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INDEX CHARACTER ASSOCIATED TO THE PROJECTIVE

DIRAC OPERATOR

MAKOTO YAMASHITA

Abstract. We calculate the equivariant index formula for an infinite dimen-
sional Clifford module canonically associated to any Riemannian manifold. It
encompasses the fractional index formula of the projective Dirac operator by
Mathai–Melrose–Singer.

1. Introduction

Mathai, Melrose, and Singer constructed the projective Dirac operator /∂
pr
M for

arbitrary Riemannian manifold M as a projective pseudo-differential operator in
[MMS06]. Its index inda /∂

pr
M was defined in terms of the integral kernel Ipr/∂M

of

this projective differential operator. They showed the fractional index formula

[MMS06, Theorem 2 and Section 9]

(1) inda /∂
pr
M =

∫

M

Â(RM ),

where the integrand of the right hand side is the Â-form associated to the Rie-
mannian curvature of M . The equality was proved via local index calculation of
the heat kernel associated to Ipr/∂M

. It can be easily seen that the above expression

might be a non-integral rational number when M is not spin.
The framework of projective pseudo-differential operators ignited various de-

velopments of the study of modules and index theory over the bundles of finite
dimensional algebras (or the ones whose fiber is the trace class operator algebra)
over manifolds [MMS05,MMS09,AM09,BG10,Gof10].

The projective operator /∂
pr
M is associated to a certain Clifford module of M , but

one has to note the difference between (1) and the usual index formula

(2) ind /∂E =

∫

M

Â(RM ) ch(E/S),

for a Clifford module E over M . Here /∂E is the twisted Dirac operator acting on
the sections of E and ch(E/S) is the relative Chern character of E. The presence
of the relative Chern character ch(E/S) makes the integral in the right hand side
to be an integer.

Let π(nat) : SU(N) y V (nat) be the natural representation of SU(N). The Levi–
Civita connection on FSO(n) induces a 1-form ∇ of first order differential operators

acting on the space C∞(P, V (nat)). This means, by definition, when X is a vector
field over M , one obtains a first order differential operator ∇X on P .

Since P can be regarded as the bundle of trivializations of the Clifford bundle
ClC(M), the sections of ClC(M) correspond to the PU(N)-invariant functions of P
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2 MAKOTO YAMASHITA

into MN(C). Then the space of functions from P into V (nat) is naturally a module
over ClC(M). Thus one may define the associated Dirac operator

/∂M =
∑

k

c(ek)∇ek

on C∞(P, V (nat)) for any local frame (ei)
n
i=1.

The operator /∂M can be regarded as a transversely elliptic operator [Ati74]
on the SU(N)-manifold P . Hence one obtains a distribution indSU(N)(γ, /∂M ) on
SU(N) which is invariant under conjugation and satisfies

〈

indSU(N)(γ, /∂M ), χπ
〉

= ind(/∂Mp
π)

where χπ the character of any irreducible representation π of SU(N), and pπ is the
projector onto the π-isotypic component of the action πP ⊗π(nat) on C∞(P, V (nat)),
where πP is the action induced by the translation on P .

In [MMS08], it was shown that the SU(N)-equivariant operator /∂M descends to

the projective Dirac operator /∂
pr
M on the projective spin bundle over the Azumaya

bundle ClC(M). For such ‘descent’ one has
〈

indSU(N)(γ, /∂M ), φ
〉

= inda /∂
pr
M

when φ is a smooth function on SU(N) which is constantly equal to 1 around e and
has small enough support. As mentioned at the end of the introduction of [MMS08],
the above formula gives ‘the coefficient of the Dirac function’ in the distribution
indSU(N)(γ, /∂M ).

The aim of this paper is to relate the fractional index formula (1) to the classical
index formula (2) of Clifford modules and give a refined formula (Corollary 6) for the
contribution of ‘higher order derivatives of the Dirac function’ in the distribution
indSU(N)(γ, /∂M ).

The space L2(P, V (nat)) can be regarded as the space Γ(M, E) of the sections of
an infinite dimensional Clifford module E overM = P/PU(N). It is defined as the
induced vector bundle

(3) E = P ×PU(N) L
2(PU(N))⊗ V (nat),

where we consider the left translation action λ on L2(PU(N)) and the trivial action
on V (nat). The precise meaning of the correspondence between L2(P, V (nat)) and E
is that we have

L2(P, V (nat)) ≃ (L2(P )⊗ L2(PU(N))⊗ V (nat))π
P⊗λ⊗triv

V (nat) (PU(N)),

where the right hand side can be regarded as Γ(M, E).
The action ρ⊗ π(nat) of SU(N) on L2(PU(N))⊗ V (nat) commutes with the one

λ ⊗ triv of PU(N). Hence it induces an action on (3). This action corresponds to
the action πP ⊗ π(nat) on L2(P, V (nat)).

