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Crossover from negative to positive shear rate dependence in granular friction
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We conduct an experiment on the frictional properties of granular matter over a wide range of
shear rate that covers both the quasistatic and the inertial regimes. We show that the friction
coefficient exhibits negative shear-rate dependence in the quasistatic regime, whereas the shear-rate
dependence is positive in the inertial regime. This crossover from negative to positive shear-rate
dependence occurs at a critical inertial number. This is explained in terms of the competition
between two physical processes, namely frictional healing and anelasticity. We also find that the
result does not depend on the shape of the grains and that the behavior in the inertial regime is
quantitatively the same as that in numerical simulations.

The rheological properties of granular matter are im-
portant for analyzing various phenomena in geosciences,
such as landslides, debris flows, and crater formation.
These properties may also be relevant to friction in faults
because a fault contains fine rock powders that have been
ground up by past fault motions. Among the rheological
properties of granular matter, the shear-rate dependence
of the friction coefficient determines the stability of de-
formation and therefore has been paid major attention.
During the last decade, considerable progresses have been
made on this subject; it is recognized that a nondimen-
sional number plays a central role in describing the shear-
rate dependence of the friction coefficient [1, 2]. This is
referred to as the inertial number [3]; I = γ̇

√

m/Pd,
where γ̇ is the shear rate, P is the pressure, m is the
mass of the grains, and d is the diameter of the grains.
As

√

m/Pd is the velocity relaxation time in granular
matter [4], the inertial number may be regarded as the
index for the inertial effects inside the flow and there-
fore one can classify the flow regimes according to the
value of the inertial number. The flow is fast and col-
lisional at larger inertial numbers (I ≥ 10−1), which is
referred to as the inertial regime. At lower inertial num-
bers (I < 10−1), which is conventionally referred to as
the quasistatic regime, the grains are closely packed and
slowly sheared. In the inertial regime, a constitutive law
obtained in numerical simulation quantitatively explains
the experimental observation on an inclined plane flow
[5]. However, we have not reached the consensus about
a constitutive law for the quasistatic regime [6–8]. Al-
though some numerical studies [2, 9–11] are conducted
down to I ∼ 10−5 to address a constitutive law for the
quasistatic regime, they are yet to be verified in experi-
ments. In addition, we are not aware of any constitutive
laws that can lead to the exponential velocity profile that
is ubiquitously observed in heap flows [12, 13].

To clarify the nature of granular friction in the qua-
sistatic regime and its connection to the constitutive law
in the inertial regime, one must conduct the rheologi-

cal measurements over a wide range of shear rates that
cover the both regimes. To this end, we used a com-
mercial rheometer (AR-2000ex, TA Instruments), with
which we can control the sliding velocity over a wide
range (1×10−5−3m/s). The normal force is also control-
lable. We chose a relatively low pressure (20 − 50 kPa)
to exclude the effects of frictional heat [14]. In addition,
the temperature beneath the lower plate was set to 25◦C
and was kept constant with Peltier Plate. To study the
effects of the grain shape on the rheological properties,
we prepared two kinds of grains: soda-lime glass beads
(spherical with a mean diameter of d = 270µm) and
chromite sand (angular shaped with a mean diameter of
d = 286µm). The grains were packed into the annular
channel of the sample holder [15] as shown in FIG. 1
a. The cylindrical side wall, which was fixed to the lower
plate, is made of transparent fused silica so that we could
optically observe the internal structure of sheared granu-
lar matter [16]. The images of each grain were captured
by a high-speed video camera (Photron Fastcam APX
RS).

To observe the internal velocity profile, we used parti-
cle tracking velocimetry to obtain the instantaneous ve-
locity of each grain, which was then averaged out with
respect to the flow direction. The velocity profiles are
shown in FIG. 1 b. Note that the velocity profiles that are
normalized by the sliding velocity V collapsed to a single
curve. As the velocity profiles were somewhat nonlinear
as observed in [17], we defined the effective shear rate
γ̇ = V/Ws using the effective flow width Ws, which was
defined as the depth at which the normalized flow velocity
decreased to 1/10. We estimated Ws ≃ 5d. Throughout
this study, the inertial number is defined in terms of the
effective shear rate.

