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We propose a simple stochastic model which successfully explains the long coherence effects observed in
photosynthetic Excitation Energy Transport (EET) by 2D photon echo experiments of G. S. Engel et. al.
(Nature, 446 782, (2007)). Our Two-Component Phonon Spectrum (TCPS) model is based upon the division
of phonon degrees of freedom into a systematic component which is treated through polaron transformation
and a stochastic component which is treated through dynamical disorder. This model successfully explains
the observed long coherence upto ∼ 600fsec in EET experiments.
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I. THE PROBLEM

In the theoretical description of the Excitation Energy
Transport (EET) in biological systems, two theories1 are pop-
ular (1) Förster theory and (2) Second Born quantum master
equation theory. The first one (Förster’s theory) is applica-
ble when the system (pigment)-bath (protein) coupling is very
large as compared to the intra-system (pigment-pigment) cou-
pling which leads to an incoherent exciton transfer. Thus in
this theory the time evolution of the density matrix elements
is studied using Pauli’s master equation in which the exci-
tonic transfer rates are calculated using Fermi Golden rule.
In the opposite case when the pigment-pigment coupling is
very strong as compared to the system-bath coupling, one
treats the system-bath coupling as a perturbation to obtain
the second Born quantum master equation for the reduced
density matrix of the system. These two limiting cases define
the two popular theories and are well studied.1

Recent experimental observations2 show that EET in FMO
complex (Fenna-Matthews-Olson) of Green Sulfur bacteria
does not fall in the above two limiting cases. The reason
for this is that in FMO-complex the magnitude of the sys-
tem (BChl molecules)-bath (protein scaffold) coupling is of
the same order as of the intra-system (BChl-BChl molecule)
coupling. So one cannot apply the above mentioned limiting
theories.

Also with the advent of 2-D photon echo spectroscopy it
is observed3,4 that the exciton dynamics is fully coherent i.e.,
during the time taken by the exciton to transfer from one site
to another the off-diagonal elements of the density matrix
are non-zero. This type of transfer is called the “coherent
transfer”. This coherent transfer time scale is of the order of
600fsec in FMO experiments.3,4

Ishizaki and Fleming5 have developed a theory to explain
the long coherence effects in EET. They use the reduced hier-
archy equation approach previously developed by Tanimura
and Kubo.6 Jang et al7 have also given a theory of coherent
energy transfer which goes beyond the two limiting cases dis-

cussed above. In this contribution we propose an alternative
theory which is able to explain the experimental observation
of G. S. Engel et al.3

II. TWO-COMPONENT PHONON SPECTRUM (TCPS)
MODEL

A. The model

Here, we propose a Two Component Phonon Spectrum
(TCPS) model. Typically phonon spectrum has the form,

J(ω) ∝ ωneω/ωc . The cut-off frequency ωc provides us with
a natural way of dividing the phonon spectrum, since for
the FMO problem the characteristic frequency of the exci-
ton transfer ωsys ≡ J/~ where J is the resonance coupling
strength, is of the same order as ωc. We divide the phonon
spectrum into two parts, namely a stochastic component and
a systematic component. The part of the phonon spectrum
with frequency ω > ωc, the phonons will show oscillations
faster than the exciton transfer frequency and hence we as-
sume that the contributions from such phonons can be re-
placed by a stochastic component. The other part of the
phonon spectrum corresponding to ω < ωc will have a slower
oscillations than the excitonic transfer and we treat this part
as a systematic component.

The systematic component comprises of phonon dynamics
with well defined phonon spectral density and it ”dresses” the
bare matrix elements of the system Hamiltonian. This com-
ponent is treated through the polaron transformation. The
second component is stochastic, and we assume that it ran-
domly perturbs the site energies. With this picture in mind
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we model the FMO problem as

H = Hs +Hb +Hsb

Hs = ǫ1|1〉〈1| + (ǫ2 + F (t))|2〉〈2|+ J(|1〉〈2|+ |2〉〈1|)

〈F (t)〉 = 0, 〈F (t)F (τ )〉 = ηδ(t− τ )

Hsb =

(

∑

n

~ωngn(bn + b†n)

)

(|1〉〈1| − |2〉〈2|)

Hb =
∑

n

~ωn(b
†
nbn + 1/2) (1)

Here Hs, Hb, and Hsb are the system, bath, and system-
bath interaction Hamiltonians respectively. Our system is a
two level system with site energies ǫ1 and ǫ2 with one site
energy randomly perturbed by stochastic noise8 which we
take it to be a Gaussian White Noise (GWN). The interac-
tion of the systematic component of the bath is given by Hsb

which involves gn which is the difference between the coupling
strengths of the nth phonon mode with the two levels.