If one tries to consider an analogue of the equivariant index theorem in the case
of E = E , the relative curvature form F E/S of E should be locally given by the
action of the curvature of a vector bundle E0 satisfying E ≃ E0 ⊗ S. Note that the

vector bundle E0 has infinite rank, hence the fiberwise trace TrE0 e
−FE/S

will become
infinite. To remedy this, we shall construct an action of SU(N) on E0 such that its
tensor product with the trivial action on S is the action on E . Then an equivariant

choice of curvature on E0 will allow us to compute the trace of TrE0(e
−FE/S

π(φ))
of the composition of the curvature e−F with the convolution by any auxiliary
function φ on SU(N).

Thus the expression

(4) chSU(N)(γ, E/S)x = TrE0(γe
−FE/S

)
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for x in M and γ in SU(N) defines a differential form on M of distributions on
SU(N). Then the analogue of the index formula (2) for the Clifford module E
should be

(5) indSU(N)(γ, /∂M ) =

∫

M

Â(RM ) chSU(N)(γ, E/S).

2. Preliminaries

Most of the constructions in this section appear in the literature in some way or
other. We just recall their definitions in order to fix the notations and conventions.
For the sake of simplicity we assume that n = dim(M) is even and put N = 2n/2.
Let P be the PU(N) principal bundle over M induced from the frame bundle
FSO(n) by the natural group embedding

(6) SO(n) → Aut(ClC(R
n)) ≃ PU(N).

Let σ be a section of FSO(n) defined on an open set U , and σ̃ = (σ, e) be the
section of P defined by σ and the constant mapping M → SU(N), x 7→ e. Under
the identification of (3) any section f of E over U can be expressed using a function
ξ : U ∋ x 7→ ξx ∈ L2(PU(N), V (nat)) by

(7) fx ↔ (σx, ξx).

The Clifford module structure on E can be described as

(8) c(X).(σx, fx) = (σx,Adg(σ
∗
x(c(X)))fx(g)),

where σ∗
x is the isomorphism ClC(TxM) →MN (C) given by σx ∈ Px.

Let ALC be the Levi–Civita connection 1-form TF → so(n) on FSO(n). One
obtains the induced connection form

(9) A : TP → su(N)

via (6). Hence it is given by the collection of linear maps TpP → su(N) which are
retractions of the embedding su(N) → TpP coming from the action map g 7→ p.g
from SU(N) to P , and satisfy the equivariance condition AX = Adg Ag.X for any
X ∈ TpP and g ∈ G.

Given a vector field X onM , define the operator A
(E,σ)
X on the sections of E over

U by

(10) A
(σ)
X .(σ̃x, ξx) = (σ̃x,

(

λ(Adσ̃(Xx))⊗ 1V (nat)

)

(ξx)).

Lemma 1. Let ψ be a function from U to SU(N). Then one has

A
(σ.ψ)
X (σ.ψx, ψ

−1
x ξx) = (σ.ψx, λ(Ad(σ)(X))

ψxψxξx − dψ(X).ψ−1
x .ξx)

for any vector field X on U .

By Lemma 1, the covariant derivative

∇X(σx, ξx) = (σx, X(ξx)) +A
(σ)
X .(σx, ξx))

associated toA does not depend on the choice of σ. Moreover the formula (8) implies
[∇X , c(Y )] = c(∇LC

X Y ), which shows that A is a Clifford connection. Finally, we
put

/∂M =

n
∑

i=1

c(ei)∇ei

for any local frame (ei)
n
i=1.

For each irreducible representation π of SU(N), the restriction of /∂ to the π-
isotypic component of L2(P, V (nat)) becomes a K-cycle /∂π over C(P ) ⋊ SU(N).
Hence we obtain a family of K-cycles (/∂π)π∈ŜU(N)

parametrized by the irreducible
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representations of SU(N). Since the π-isotypic component of L2(P, V (nat)) is triv-
ial unless the central part of π agrees with that of the natural representation, our

interest is in (/∂π)π∈ŜU(N)(nat)
where ŜU(N)(nat) is the collection of the irreducible

representation classes whose central character agree with that of the natural repre-
sentation.

For each π ∈ ŜU(N)(nat), the number ind /∂π is finite and agrees with the multi-

plicity of π in the representation ind ∂M of SU(N). Let dπ be the dimension of the
representation space of π, and χπ be its normalized character

χπ(γ) =
1

dπ
Tr(π(γ)).