The shear stress σ and the layer thicknessH were mea-
sured at each steady state of the sliding velocity V under
a constant normal stress P . Fig. 1 c shows an example
of the normal-stress dependence of the steady-state shear
stress. The intercept of the best-fit line is quite close to
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FIG. 1. (a) Schematic diagram of the apparatus. A gran-
ular sample fills the annular channel, which is attached to a
rheometer. Shear is applied to the sample by rotating the up-
per plate, whereas the lower plate is fixed. To avoid slipping
on the surfaces, a monolayer of the glass beads was glued to
both the upper and the lower plates. (b) The velocity profiles
normalized by the applied sliding velocities, V , ranging from
10−4 to 1 m/s. (c) The normal-stress dependence of the shear
stress.
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FIG. 2. The friction coefficient plotted against the inertial
number. Symbols show the different normal stress (light blue
circles: glass beads 20 kPa, blue circles/triangles/squares:
glass beads 30 kPa, purple triangles: glass beads 50 kPa,
green triangles: chromite sand 30 kPa).

the origin and therefore the resistance from the side walls
may be negligible. We then define the friction coefficient
µ as σ/P . In Fig. 2, the friction coefficient is shown as
a function of the inertial number.

At lower inertial numbers (I ≤ 10−2), the friction co-
efficient is weakly dependent of the sliding velocity. Note
that the dependence is negative and logarithmic. The ex-

tent of weakening is characterized by the slope ∂µ/∂ ln I.
For example, the slope is approximately−0.003 for spher-
ical glass beads at 30 kPa. The negative dependence on
the sliding velocity is indeed well known in earthquake
physics [18] and in tribology [19] and the extent of weak-
ening in the present study is comparable to those typi-
cally observed for glass or rocks, although the slope may
be sensitive to the experimental details, such as humidity.
Although the negative slope is the common feature of

the present data, the absolute value of the friction co-
efficient differs significantly from sample to sample. An
apparent ingredient that affects the absolute value is the
grain shape [20, 21]. The friction coefficient of the angu-
lar grains (µ ≃ 0.55) is significantly higher than that of
the spherical grains (µ ≃ 0.4). It is also noteworthy that
the spherical glass beads may exhibit anomalously low
friction (µ ≃ 0.3) despite the same experimental condi-
tions (e.g., the blue squares in Fig. 2a). This effect may
be due to the structural ordering induced by the shear
[22], although that hypothesis has not been verified.
At higher inertial numbers (I ≥ 10−2), the friction co-

efficient substantially increases and the data indicate the
characteristic inertial number above which the friction
coefficient increases. We refer to this as the crossover
inertial number, and it is denoted by Ic. Although Ic
for each sample varies slightly, its value is apparently
on the order of 10−2. Thus, for simplicity, we chose
Ic = 0.032 assuming that Ic is common to all of the
data. We then defined the amount of strengthening as
∆µ(I) = µ(I)− µ(Ic) and found that ∆µ(I) collapses in
the high I regime (I ≥ Ic) (as shown in Fig. 3a). This
collapse obeys

∆µ(I) ∝ c1I, (1)

with c1 ≃ 0.6. This strengthening behavior for I ≥ Ic
is accompanied by dilation. To compare the data with
different layer thicknesses, it is convenient to define the
nondimensional dilation as ∆H∗ = (H(I) −H(Ic))/Ws.
As shown in Fig. 3 b, ∆H∗ also collapses in the high I
regime.

∆H∗

∝ c2I, (2)

where c2 ≃ 0.2. From Eqs. (1) and (2), it follows that

∆µ = c3∆H∗, (3)

where c3 = c1/c2 ≃ 3. Figure 4 shows that Eq. (3)
explains the experimental data well. In addition, we no-
ticed that Eqs. (1), (2), and (3) quantitatively explain
the inclined-plane flow data [23]. Note that the propor-
tional coefficients (c1, c2, and c3) are common to these
different experimental data. We thus conclude that these
relations are independent of the details of granular mat-
ter such as the grain shape and the coefficient of restitu-
tion.
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FIG. 3. (a) The increase of the friction coefficient, ∆µ(I)(=
µ(I)−µ(Ic)), where Ic(= 0.032) is the crossover inertial num-
ber. The inset is the linear plot. (b) The normalized thick-
ness change ∆H∗(I). Symbols are the same as those in the
previous figure. The inset is the linear plot. Results of the
DEM simulation with an inter-granular friction coefficient of
0.6 and a restitution coefficient of 0.8 are also shown (black
diamonds).
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FIG. 4. Friction coefficient difference ∆µ versus normalized
thickness change ∆H

∗. The dashed straight line indicates a
slope of 3. Symbols are the same as those in the previous
figures.

Relations (1), (2), and (3), which hold for the high I
regime, are quantitatively the same as those seen in nu-
merical simulations [1, 2, 5, 9–11]. The data obtained
from the numerical simulations [9] are also shown in
FIGS. 3 and 4, which show that the simulations quanti-
tatively agree with the experiments in the high I regime.
It is believed that the velocity strengthening seen in nu-
merical simulations is caused by the anelasticity of the
grains, which is usually modeled by a ”dashpot” [24].
The quantitative agreement between the simulation and
the experiment in the high I regime implies that anelas-
ticity plays an essential role in the velocity-strengthening
behavior seen in the experiments.

