文章编号:1001-5132 (2008) 04-0520-04

Characterizations of the Minus Ordering in Fuzzy Matrix Set

ZHOU Min-na

(College of Science and Technology, Ningbo University, Ningbo 315211, China)

Abstract: The matrix minus ordering is introduced into fuzzy matrix set. The minus ordering is a partial ordering in $F_{m,n}^-$. Some characterizations of the minus ordering are given.

Key words: Fuzzy matrix; minus ordering; characterization

CLC number: O159 **Document code:** A

Let $F_{m,n}$ stand for the set of all $m \times n$ fuzzy matrices. Given $A \in F_{m,n}$, $A\{1\}$ and $A\{2\}$ will denote the sets of all inner and outer inverses of A, specified

$$A\{1\} = \{ X \in F_{nm} \mid AXA = A \}, \tag{1}$$

and

$$A\{2\} = \{X \in F_{n,m} \mid XAX = X\}, \tag{2}$$

write $A\{1,2\} = A\{1\} \cap A\{2\}$. And, A^-, A^- or $A^$ will denote an element in $A\{1\}$ and A^{\wedge} , A^{\vee} or $A^{(1,2)}$ an element in $A\{1,2\}$. Write $F_{m,n}^- = \{A \mid A\{1\} \neq 1\}$ \emptyset , $A \in F_{m,n}$ \}.

Now, we define the minus ordering A - B and the preorder $A \leq B$ in $F_{m,n}$.

Let $A \in F_{m,n}^-$, $B \in F_{m,n}$. The minus ordering A ^{-}B in $F_{m,n}$ is defined as follow:

$$A \xrightarrow{B} \iff A^{-}A = A^{-}B, AA^{=} = BA^{=},$$
 where $A^{-}, A^{=} \in A\{1\}$.

It is clear that A = A, for each $A \in F_{m,n}$. In general, the minus ordering A - B is not a partial ordering in $F_{m,n}$. In section 2, We will prove that the minus ordering A ^{-}B is a partial ordering in $F_{m,n}^{-}$.

Let
$$A \in F_{m,n}$$
. Write

$$AF_{n,n} = \{AX \mid X \in F_{n,n}\}, F_{m,m}A = \{YA \mid Y \in F_{m,m}\}.$$

Let $A, B \in F_{m,n}$. The preorder $A \leq B$ in $F_{m,n}$ is

defined as follow:

 $A^{-}AA^{-}=A^{\wedge}$,

Thus, $A^{\wedge} \in A\{1,2\}$, and

 $A^{=} \in A\{1\}$. Then,

statements are equivalent: (i) A - B.

 $AA^{\wedge}B = A = BA^{\wedge}A$.

 $A^{\wedge}A = A^{\wedge}B$, $AA^{\wedge} = BA^{\wedge}$.

ordering in $F_{m,n}^-$.

following.

$$AA^{\wedge}A = AA^{=}AA^{-}A = AA^{-}A = A,$$

$$A^{\wedge}AA^{\wedge} = A^{=}AA^{-}AA^{=}AA^{-} = A^{=}AA^{=}AA^{-} =$$

(ii) There exists A^{\wedge} in $A\{1,2\}$ such that

(iii) There exists A^{\wedge} in $A\{1,2\}$ such that

Proof (i) \Rightarrow (ii): Set $A^{\wedge} = A^{=}AA^{-}$ where A^{-} ,

 $A \leq B \iff AF_{n,n} \subseteq BF_{n,n}, F_{m,m}A \subseteq F_{m,m}B$.

preorder $A \leq B$ in $F_{m,n}$ is not a partial ordering in $F_{m,n}$. In section 3, by use of this preorder in $F_{m,n}$, we

will discuss some characterizations of the minus partial

Minus partial ordering

It is clear that $A \leq A$, for each $A \in F_{m,n}$. The

In this section, we will prove that the minus ordering is a partial ordering in $F_{m,n}^-$. First, we have the

Theorem 1 Let $A \in F_{m,n}^-$, $B \in F_{m,n}$. The following

(5)

(6)

JOURNAL OF NINGBO UNIVERSITY (NSEE): http://3xb.nbu.edu.cn Received date: 2007-10-18.

$$AA^{\land}B = AA^{=}AA^{-}B = AA^{-}B = AA^{-}A = A$$
,
 $BA^{\land}A = BA^{=}AA^{-}A = BA^{=}A = AA^{=}A = A$.