B. The solution

We use the polaron transformation9 to deal with the sys-
tematic component. Starting with Liouvelle-von-Neumann
equation (~ = 1),

i
∂ρtotal(t)

∂t
= [Hs +Hsb +Hb, ρtotal(t)], (2)

we polaron transform9 the above equation as ρ̃total(t) =

eGρtotal(t)e
−G, and H̃i = eGHie

−G with G =
(
∑

n ~gn(bn + b†n)
)

(|1〉〈1| − |2〉〈2|) to obtain the total Hamil-

tonian H̃ = H̃s + H̃sb + H̃b,

H̃ =

(

ǫ1 −
∑

n

ωng
2
n

)

|1〉〈1| +

(

ǫ2 −
∑

n

ωng
2
n + F (t)

)

|2〉〈2|

+JΘ|1〉〈2|+ JΘ†|2〉〈1| +
∑

n

~ωn(b
†
nbn + 1/2). (3)

Here
Θ = e

∑
n gn(b†n−bn). (4)

The important point is that polaron transformation com-
pletely removes Hsb and it ”dresses” the site energies as
ǫ̃1 ≡ ǫ1 −

∑

n ωng
2
n etc. and J as JΘ.

Liouvelle-von-Neumann equation takes the following form,

i
∂ρ̃total(t)

∂t
= [H̃, ρ̃total(t)], (5)

In the subsequent analysis we perform two types of aver-
aging:
(1) Averaging over the dynamical disorder which is denoted
by 〈...〉
. (2) Averaging over the systematic component of the bath

which is denoted by (...) ≡ trb(...).
The calculation is performed in two steps:
Step I: Averaging over dynamical disorder:

i
∂〈ρ̃(t)〉

∂t
= [ǫ̃1|1〉〈1|+ ǫ̃2|2〉〈2|, 〈ρ̃(t)〉]

+〈F (t)[|2〉〈2|, ρ̃(t)]〉

+J [Θ|1〉〈2|+Θ†|2〉〈1|, 〈ρ̃(t)〉] (6)

Step II: Averaging over the systematic component:

i
∂〈ρ̃(t)〉

∂t
= [ǫ̃1|1〉〈1|+ ǫ̃2|2〉〈2|, 〈ρ̃(t)〉]

+〈F (t)[|2〉〈2|, ρ̃(t)]〉

+J [Θ|1〉〈2| +Θ†|2〉〈1|, 〈ρ̃(t)〉] (7)

Now we simplify the above averages term by term. We
define the matrix elements of the system as ρab(t) ≡
〈a|〈ρ̃(t)〉|b〉, a, b ∈ [1, 2] i.e. by tracing out both the sys-
tematic and stochastic components.

Consider Term I on the RHS of Eq. (7)

i

(

∂ρ11(t)

∂t

)

I

= ǫ̃1ρ11(t)− ǫ̃1ρ11(t) = 0 = i

(

∂ρ22(t)

∂t

)

I

(8)

i

(

∂ρ12(t)

∂t

)

I

= (ǫ̃1 − ǫ̃2)ρ12(t) = ∆ρ12(t) (9)

Here ∆ = ǫ1 − ǫ2. The ρ21(t) is the complex conjugate of
ρ12(t).

Consider Term II on the RHS of Eq. (7)

i

(

∂ρ11(t)

∂t

)

II

= i

(

∂ρ22(t)

∂t

)

II

= 0 (10)

i

(

∂ρ12(t)

∂t

)

II

= −〈F (t)ρ12(t)〉 = −i

(

∂ρ21(t)

∂t

)

II

(11)

We note that F (t) is a stochastic perturbation and ρ12(t) is a
functional of F (t). The problem now is to decouple the term
〈F (t)ρ12(t)〉. Here, we use the result due to Novikov10 for
Gaussian random noises.

