 面外弯曲振动。

位于1225 cm⁻¹的峰是 N₇C₈, C₆N₇, C₈C₁₀伸缩等振动 耦合的模式, 951 cm⁻¹处的峰是 N₇C₈, C₈C₁₀伸缩、C₆N₇C₈

有重要意义。

理论计算了其平衡构型和简正振动频率。结果表明:理论计

算的分子最优化构型参数与以往文献报道的实验数据吻合,

并且优于以往由计算得到的参数。理论计算出的振动频率值

和本实验的观测值吻合得较好。运用简正振动分析方法得到

了 ACN 分子各振动频率的势能分布(PED), 从而对 ACN 分

子的振动频率归属做出了全面、准确地指认。本工作提供了

ACN 分子新的信息,对于深入研究与 ACN 相关的药物、与 ACN 相关的生物学问题以及 ACN 类化合物除草剂等方面具

变形等振动耦合的模式,121 cm⁻¹处的峰是 N₇C₈ 扭转、H₁₆ N₇ 面外弯曲和 N₇C₆ 面外弯曲振动强烈耦合的振动模式,它 们的特点是简正频率振动不典型,耦合情况复杂。这种情况 在低频部分经常出现。其中 121 cm⁻¹(拉曼实验频率为 125 cm⁻¹)处的峰与 Johnson 等报道的 ACN 分子在室温下位于 126 cm⁻¹处有 1 个强峰^[3]非常吻合,而以往的计算^[6,7]没有 关于这个峰的报道。其他峰的归属详见表 1,不再列举。

4 结 论

实验测量了 ACN 分子的拉曼和红外光谱,用密度泛函

References

- [1] Arjunan V, Mohan S, Subramanian S, et al. Spectrochimica Acta Part A, 2004, 60(5): 1141.
- [2] Arjunan V, Ravindran P, Subhalakshmi K, et al. Spectrochimica Acta Part A, 2009, 74(3): 607.
- [3] Johnson C T, Agnew S F, Eckert J, et al. J. Chem. Phys., 1991, 95: 5281.
- [4] Edler J, Hamm P, Scott A C. Phys. Rev. Lett., 2002, 88(6): 067403.
- [5] Johnson S, Eckert J, Barthes M R. et al. J. Phys. Chem. , 1995, 99: 16253.
- [6] Caminati W, Maris A, Millemaggi A. New J. Chem., 2000, 24: 821.
- [7] Binoy J, Prathima N B, Murali Krishna C, et al. Laser Phys., 2006, 16(8): 1253.
- [8] Martin J M L, Van Alsenoy C. GAR2PED, Computer Software, University of Antwerp, 1995.
- [9] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc. , Pittsburgh PA, 2003.
- [10] Chruszcz K, Baranska M, Lewinski K, et al. Vibrational Spectroscopy, 2003, 32: 199.
- [11] Krishnakumar V, Surumbarkuzhali N, Muthunatesan S. Spectrochimica Acta Part A, 2009, 71(5): 1810.
- [12] Pulay P, Fogarasi G, Pang G, et al. J. Am. Chem. Soc., 1979, 101: 2550.
- [13] Sundaraganesan N, Saleem H, Mohan S, et al. Spectrochimica Acta Part A, 2005, 61(3): 377.

Raman, FTIR Spectra and Normal Mode Analysis of Acetanilide

LIANG Hui-qin¹, TAO Ya-ping¹, HAN Li-gang¹, HAN Yun-xia¹, MO Yu-jun^{1, 2}

- 1. College of Physics and Electronic Information, Luoyang Normal College, Luoyang 471022, China
- Institute of Optics & Photoelectronic Technology, College of Physics and Electronics of Henan University, Kaifeng 475004, China

Abstract The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 $500 \sim 50$ and 3 $500 \sim 600$ cm⁻¹ respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d,p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

Keywords Acetanilide; Raman and FTIR spectra; Normal mode analysis; Frequencies assignments

(Received Sep. 12, 2011; accepted Nov. 16, 2011)