(ii) holds.

(ii) \Longrightarrow (iii): Since $A^{\wedge} \in A\{1,2\}$, $A^{\wedge}A = A^{\wedge}AA^{\wedge}B = A^{\wedge}B$, $AA^{\wedge} = BA^{\wedge}AA^{\wedge} = BA^{\wedge}$. Then, (iii) holds.

(iii) ⇒ (i): It is clear.

Lemma 1 Let $A \in F_{m,n}^-$, $B \in F_{m,n}$. If A - B, then

- (i) $A \prec B$.
- (ii) There exists A^{\wedge} in $A\{1,2\}$ such that $A = BA^{\wedge}B$, $A^{\wedge} = A^{\wedge}BA^{\wedge}$.

Proof (i) holds clearly by Theorem 1(ii). And, by (6) and (5) in Theorem 1,

$$BA^{\hat{}}B = BA^{\hat{}}A = A, A^{\hat{}}BA^{\hat{}} = A^{\hat{}}AA^{\hat{}} = A^{\hat{}}.$$
 (ii) holds.

Lemma 2 Let $A, B \in F_{m,n}^-$. If A = B, then

- (i) For each $B^- \in B\{1\}$, $AB^-A = A$, $AB^-B = A = BB^-A$.
- (ii) For each $A^{(1,2)} \in A\{1,2\}, B^- \in B\{1\}, B^- BA^{(1,2)} \cdot BB^- \in A\{1,2\}$.
- (iii) There exists A^{\vee} in $A\{1,2\}$ such that $AA^{\vee} = BA^{\vee} = AB^{-}$, $A^{\vee}A = A^{\vee}B = B^{-}A$, $\forall B^{-} \in B\{1\}$.

Proof (i) By Lemma 1(ii), there exists A^{\wedge} in $A\{1,2\}$ such that $A = BA^{\wedge}B$, $A^{\wedge} = A^{\wedge}BA^{\wedge}$. Thus, for each $B^{-} \in B\{1\}$, $AB^{-}A = BA^{\wedge}BB^{-}BA^{\wedge}B = BA^{\wedge}BA^{\wedge}B = BA^{\wedge}B = A$, $A = BA^{\wedge}B = BB^{-}BA^{\wedge}B = BB^{-}A$. Similarly, we have that $A = AB^{-}B$. (i) holds.

(ii) By (i),

$$AB^{-}BA^{(1,2)}BB^{-}A = AA^{(1,2)}A = A$$
,
 $B^{-}BA^{(1,2)}BB^{-}AB^{-}BA^{(1,2)}BB^{-} =$
 $B^{-}BA^{(1,2)}BB^{-}AA^{(1,2)}BB^{-} =$
 $B^{-}BA^{(1,2)}AA^{(1,2)}BB^{-} = B^{-}BA^{(1,2)}BB^{-}$.

That is $B^-BA^{(1,2)}BB^- \in A\{1,2\}, \forall B^- \in B\{1\}$. (ii) holds.

(iii) Set $A^{\vee} = B^{-}BA^{\wedge}BB^{-}$ where A^{\wedge} in Lemma 1(ii). Then, $A^{\vee} \in A\{1,2\}$ by (ii). And, by Theorem 1 (ii) and Lemma 1(ii),

$$AA^{\vee} = AB^{-}BA^{\wedge}BB^{-} = AA^{\wedge}BB^{-} = AB^{-} =$$

 $BA^{\wedge}BB^{-} = BB^{-}BA^{\wedge}BB^{-} = BA^{\vee}$.

Similarly, we can obtain that $A^{\vee}A = B^{-}A = A^{\vee}B$. Thus, (iii) holds.