In contrast, in the low I regime, the numerical simula-
tion no longer agrees with the experiments (as shown in
FIG. 4.) This indicates that a physical process comes into
play that is not modelled in the simulations. It is known
that the negative shear-rate dependence is due to the
healing of the contact between grains [25, 26]. Note that
this process is not implemented in the numerical simula-
tions, and this must be the reason for the disagreement.
Thus, the frictional healing process must be properly in-

corporated into numerical models that involve the low I
regime.
Taking the above points into account, we propose a

constitutive law that holds for both the high and the low
I regimes.

µ = c1I − α ln γ̇τ + µ0, (4)

where τ is the characteristic time for frictional healing.
The first term on the right-hand side originates from the
dissipation due to anelasticity, and the remaining terms
are due to the dissipation caused by intergranular fric-
tion. The linear combination of these two effects may be
justified if the intergranular friction force and the viscous
force (due to anelasticity) are orthogonal. From Eq. (4),
the crossover inertial number Ic is given by

Ic =
α

c1
. (5)

Constitutive law (4) and the critical inertial number (5)
explain the experimental data well. We conclude that
the switch of the dominant physical processes at I ≃ Ic
leads to the crossover from negative to positive shear-rate
dependence of the friction coefficient; the anelasticity is
dominant over the healing for I ≥ Ic, whereas the fric-
tional healing is essential for I ≤ Ic. As the crossover
is located at I ≃ 10−2, it is not surprising that it has
not been identified in previous experiments on either
inclined-plane flow (I ≥ 10−2) [23] or simulated fault
gouge (I ≪ 10−2) [18, 27–30]. Constitutive law (4) and
the resultant crossover constitute the main conclusion of
this paper. In the following, we discuss four important
points that are peripherally related to this main conclu-
sion.
First, we remark that the crossover cannot be ex-

plained within the framework of a phenomenological con-
stitutive law known in earthquake physics [18]. It is
known that a similar crossover may occur if the shear
rate exceeds the characteristic rate of frictional healing,
1/τ [27, 28]; in this case, the steady-state friction coef-
ficient is written as µ = µ0 + β lnV with β > 0. If we
were to adopt this relation to explain the present data
in the high I regime, the parameter β would be much
larger (0.06) than the typical values (0.005− 0.015) that
are reported for rocks and soda-lime glass [29, 30].
Second, we remark that Eq. (3) is different from the

well-known relation µ = µ∗ + dH/dx, where µ∗ is a con-
stant and x is the shear displacement of a boundary. The
latter states that the increase in the friction coefficient
is due to the additional work required for dilation [31].
However, it does not state anything about the steady-
state friction coefficient because dH/dx = 0 at steady
states (except for fluctuations), whereas Eq. (3) involves
the difference between two steady states.
The third point we wish to discuss is with regard to

the mechano-chemical reactions caused by frictional heat,
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which generally reduce friction to a considerable degree
[32]. We believe that anelasticity-induced strengthen-
ing is also relevant to such systems because mechano-
chemical reactions affect the nature of intergranular fric-
tion, which is orthogonal to and independent of anelas-
ticity. A more detailed study on this issue is in progress.
The fourth point of interest is the application of the

present result to other flow geometries. Among them,
here we derive the exponential velocity profile that is
ubiquitously seen in heap flow experiments [12, 13]. We
begin with the force balance equation in the flow direc-
tion.

dσ

dh
= ρg sin θ, (6)

where ρ is the mass density, g is the gravitational ac-
celeration, θ is the angle between the flow direction and
the horizontal plane, σ is the shear stress, and h is the
depth. The existence of the body force in the flow direc-
tion distinguishes the heap flow from the annular channel
flow. In deriving the exponential velocity profile, it is es-
sential to assume Janssen’s law; i.e., the pressure within
the heap, P , is independent of the depth due to the fric-
tional force of a container. Then Eq. (6) together with
Janssen’s law leads to

dγ̇

dh

dµ

dγ̇
=

ρg sin θ

P
. (7)

Inserting Eq. (4) into Eq. (7), we obtain γ̇ ≃ γ̇0e
−Ah,

where A = ρg sin θ/αP . If Janssen’s law does not hold,
the friction coefficient is tan θ and independent of the
depth. Then Eq. (4) leads to a linear velocity profile,
which is also observed in some experiments [33, 34].
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