〈F (t)ρab(t)〉 =

∫ ∞

−∞

dt′〈F (t)F (t′)〉

〈

δρab(t)

δF (t′)

〉

(12)

Here δρab(t)
δF (t′)

is the functional derivative. Using the properties

of stochastic noise and after some simplifications we get

〈F (t)ρ12(t)〉 = iη〈ρ12(t)〉. (13)

Consider Term III on the RHS of Eq. (7)
We assume that the bath is always in equilibrium, i.e.,

Θ〈ρ̃(t)〉 = Θ 〈ρ̃(t)〉. This is similar to Born type approxi-
mation where the bath effects the system but the reverse is
not true.

i

(

∂ρ11(t)

∂t

)

III

= Jλ(ρ21(t)− ρ12(t)) (14)

i

(

∂ρ12(t)

∂t

)

III

= Jλ(ρ22(t)− ρ11(t)) (15)

Where λ ≡ Θ = trb(ρbΘ) = e−2
∑

n g2n coth(~βω/2).
Collecting all the terms we end up with the following sys-

tem of equations

∂ρ12(t)

∂t
= −i∆ρ12(t)− ηρ12(t)− iJλ(ρ22(t)− ρ11(t))

∂ρ11(t)

∂t
= −iJλ(ρ21(t)− ρ12(t))

ρ11(t) + ρ22(t) = 1 (16)
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FIG. 1. The time evolution of population on site 1 i.e.,
ρ11(t) = r(t). Here J = 0.5,∆ = 0.2 and the phonon cou-
pling strength gn decreases i.e., λ increases as we go down in
the figure and the strength of dynamical disorder η increases
as we go horizontally to right. The behaviour of r(t) seems to
be intuitively correct. As λ increases we see more oscillations
and as η increases oscillations die out as expected.

Separating the real and imaginary parts ρ12(t) = x(t) +
iy(t) and ρ11(t) = r(t) we have

ẋ(t) = ∆y(t)− ηx(t)

ẏ(t) = −∆x(t)− ηy(t)− Jλ(1− 2r(t))

ṙ(t) = −2Jλy(t) (17)

The above system of ODEs can be solved exactly with
given initial conditions, however, the exact expression is very
cumbersome. We give the analytic solution in the long time
limit using Laplace transforms (see Appendix A) which clearly
show that equilibrium value of r(t → ∞) = 1/2..11 The sys-
tem of equations (17) is also solved for all times numerically
(see figure 1). If we go vertically downwards in the figure,
λ increases, i.e. the phonon coupling strength decreases and
we see more oscillations, also if we go horizontally, then η in-
creases (strength of the dynamical disorder) and oscillations
die out as expected intuitively.

III. EXPLAINING THE EXPERIMENTAL
OBSERVATIONS OF G. S. ENGEL ET. AL.

In this section we analyze the above model with experimen-
tally known values of physical parameters and show that it
explains the experimental observations of G. S. Engel et. al.3

A. Calculation of λ

First, we consider a continuum of systematically coupled
phonons and the parameter λ for the phonon continuum is

λ = e−2
∑

n g2n coth(~βω/2) (18)

We introduce the spectral density J(ω) =
∑

n δ(ω −
ωn)ω

2
ng

2
n. By inserting the integral over ω in the exponent

and using the delta function one has

λ = e
−2

∫∞
0

dω
ω2 J(ω) coth(β~ω/2)

(19)

We take the spectral density to be super-ohmic J(ω) =
ξ
3
(ω

3

ω2
c
)e−ω/ωc .7 Here ξ is a dimensionless coupling constant,

which we determine from the experimental information avail-
able. ωc is the characteristic frequency of the bath which is ∼
1013Hz (for τc = γ−1 ∼ 100femto sec) in the FMO problem.5

At the temperatures T = 77K of the experiment3 the argu-
ment of the coth is a small quantity i.e., coth(x) ∼ 1/x. Thus
the integral in the exponent of λ can be calculated as,12

λ = e
−4ξ

kBT

3~ωc (20)

Let us now calculate ξ from the experimental information.
Let ǫsb be the bath re-organization energy which is given by

ǫsb =
ξ~

6ω2
c

∫ ∞

0

dωω2e−ω/ωc coth(β~ω/2) ≃
1

3
ξkBT (21)

Thus ξ = 3 ǫsb
kBT

which is now given in terms of the known

quantity ǫsb which is ∼ 100cm−1 in the FMO problem. Col-
lecting the above we have,

λ = e
−4

ǫsb
~ωc (22)

Thus our model parameter λ is now given in terms of the well
known quantities in the FMO problem.

B. Line-shape analysis for η

We now determine the phenomenological parameter η in
our model from the homogeneously broadened line shape.
The absorption line shape I(ω) of the two level system
(Eq. (1)) is given as

I(ω) ∝

∫ +∞

−∞

dteiωttrbathtrsystem((µ(t)µ(0))) (23)

Where ω is the photon frequency and µ is
the system’s dipole operator. For ~ω >>
kBT we obtain trbathtrsystem((µ(t)µ(0))) =
trbath

∑

a,b=1,2,a 6=b(µab(t)µba(0)) ∝ ρ12 + ρ21.
13

I(ω) = 2Re

∫ ∞

0

dteiωtρ12 (24)

The initial conditions are ρ11(0) = 1, ρ22(0) = ρ12(0) =
ρ21(0) = 0.