Lemma 3 Let $A \in F_{m,n}$, $B \in F_{m,n}^-$. Then,

$$A \leq B \iff AB^-B = A = BB^-A, \forall B^- \in B\{1\}.$$
 (7)

Proof " \Rightarrow ": Since $A \leq B$, there exist X in $F_{n,n}$ such that

 $A=BX=BB^-BX=BB^-A, \forall B^-\in B\{1\} \ . \ \ Similarly,$ it is proved that $A=AB^-B \ .$

" \Leftarrow ": Since $A = AB^-B$, for $YA \in F_{m,m}A$, $YA = YAB^-B \in F_{m,m}B$. Thus, $F_{m,m}A \subseteq F_{m,m}B$. Similarly, it is proved that $AF_{n,n} \subseteq BF_{n,n}$. Thus, $A \preceq B$.

Theorem 2 " " is a partial ordering in $F_{m,n}^-$.

Proof Let A = B, B = A where $A, B \in F_{m,n}^-$. If A = B, by Lemma 2(i), $A = BB^-A$ for each $B^- \in B\{1\}$. If B = A, by Theorem 1, there exists $B^+ \in B\{1,2\}$ such that $B = BB^+A$. Then, $A = BB^+A = B$. And, let $A = BB^-A = B$. Where $A, B, C \in F_{m,n}^-$. If A = B, by Lemma 2(iii), there exists $A^+ \in A\{1,2\}$ such that

$$AA^{\vee} = AB^{-}, A^{\vee}A = B^{-}A, \forall B^{-} \in B\{1\}.$$

If B - C, by Theorem 1(iii), there exists $B^{\circ} \in B\{1,2\}$ such that

$$B^{\wedge}C = B^{\wedge}B, CB^{\wedge} = BB^{\wedge}.$$

By Lemma 2(i),

$$(AA^{\vee})C = (AB^{\wedge})C = A(B^{\wedge}C) = AB^{\wedge}B =$$

 $A = BB^{\wedge}A = CB^{\wedge}A = CA^{\vee}A$,

and Lemma 2(i). Thus, A = C by Theorem 1. Therefore, " is a partial ordering in $F_{m,n}^-$.

2 Characterizations of the minus ordering

In this section, we discuss only fuzzy matrices in $F_{m,n}^-$.

Theorem 3 Let $A, B \in F_{m,n}^-$. The following statements are equivalent:

- (i) A B.
- (iv) There exists A^{\vee} in $A\{1,2\}$ such that $AA^{\vee} = BA^{\vee} = AB^{-}$, $A^{\vee}A = A^{\vee}B = B^{-}A$, $\forall B^{-} \in B\{1\}$.
 - (v) There exists A^{\vee} in $A\{1,2\}$ such that $AA^{\vee} BB^{(1,2)}$, $A^{\vee}A B^{(1,2)}B$ and $BA^{\vee}B =$

- $A = AB^{(1,2)}A, \ \forall B^{(1,2)} \in B\{1,2\}.$
- (vi) There exists A^{\vee} in $A\{1,2\}$ such that $AA^{\vee} \preceq^{-}$ $BB^{(1,2)}$, $A^{\vee}A$ $^{-}B^{(1,2)}B$ and $A = AB^{-}A$, $\forall B^{-} \in B\{1\}$.
- (vii) There exists $X \in F_{n,m}$ such that A = BXB, $B\{1\} \subseteq A\{1\}$.
 - (viii) $A \leq B$ and $B\{1\} \subseteq A\{1\}$.
 - (ix) $A \leq B$ and $A\{1\} \cap B\{1\} \neq \emptyset$.
- (x) For all $B^-, B^-, B^{(1)} \in B\{1\}$, $AB^-B = BB^-A = A = AB^{(1)}A$.
- (xi) There exist an idempotent fuzzy matrix $E_m \in F_{m,m}$ and an idempotent fuzzy matrix $E_n \in F_{n,n}$ such that $E_m B = A = B E_n$.
- (xii) There exist an idempotent fuzzy matrix $E_m \in F_{m,m}$ and $D \in F_{n,n}$ such that $E_m B = A = BD$.
- (xiii) There exist $C \in F_{m,m}$ and $D \in F_{n,n}$ such that CA = CB = A = BD.
- (xiv) There exist $C \in F_{m,m}$ and an idempotent fuzzy matrix $E_n \in F_{n,n}$ such that $CB = A = BE_n$.
- (xv) There exist $C \in F_{m,m}$ and $D \in F_{n,n}$ such that CB = A = AD = BD.
- (xvi) There exist $C \in F_{m,m}$ and $D \in F_{n,n}$ such that CB = CA = A = AD = BD.