Then the sum

indSU(N)(γ, /∂M ) =
∑

π∈ŜU(N)(nat)

(ind /∂π)χ
(π)(γ)

defines a distribution over SU(N) invariant under the conjugation.

2.1. Pairing of U(g) and C∞(G). When a is an element of the universal envelop-
ing algebra U(su(N)) of SU(N) can be regarded as a distribution on SU(N) with
support {e} by

〈a, φ〉 = (λ(a)φ) (e)

for φ ∈ C∞(SU(N)), where λ(a) is the right invariant differential operator repre-
sented by a. The above pairing has another interpretation

〈a, φ〉 = TrL2(SU(N))(λ(a)λ(φ)) = TrL2(SU(N))(ρ(a)ρ(φ)).

Let T be a conditional expectation of U(su(N)) onto its center.

Lemma 2. Let a be an element of U(su(N)) and φ an element in C∞(SU(N)).
Then one has

(11)
∑

π∈ŜU(N)(nat)

Tr(π(a))Tr(π̄(φ)) =
1

N

∑

g∈Z(SU(N))

χ(nat)(g) 〈T (a), λgφ〉 .

Proof. The operator π(T (a)) is a scalar satisfying Tr(π(a)) = Tr(π(T (a))) for each
irreducible representation π of SU(N). Hence one has

TrL2(SU(N))(λ(a)ρ(φ)) =
∑

π∈ŜU(N)

Tr(π(a))Tr(π̄(φ)) = TrL2(SU(N))(ρ(T (a))ρ(φ)).

Combining this with

TrL2(SU(N))
χ(nat)

(λ(a)ρ(φ)) =
1

N

∑

g∈Z(SU(N))

χ(nat)(g)TrL2(SU(N))(λ(a)ρ(φ)ρg),

one obtains

TrL2(SU(N))
χ(nat)

(λ(a)ρ(φ)) =
1

N

∑

g∈Z(SU(N))

χ(nat)(g) 〈T (a), λgφ〉 .

This proves the assertion. �



CHARACTER OF PROJECTIVE DIRAC OPERATOR 5

3. KK -element associated to projective Dirac operator

For each character χ on the center of SU(N), let Jχ denote the closure of

{f ∈ C(SU(N), C(P )) | ∀z ∈ Z(SU(N)) : f(gz) = χ(z)f(g)}

in C(P )⋊ SU(N). Then the algebra C(P )⋊ SU(N) admits a direct sum decompo-
sition

C(P ) ⋊ SU(N) ≃ ⊕
χ∈ ̂Z(SU(N)

Jχ

by bilateral ideals. The representation of C(P ) ⋊ SU(N) on L2(P, V (nat)) factors
through the projection onto J(nat), the factor corresponding to the central character
of the natural representation.

The bimodule L2(P, V (nat)) is a completion of the following C∗-module F over
ClC(M). The subspace C(P, V (nat)) of L2(P, V (nat)) admits a ClC(M)-valued inner
product characterized by

p∗((ξ, η)x) =

∫

PU(N)

Adg(ηp ⊗ ξ∗p)dg

where we identify p ∈ Px with an algebra isomorphism p∗ : ClC(TxM) → MN(C).
The completion F of C(P, V (nat)) with respect to the above inner product admits
an action of C(P )⋊ SU(N) as ClC(M)-compact operators.

Proposition 3. The bimodule F gives a strong Morita equivalence between J(nat)
and ClC(M).

Each irreducible representation π of SU(N) gives a class [π] in K0(C
∗ SU(N)).

Under the inclusion ι : C∗ SU(N) → C(P )⋊SU(N), one obtains an element ι∗[π] in
K0(C(P )⋊SU(N)). By Proposition 3, one obtains an element ι∗[π] of K0(ClC(M))
given by the Clifford module Vπ = pπL

2(P, V (nat)).
The operator /∂M and the representation of C(P ) ⋊ SU(N) on L2(P, V (nat))

defines a spectral triple over C(P )⋊SU(N). Consequently we obtain the associated
element α of KK (C(M)⋊ SU(N),C) represented by the phase of /∂M as in [BC00],
and the map

ind/∂M
: K0(C(P )⋊ SU(N)) ≃ K0(ClC(M)) → Z.

Example 4. As an example of the above construction, consider the case of π =
π(nat). Then the corresponding index ind(/∂π(nat)) is equal to the signature number
of M . Indeed, if one takes the tensor product action ρ⊗ π ⊗ π̄ on

C(P ;V (nat))⊗ (V (nat))∗,

its fixed point subspace is identified to the space of the sections of ClC(M), and the
grading on the former corresponds to the left Clifford action of the volume element.
Meanwhile the fixed point subspace is canonically identified to the π(nat)-isotypic
component of C(P ;V (nat)).