Our aim is to fit the model generated I(ω) with the real ex-
perimental observation and to extract our phenomenological
parameters η which is the strength of the dynamical disor-
der. We will use this to simulate the quantum dynamics of
the density matrix elements. One explains the experimental
observations provided one observes oscillations in the pop-
ulations and non-zero values of the off-diagonal elements of
the simulated density matrix i.e., coherences of order 600fsec.
The basic problem with linear absorption line shape is that its
broadening is due to both homogeneous and in-homogeneous
mechanisms. In our case the broadening is homogeneous due
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FIG. 2. Schematic line broadening information in 2-D photon
echo spectrum shown without cross peaks. The linewidth
due to homogeneous and in-homogeneous broadening are in
orthogonal directions as shown.

to dynamical disorder and thus we need to subtract the in-
homogeneous broadening due to static disorder. But thanks
to the 2-D photon echo spectroscopy one has the important
information about both homogeneous and in-homogeneous
broadening. We want to measure Full Width at Half Max-
imum (FWHM) of the homogeneously broadened peak. We
consider Fig 2 (a) of G. S. Engel et. al..3 The homogeneous
broadening is along the main diagonal (see figure 2 of this
manuscript). From the scale given in terms of nano-meters of
the figure 2(a) of G. S. Engel et. al.,3 the FWHM is about
≃ 10nm and the exciton peak occurs at 810 nm. This gives
the frequency broadening δω ≃ 2.87×1013Hz. In what follows
we take the experimental value of homogeneous broadening
δω from 2-D photon echo spectrum3 and it is well known in
FMO problem that site energy difference ∆ ≃ 100cm−1. The
resonance coupling J ≃ 100cm−1. With this experimental
information we plot the homogeneous broadened line shape
such that its FWHM is equal to 10nm and this gives us our
phenomenological parameter η = 0.01 (see the first graph of
figure 3).

C. Long coherences

We now have all the required parameters in Eq. (17) from
the experimental information, namely, η = 0.01, Jλ =
30, 000nm, and ∆ = 100cm−1. With these values we plot the
dynamics of the density matrix elements r(t), x(t), and y(t)
(see figure 3). We clearly see that the density matrix ele-
ments show oscillations upto 600fsec thus corroborating the
experimental observations of G. S. Engel et. al..3

IV. DISCUSSION

We have given a Two Component Phonon Spectrum
(TCPS) model for the FMO problem which consists of a sys-
tematic phonon component and a stochastic component. We
argue that the stochastic component comes from the high fre-
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FIG. 3. Line shape function I(ω) for ∆ = 100cm−1, J =
100cm−1, η = 0.01, ǫsb = 100cm−1, ωc = 2 × π1013Hz
(upper left). This value of η i.e., 0.01 give the correct value
of homogeneous line-broadening δω ≃ 2.87 × 1013Hz. Other
three graphs show the time dynamics of r(t), x(t), and y(t)
for the above parameters. Here time is measured in femto-
seconds. Clearly one observe oscillations upto 600fsec.

quency phonons, ω > ωc. For these phonons the phonon
oscillations are much faster than the typical exciton transfer
frequency ωsys = J/~ which is of the order of ωc ∼ 1013Hz for
J = 100 cm−1 in the FMO problem. We expect and assume
the contributions from these high frequency phonons to have
a phase randomness. Hence this contribution can be effec-
tively treated as noise. We stress that the theory given by us
is phenomenological in nature. A rigorous theory justifying
the origin of dynamical disorder from phase randomness for
high frequency phonons has yet to be developed.

With the above model we have been able to explain the
experimental observations reasonably well. Estimating the
different parameters of the model from the experimental ob-
servations we are able to reproduce the coherence time of
600Femto sec.

Appendix A: Limiting solution of two-component phonon
model

Laplace transform of the system Eq (17) takes the form





s 0 2Jλ
0 s+ η −∆

−2Jλ ∆ s+ η









r̃(s)
x̃(s)
ỹ(s)



 =





1
0

−λJ/s





After inversion, in the long time limit one has

r(t) ≃ 1/2 + rational function(λ, J,∆, η)e
−t 4ηλ2J2

η2+4λ2J2+∆2

This takes the value 1/2 when t >> trelax = η2+4λ2J2+∆2

4ηλ2J2 .
.......
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