Proof (i) \Rightarrow (iv): It is clear by Lemma 2(iii).

(iv) \Rightarrow (v): There exists A^{\vee} in $A\{1,2\}$ such that $A = AA^{\vee}A = AB^{(1,2)}A, \forall B^{(1,2)} \in B\{1,2\}$. And $BA^{\vee}B = BB^{(1,2)}A = BA^{\vee}A = AA^{\vee}A = A$.

Also, we have that

$$AA^{\vee}BB^{(1,2)} = AB^{(1,2)}BB^{(1,2)} = AB^{(1,2)} =$$

 $AA^{\vee} = BA^{\vee} = BB^{(1,2)}BA^{\vee} = BB^{(1,2)}AA^{\vee}.$

Since AA^{\vee} is idempotent, $AA^{\vee} \in (AA^{\vee})\{1\}$. Write $(AA^{\vee})^- = AA^{\vee}$. Then,

$$(AA^{\vee})(AA^{\vee})^{-} = AA^{\vee} = BB^{(1,2)}AA^{\vee} = (BB^{(1,2)})(AA^{\vee})^{-},$$

 $(AA^{\vee})^{-}(AA^{\vee}) = AA^{\vee} = AA^{\vee}BB^{(1,2)} = (AA^{\vee})^{-}BB^{(1,2)}.$

That is, $AA^{\vee} = BB^{(1,2)}$. Similarly, we have that $AA^{\vee} \prec B^{(1,2)}$. Thus, (v) holds.

- (v) \Rightarrow (vi): $\forall B^- \in B\{1\}$, $A = AB^{(1,2)}A = BA^{\vee}B \cdot B^{(1,2)}BA^{\vee}B = BA^{\vee}BB^-BA^{\vee}B = AB^-A$. Thus, (vi) holds.
- (vi) \Rightarrow (vii): Since $BB^{(1,2)}$ is idempotent and $AA^{\vee} BB^{(1,2)}$ by Lemma 2(i),

$$AA^{\vee} = BB^{(1,2)}(BB^{(1,2)})^{-}AA^{\vee} = BB^{(1,2)}AA^{\vee}.$$

Thus, $A = AA^{\vee}A = BB^{(1,2)}AA^{\vee}A = BB^{(1,2)}A$.

Similarly, we can prove that $A = AB^{(1,2)}B$. Therefore,

$$A = AA^{\vee}A = BB^{(1,2)}AA^{\vee}AB^{(1,2)}B =$$

 $BB^{(1,2)}AB^{(1,2)}B = BXB$.

where $X = B^{(1,2)}AB^{(1,2)} \in F_{n,m}$. And, $A = AB^{-}A$, $\forall B^{-} \in B\{1\}$. Thus, $B\{1\} \subseteq A\{1\}$. Then, (vii) holds.

- (vii) \Rightarrow (viii): Since A = BXB, it is clear that $A \leq B$ by (6). (viii) holds.
 - (viii) \Rightarrow (ix): It is clear.
- (ix) \Rightarrow (x): By Lemma 3, since $A \leq B$, $AB^-B = A = BB^-A$, $\forall B^-, B^- \in B\{1\}$. Since $A\{1\} \cap B\{1\} \neq \emptyset$, there exist $B^- \in A\{1\} \cap B\{1\}$ such that $A = AB^-A = AB^-BB^-BB^-A = AB^-BB^{(1)}BB^-A = AB^{(1)}A$, $\forall B^{(1)} \in B\{1\}$. Thus, (x) holds.
- (x) \Rightarrow (xi): In $AB^-B = BB^-A = A$, set $AB^- = E_m$, $B^-A = E_n$. Since $AB^-A = A$, E_m and E_n are idempotent. Thus, (xi) holds.
 - (xi) \Rightarrow (xii): It is clear.
- (xii) \Rightarrow (xiii): Set $C = E_m$, then $CA = E_m E_m B = E_m B = CB = A = BD$. Thus, (xiii) holds.
- (xiii) \Rightarrow (xiv): $A = AA^-A = BDA^-A, A^- \in A\{1\}$. Set $X = DA^-A \in F_{n,n}$, Then,