4. Connections on infinite dimensional equivariant bundles

Now we give a more precise description of (4). Let A be the curvature 1-form of
(9). The associated connection 2-form in A2(P, su(N))basic is given by

ΩX,Y = A([X −AX , Y −AY ])

for vector fields X and Y on P .
Let σ be a section of P → M defined on an open set U of M . When X and Y

be vector fields on M , consider the operator

Ω
(σ)
X,Y .(σx, ξx) = (σx, λ(Ωdσ(Xx),dσ(Yx))ξx),
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on the sections of E over U as in (10). This is independent of the choice of σ,

and the operators Ω
(σ)
X,Y on different open sets naturally patch together and give a

2-form of bundle morphisms FX,Y on E .

Then FX,Y commutes with the Clifford action, and that of ρ ⊗ π(nat)(SU(N)).
Similarly we obtain 2k-forms of endomorphisms of E by

F kX1,...,X2k
=

∑

σ∈S2k

(−1)|σ|FXσ1,Xσ2 · · ·FXσ(2k−1) ,Xσ2k
.

4.1. Fell’s absorption. Let φ be a smooth function on SU(N). Then the right
convolution by φ on P defines a trace class operator ρP ⊗π(nat)(φ) on L2(P, V (nat)).
Thus one is interested in the computation of

(12) TrL2(PU(N);V (nat))(e
−FE/S

ρ⊗ π(nat)(φ)).

Let us consider the following operator S on L2(SU(N);V (nat)). When φ is a func-
tion of SU(N) into V (nat), we define Sφ to be the function (Sφ)(γ) = π(nat)(γ)φ(γ).
Then S is an isomorphism of the SU(N)-bimodule λL

2(SU(N);V (nat))ρ⊗π(nat) into

λ⊗π(nat)L2(SU(N);V (nat))ρ.
Then the submodule

λL
2(PU(N);V (nat))ρ⊗π(nat) ⊂ λL

2(SU(N);V (nat))ρ⊗π(nat)

is mapped to the subspace L2(SU(N);V (nat))ρ(χ
(nat)) spanned by

{

φ ∈ L2(SU(N);V (nat)) | ∀γ ∈ Z(SU(N)) : ργ(φ) = χ(nat)(γ)φ
}

of λ⊗π(nat)L2(SU(N);V (nat))ρ. This bimodule admits a direct sum decomposition

(13) L2(SU(N);V (nat))ρ(χ
(nat)) =

⊕

π∈ŜU(N)(nat)

π⊗π(nat)(Vπ ⊗ V (nat))⊗ (Vπ)π̄.

Under the transformation S, the operator λ(Ω
(σ)
X,Y ) is identified with the operator

(14) λ⊗ π(nat)(Ω
(σ)
X,Y ) = λ(Ω

(σ)
X,Y )⊗ 1V (nat) + 1⊗ π(nat)(Ω

(σ)
X,Y ).

This shows that the Clifford module E can be ‘locally’ decomposed as the tensor
product E0 ⊗ S, where E0 is a bundle of fiber C(SU(N))χ(nat) defined by

E0 ≃ P ×SU(N) C(SU(N))χ(nat) .

4.2. Computation of index character. On one hand, the first part in the right

hand side of (14) can be thought as the action of the relative curvature form F
E/S
X,Y =

F E0

X,Y . On the other hand, the second part can be thought as the action of the spin

curvature
∑

i,j

〈

RLC
X,Y ei, ej

〉

cicj . Hence the quantity (12) can be translated to

(15) TrL2(PU(N);V (nat))(λ(e
−Ω)ρ(φ)) = N TrL2(SU(N))

χ(nat)
(λ(e−Ω)ρ(φ)).

Let k be an integer. Combining (11) with (15), the 2k-form TrE(ρ(φ)F
k
X1 ,...,X2k

)
can be written as

∑

σ∈S2k,g∈Z(SU(N))

(−1)|σ|
〈

T (Ω
(σ)
Xσ1,Xσ2

· · ·Ω
(σ)
Xσ(2k−1) ,Xσ2k

), λgφ
〉

.

Consequently we obtain

(16)
〈

TrE(γe
−F/S), φ

〉

=

m/2
∑

j=0

1

j!

∑

g∈Z(SU(N))

〈

T ((Ω(σ))j), λgφ
〉

,

which gives the meaning as a distribution on SU(N) to the expression (4).
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Theorem 1. Let π be an irreducible representation with central character χ(nat).

