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Abstract: Fish are able to make good use of vortices. In a complex flow field, many fish continue to maintain 
both efficient cruising and maneuverability. Traditional man-made propulsion systems perform poorly in 
complex flow fields. With fish-like propulsion systems, it is important to pay more attention to complex flow 
fields. In this paper, the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was 
investigated. The flapping-foil heaved and pitched under the influence of inflow vortices generated by an 
oscillating D-section cylinder. A numerical simulation was run based the finite volume method, using the 
computational fluid dynamics (CFD) software FLUENT with Reynolds-averaged Navier-Stokes (RANS) 
equations applied. In addition, dynamic mesh technology and post processing systems were also fully used. 
The calculations showed four modes of interaction. The hydrodynamic performance of flapping-foils was 
analyzed and the results compared with experimental data. This validated the numerical simulation, confirming 
that flapping-foils can increase efficiency by absorbing energy from inflow vortices. 
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1 Introduction1 
When fish swims, vortices are generated from fish body. 
These vortices affect the propulsive performance of fish tail 
largely. In the study of fish-like propulsion systems, the fish 
tail is simplified as a rigid or flexible flapping-foil. So it’s 
important to study the propulsive performance of 
flapping-foil in the complex flow field.  

 
Streitlien and Triantafyllou (1996) applied potential method 
to study the performance of a 2D flapping-foil in the flow 
field in the influence of point vortices. He found that the 
flapping-foil could absorb the energy of vortices so that the 
propulsive efficiency was increased. Gopalkrishnan et 
al.(1994) made an experiment on the flapping-foil which was 
in the Karman vortex street. Interaction modes between 
inflow vortices and vortices generated by flapping-foil 
motion were obtained in the experiment. The propulsive 
efficiencies of different modes were also analyzed. Beal DN’s 
experiment indicated that the flapping-foil could absorb 
energy from income vortices to strengthen the thrust force. 
Liao et al.(2004) conducted an investigation in force 
characteristics of a stationary foil in the wake of a stationary 
circular cylinder. It is found that a preferred vortex shedding 
frequency of the foil is synchronized with that of the circular 
cylinder. 
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In this paper CFD method was used to analyze the 
hydrodynamic performance of 2-D flapping-foil in the 
influence of inflow vortices. Interaction modes between 
inflow vortices and generated vortices were obtained. The 
performance in different modes was analyzed and compared. 

 
The D-section cylinder was used as a vortex generator. Many 
researchers including Bearman(1984), Sarpkaya(1979),. 
Stansby (1976) and Williamson(1988) have studied 
oscillating cylinders. Few people have studied D-section 
cylinders. Simmon studied the turbulent wake of a D-section 
cylinder. He found that the wake is well organized staggered 
array of oppositely signed vortices. 

 
A number of studies have been experimentally and 
numerically performed on the flapping-foil. Triantafyllou 
experimentally proved that the wake structure of flapping-foil 
make influence on the hydrodynamic performance. Laura 
studied the wake structure of flapping-foil by means of the 
numerical solution of the vorticity equation. Wang studied the 
problem by means of incompressible 2-D Navier-Stokes 
equation. 
 
2 Calculation model  
In this paper, the performance of flapping-foil in the influence 
of inflow vortices was studied. Inflow vortices were 
generated by an oscillating D-section cylinder in the front of 
flapping-foil. The interaction mode between inflow vortices 
and foil vortices was controlled by distance from center of the 
D-section cylinder to pivot point of the flapping-foil. 
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2.1 The motion of the model 
The D-section cylinder’s motion is described as below: 

( )sin 2πd dy A f t=                         (1) 

 
 
 

 
 

Fig.1 The cylinder-foil tandem motion in one cycle 
 

In the formula (1), dA represents the amplitude of heave 

translation. df  represents the frequency of heave 
translation. The flapping-foil’s motion is described as 
below: 

( )
( )0

sin 2π

sin 2π
fy A ft

ftθ θ ϕ

=

= +
                     (2) 

 
In the formula (2), fA represents the amplitude of heave 

translation, 0θ represents the amplitude of pitch rotation, 

f represents the frequency of flapping motion. ϕ  
represents the phase angle of flapping motion between 
heave translation and pitch rotation.    

 
In the cylinder-foil tandem arrangements, 

df AA =  , ff d = , 1 2πϕ = . The cylinder-foil tandem 

motion in one cycle is shown in Fig.1. 
 

2.2 Important dimensionless numbers of the model 
There are two dimensionless numbers which have influence 

on the hydrodynamic performance of flapping-foil: 
ref
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dRe is the Reynolds number of D-section cylinder. d 
represents the diameter of D-section cylinder, Vref  the 
inflow velocity, υ  the motion viscosity coefficient of 
water, σ  the distance between the center of D-section 
cylinder and the pivot point of flapping foil, and T is the 
motion cycle.  