$$X^2 = DA^-ADA^-A = DA^-CBDA^-A = DA^-CAA^-A = DA^-A = X$$
.

Thus, $CB = A = BE_n$ where $E_n = X$. Therefore, (xiv) holds.

- (xiv) \Rightarrow (xv): Similar to the proof of "(xii) \Rightarrow (xiii)".
- (xv) \Rightarrow (xvi): CA = CAD = CBD = AD = A. (xvi) holds.
- (xvi) \Longrightarrow (i): Let $A^{(1,2)} \in A\{1,2\}$, Write $A^{\vee} = A^{(1,2)}C$. Then,

$$AA^{\vee}A = AA^{(1,2)}CA = AA^{(1,2)}CBD =$$

$$AA^{(1,2)}AD = AD = A,$$

$$A^{\vee}AA^{\vee} = A^{(1,2)}CAA^{(1,2)}C = A^{(1,2)}CBDA^{(1,2)}C =$$

$$A^{(1,2)}ADA^{(1,2)}C = A^{(1,2)}AA^{(1,2)}C = A^{(1,2)}C = A^{(1$$

That is, $A^{\vee} \in A\{1, 2\}$. And, $AA^{\vee}B = AA^{(1,2)}CB = AA^{(1,2)}A = A$. Then, $A^{\vee}A = A^{\vee}AA^{\vee}B = A^{\vee}B$.

Set $A^{\wedge} = DA^{(1,2)}$. Similarly, we have $A^{\wedge} \in A\{1,2\}$ and $AA^{\wedge} = BA^{\wedge}$. Thus, $A^{-}B$. Therefore, (i) holds.

Corollary 1 Let $A, B \in F_{m,n}^-$.

- (i) If $BB^- = I_m, B^- \in B\{1\}$, $A^- B \iff AB^- \cdot A = A = AB^-B$.
- (ii) If $B^-B=I_n, B^-\in B\{1\}$, A $^-B\Longleftrightarrow AB^-\cdot A=A=BB^-A$.
 - (iii) If B^{-1} exists, $A \xrightarrow{-} B \iff AB^{-1}A = A$.

Corollary 2 Let $A, B \in F_{m,n}^+$. Then, the following statements are equivalent:

- (i) A B.
- (ii) $AB^{+}A = AB^{+}B = A = BB^{+}A$.
- (iii) $AB^+B = A = BB^+A$, and B^+A and AB^+ are idempotent.

(iv) $BAB^+ = A = B^+AB$, and B^+A and AB^+ are idempotent.

References:

- Baksalary J K, Pukelsheim S F, Styan P H. Some properties of matrix partial orderings[J]. Linear Algebra Appl, 1989, 119:57-85.
- [2] Cen Jianmiao. On generalized inverses of fuzzy matrices [J]. Fuzzy System and Math, 1991, 5:66-75.
- [3] Cen Jianmiao. Fuzzy matrix partial orderings and generalized inverses[J]. Fuzzy Sets and Systems, 1999, 105:453-458.

Fuzzy 矩阵集中减序的特征刻划

周敏娜

(宁波大学 科学技术学院,浙江 宁波 315211)

摘要:在 Fuzzy 矩阵集中引进 Fuzzy 矩阵减序,减序是 $F_{m,n}^-$ 中的偏序. 给出了 Fuzzy 矩阵减序的一些特征 刻划.

关键词:Fuzzy 矩阵;减序;特征刻划

中图分类号: O159 文献标识码: A

(责任编辑 史小丽)