The distribution indSU(N)(γ, /∂M ) satisfies

(17)
〈

indSU(N)(γ, /∂M ), χπ
〉

= dπ

∫

M

m/2
∑

j=0

1

j!
Â(RM )m−2j Tr(π((Ω

(σ))j)).

Proof. Let Eπ be the π-isotypic component of E . Since the action of ClC(M) on E
commutes with the action of SU(N), the vector bundle Eπ is a Clifford submodule
of E . We show that the relative Chern character ch(Eπ/S) of the Clifford module
Vπ is represented by dπ Tr(e

π(Ω)). Then the assertion will follow from the index
formula (2) for Clifford modules.

Let pπ denote the projector
∫

SU(N) χ
π(g)g in the convolution algebra L1(SU(N)).

Then Eπ is the image of πP ⊗ π(nat)(pπ). When σ is a section of P , the sections
Γ(domσ;Eπ) of Eπ over the domain of σ can be identified to the space of the
functions

x 7→ (σx, fx) (fx ∈ ρ⊗ π(nat)(pπ).L2(PU(N);V (nat)))

for x ∈ domσ. By the SU(N)-invariance of ∇ on E , the associated curvature form
of Eπ is given by Fρ(pπ).

Applying the operator S, one sees that Γ(domσ;Eπ) can also be identified with

the space of the functions x 7→ (σx, fx) where fxρ(p
π).L2(SU(N);V (nat))ρ(χ

(nat)).

By the decomposition (13), the SU(N)-space ρ(pπ).L2(SU(N);V (nat))ρ(χ
(nat)) is iso-

morphic to the direct sum of dπ copies of Vπ ⊗ V (nat).
From (14), one sees that the action of the curvature form Fpπ on Eπ is given by

π(Ω(σ))⊗ 1(nat) +1π ⊗ π(nat)(Ω(σ)). The term 1π ⊗ π(nat)(Ω(σ)) is the action of the

spinor curvature. Hence the relative curvature form is given by π(Ω(σ)) ⊗ 1(nat),
which proves the assertion. �

Remark 5. Consider the case of π = π(nat) as in Example 4. Thus the left hand
side of (17) is equal to the signature number ofM . In the right hand side, the term
TrV (nat)(π(nat)(Ωj)) is equal to the j-th component of the relative Chern character
ch(∧∗T∗M/S). Hence we recover the signature formula

σ(M) =

∫

M

Â(RM ) ∧ ch(∧∗T∗M/S).

We obtain the following formula whose conceptual meaning is (5).

Corollary 6. The distribution indSU(N)(γ, /∂M ) can be written as

〈

indSU(N)(γ, /∂M ), φ
〉

=
∑

g∈Z(SU(N))

∫

M

m/2
∑

j=0

1

j!
Â(RM )m−2j

〈

T ((Ω(σ))j), λgφ
〉

,

where φ is any test function in C∞(SU(N)).

Proof. Since both sides are invariant under conjugation for φ, we may assume that
φ is invariant under conjugation. By continuity and linearity, we may assume that
φ is a character of some irreducible representation of SU(N). Then the assertion
follows from Lemma 2 and Theorem 1. �

Now, we can recover the fractional index formula (1) as a particular case of
Corollary 6.

Corollary 7 ([MMS06, Theorem 2; MMS08, Proposition 5 and Remark 1]). Let φ
be a smooth function which agrees with the constant function 1 on a neighborhood
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of e and satisfies suppφ ∩ Z(SU(N)) = {e}. Then one has

〈

indSU(N)(γ, /∂M ), φ
〉

=

∫

M

Â(RM ).

Proof. For each j, the operator T ((Ω(σ))j) is represented by a SU(N)-biinvariant
differential operator of degree 2j. Suppose that φ agrees with the constant function
1 on a neighborhood of e. Then one has

Tr(ρ(φ)) = φ(e) = 1, Tr(ρ(φ)F j) =
〈

T ((Ω(σ))j), φ
〉

= 0 (j > 0).

Hence one has
〈

Tr(γe−F ), φ
〉

= 1 in this case. Consequently one obtains

〈

indSU(N)(γ, /∂M ), φ
〉

=

∫

M

Â(RM ),

which proves the assertion. �

Remark 8. Since /∂M is formulated as a transversely elliptic operator on the SU(N)-
manifold P , the Kirillov type formulation of the equivariant index formula for such
operators by Berline–Vergne [BV96a,BV96b] might be also employed to prove the
above result. Our presentation is rather based on the Atiyah–Segal–Singer type
formulation of the equivariant index theorem.
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