 
The dimensionless numbers which represent the 
hydrodynamic performance of flapping-foil are described as 
below: 
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Cx represents the thrust force coefficient, Cy the lateral force 
coefficient, Cm the moment coefficient, the leading edge of 
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flapping-foil is set as pivot point. C0 represents the length of 
chord. ρ is the density of water. 

 
The propulsive efficiency of flapping-foil used by Yang L et 
al. is described as below: 
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3 Calculation method  
3.1 The numerical method 
In this paper, 2D incompressible Reynolds-Averaged 
Navier-Stokes equation based on finite volume method 
referenced by Wang’s book was applied. The whole 
computing area was divided into different patches. UDF 
programs were used to describe the motion of the model. 
SIMPLE arithmetic was applied. The sstk   ω−  two 
equations turbulence model was used. 
 
The 2D dynamic triangular unstructured mesh based on 
spring method was applied. The mesh around D-section 
cylinder and foil should be denser in order to obtain the 
interaction process between inflow vortices and foil vortices. 
The time step must be small enough for the demand of 
dynamic mesh. 
 
3.2 The validation of numerical method 
 
3.2.1 D-section cylinder’s motion 

 
Fig.2 Vortices generated by D-section cylinder motion 

 
Vortices are generated and shedding into downstream 
continually, which is shown in Fig.2. Vortices which are like 
Karman Vortex Street are clockwise in one side and counter 
clockwise in another side. Vortices in the same direction are 
distributed with approximately the same spacing along x 
axis direction. Vortices in different directions are distributed 
with approximately the same spacing along y axis direction. 
As the distance between D-section cylinder and the vortex is 
larger, the vortex decreases continually. In the computing 

process, the quality of vortices is excellent downstream 
away, nearly 8d from D-section cylinder. Considering the 
cylinder-foil tandem motion, the flapping-foil is always less 
than 8d from D-section cylinder. So the D-section cylinder 
could be used as a vortex-generator. 

 
The diameter of cylinder, d=1.91cm. Inflow velocity, Vref 
=2.82cm/s. The Reynolds number of cylinder, Red=540. The 

dimensionless amplitude
d
A

a d2
= , the dimensionless space 

between vortices in the same direction
TV

ss
ref ⋅

= , the 

dimensionless space between vortices in different directions, 

d
hh = . 

 
The calculation results compared with experimental result 

obtained from Anderson are shown in Figs.3~5 in three 
conditions of a from 1.0 to 3.0 by 1.0 with the same f=0.5.  
 
 

 
Fig.3 The mean drag force coefficient varies with a 

 
 

 
Fig.4 h varies with a 
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Fig.5 s varies with a 

Comparing with the experimental data, the trends of the 
curves are nearly the same.  

 
3.2.2 The cylinder-foil tandem motion 

 
Fig.6 The flapping-foil motion with inflow vortices 

 
The calculation done by Song validates the numerical 
method. The cylinder-foil tandem motion is shown in Fig.6. 
The calculation results compared with experimental data are 
shown in Fig.7 in four conditions of σ from 0.75 to 1.0 by 
0.25 with the same f=0.32, Red=540, a=2.0, 150 =θ . The 
trends of the curves are approximately the same. 

 

 
Fig.7 The mean thrust force coefficient varies withσ  

 

4 Results and discussion  
4.1 The interaction mode  
There are four types of interaction mode which are found in 
calculation results between inflow vortices and foil vortices. 
 
Mode1: Keep the inflow vortex away from the flapping-foil 
so as not to interact with the foil vortex. 
 
Mode2: The inflow vortex interacts with the same signed 
foil leading edge vortex and then they move forward 
independently. At last they merge into the same signed foil 
trail edge vortex. 
 
Mode3: The inflow vortex doesn’t interact with foil leading 
edge vortex. At last it merges into the same signed foil trail 
edge vortex. 
 
Mode4: The inflow vortex interacts with the oppositely 
signed vortices generated by flapping-foil. 

At 0
0 15=θ andσ from 0.75 to 1.5 by 0.25, the interaction 

modes between inflow vortices and foil vortices are shown 
in Table 1. At 0

0 30=θ andσ from 0.75 to 1.5 by 0.25, the 
interaction modes between inflow vortices and foil vortices 
are shown in Table 2.   

  Table 1 150 =θ  interaction modes with inflow vortices 

σ Interaction mode with 
top vortices 

Interaction mode with 
bottom vortices 

0.75 Mode2 Mode2 
1.0 Mode3 Mode3 

1.25 Mode4 Mode4 
1.5 Mode2 Mode1 

 
  Table 2 0

0 30=θ  interaction modes with inflow vortices 

σ Interaction mode with 
top vortices 

Interaction mode with 
bottom vortices 

0.75 Mode2 Mode2 
1.0 Mode3 Mode3 

1.25 Mode4 Mode4 
1.5 Mode4 Mode2 

 
4.2 The hydrodynamic performance of flapping-foil in 
   the influence of inflow vortices   
 
4.2.1 The mean thrust force coefficient of flapping-foil in the  
    influence of inflow vortices 
The curve of mean thrust force coefficient varying with 
σ at 150 =θ is shown in Fig.8. Cxm increases first and then 
decreases with the increase of σ . The change rate of Cxm is 
large with σ from 0.75 to 1.0. And then the change rate 
becomes small. Cxm is the largest at 25.1=σ . 
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At 0.2=σ the influence of inflow vortices is very small. 
 

 
Fig.8 The mean thrust force coefficient at θ=15° 

 
 

The curve of mean thrust force coefficient varying with 
σ at θ=30° is shown in Fig.9. Cxm increases first and then 
decreases with the increase of σ . The change rate of Cxm is 
large. Cxm is the largest at 25.1=σ . At 0.2=σ the 
influence of inflow vortices can be ignored.   

 

 
Fig.9 The mean thrust force coefficient at θ=30° 

 
Above all, Cxm is largest at 1.25σ =  and smallest 
at 0.75σ = . Connecting with interaction modes, Cxm is 
increased at mode 4 and diminished at mode 2. 

 
4.2.2 The propulsive efficiency and input power of 
    flapping-foil in the influence of inflow vortices 
The curves of input power and efficiency varying with σ at 

150 =θ are shown in Fig.10. The input power coefficient at 
25.1=σ is larger than the one at 0.2=σ . But efficiency 

at 25.1=σ  is smaller. Obviously the inflow vortices 
absorb energy from the flapping-foil. On the contrary, the 
input power coefficient at 5.1=σ is smaller than the one at 

0.2=σ . But efficiency at 5.1=σ  is larger. So the 
flapping-foil could obtain external energy from inflow 
vortices.  

 

 
Fig.10 The input power and efficiency at θ=15° 

 
The curves of input power and efficiency varying with σ at 

300 =θ are shown in Fig.11. The input power coefficient at 
5.1=σ is smaller than the one at 0.2=σ . But efficiency at 
5.1=σ  is larger. So the flapping-foil could obtain external 

energy from inflow vortices. Compared with propulsive 
performance at 0.1=σ , the input power coefficient is 
smaller but efficiency larger at 75.0=σ . So the 
flapping-foil at 75.0=σ is more adaptive for inflow 
vortices.  
 

 
     Fig.11 The input power and efficiency at θ=30° 

 
Above all, the flapping-foil could absorb energy from 
inflow vortices at 5.1=σ . Connecting with interaction 
modes, the flapping-foil could absorb energy from inflow 
vortices at mode 2. 

 
4.2.3 The hydrodynamic coefficients of flapping-foil in the 
     influence of inflow vortices 
The hydrodynamic coefficients of flapping-foil at 150 =θ  

and 300 =θ in the influence of inflow vortices are shown 
in Fig.12-17. The inflow vortices not only have impact on 
the magnitude of hydrodynamic coefficients but also on the 
phase angle of hydrodynamic coefficients. If the inflow 
vortices enlarge the magnitude of Cx, it will also enlarge the 
magnitude of Cy and Cm. 
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Fig.12 The thrust force coefficient varies 

 in one cycle at θ=15° 

 
Fig.13 The lateral force coefficient varies 

 in one cycle at θ=15° 

 
Fig.14 The moment force coefficient varies 

 in one cycle at θ=15° 

 
Fig.15 The thrust force coefficient varies 

  in one cycle at θ=30° 

 
Fig.16 The lateral force coefficient varies 

in one cycle at θ=30° 

 
Fig.17 The moment force coefficient varies 

in one cycle at θ=30° 
 

5 Conclusions  
In this paper, the commercial CFD software FLUENT based 
on RANS equations was developed secondly to numerically 
calculate the hydrodynamic performance of flapping-foil in 
the influence of inflow vortices. What the results show is 
described as bellow. 
 
1) The oscillating D-section cylinder can be used as a 
vortex-generator. The calculation method is available.  
 
2) From the calculating results, four interaction modes 
which were proved by experiments mentioned above  
between inflow vortices and foil vortices are found. 
 
3) Analyzing the hydrodynamic performance of 
flapping-foil in the influence of inflow vortices, the 
flapping-foil at mode 2 (The inflow vortex interacts with the 
same signed foil leading edge vortex and then they move 
forward independently). absorbs energy from inflow 
vortices. The mean thrust force coefficient of the 
flapping-foil at mode 4 (The inflow vortex interacts with the 
oppositely signed vortices generated by flapping-foil.) is 
increased largely, but the efficiency at this time is not high. 
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