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Characterizing the process of reaching consensus for social systems
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A novel way of characterizing the process of reaching consensus for a social system is given. The
foundation of the characterization is based on the theorem which states that the sufficient and
necessary condition for a system to reach the state of consensus is the occurrence of communicators,
defined as the units of the system that can directly communicate with all the others simultaneously.
A model is proposed to illustrate the characterization explicitly. The existence of communicators
provides an efficient way for unifying two systems that a state of consensus is guaranteed after the

mergence.

The appearance of system-wide harmonic behaviors,
such as the globally coordinated movements for the units
of a system, the consensus of opinions for a public event
in a society, and etc., can be observed very often for dif-
ferent systems in different situations|IH5]. It is very re-
markable that there is no center control in the first place
for the occurrence of such global coordinations. Then, it
should be interested to know the kinematic scenario for
the arising of coordinated behaviors. In this Letter, we
intend to give a novel way of characterizing the process
of reaching the state of consensus for social systems. The
cornerstone for the characterization is the identification
of communicators, defined as the units of a system that
can directly reach all the others at some instant in the
time evolution of a system. Different units may start to
act as communicators at different times, but, the units
have remained to be in the same status once they be-
come communicators. Then, we can classify the com-
municators into different levels according to their first
appearance times. The primary communicators are re-
ferred to those appearing in the earliest, and they may
correspond to the hub-units which are those with large
values of degree in a social network. As the distribution
of hub-units has a strong effect on the scaling behavior of
the relaxation time towards the state of system-wide co-
ordination from a strongly disorder one|6], we will show
that the presence of communicators is the sufficient and
necessary condition for a system to achieve the state of
consensus. Thence, the process of reaching the state of
consensus can be viewed as the sequential appearance of
communicators. By employing the Watts-Strogatz net-
works for the social connections, we propose a simple
model for the transition matrix to illustrate the sequen-
tial pattern explicitly. The model study indicates that
the communicators may appear in different levels except
the case of regular Watts-Strogatz network for which, all
the communicators are primary, and the communicators
with larger values for the degree of connection, in gen-
eral, appear earlier. The characterization may provide
useful applications to different situations. An example
of applications, the mergence of two groups, is given. As
two groups, which have the respective state of consensus,

are merged together, our characterization can provide an
efficient way of combination that guarantee the existence
of a reachable state of consensus for the combined sys-
tem.

Consider a system of N units with the communication
paths specified by the connection edges. The distribution
of edges is given by a N x N connection matrix I with the
entries given as 7,;; = 1 for the existence of a directional
edge from unit j to 4, and v;; = 0 otherwise. An attitude-
variable, denoted as x; for the unit ¢ with the value in the
range [0, 1], is assigned to an unit to represent its degree
of favor towards an event; the attitude can be viewed as
complete disagreement for the value 0, neutrality for 1/2,
and complete agreement for 1. As all variables take the
same value, z; = ¢ for ¢ € [0,1] and ¢ =1, 2, - - -, N,
the system is said to be in the state of consensus c. The
time evolutions of the variables z; in discrete time-steps
are given as

X(t+1)=M-X(t), (1)

where M is the transition matrix and X () =
(21 (t), 22 (t),- -, on (t))" with the superscript 7 for the
transpose. The off-diagonal entry m;; of the matrix M
gives the fractional rate of the influence from unit j to
unit ¢, and the diagonal entries m;; defines the fractional
rate of persistence on the z; value. The explicit form
of M depends on the model, but we assume that the
feedback from the self-persistence and the environmen-
tal influence is positive, this renders the matrix M to be
non-negative..Furthermore, the fractional rates are nor-
malized, Zjvzl m;; = 1fori=1,2,---, N, then, the
x; values always lie in the range [0, 1] during the course
of time evolution. These constraints for the matrix M
make the transpose of M, M7, to be a stochastic matrix.

As M is a non-negative square matrix, the Perron-
Frobenius theorem can be employed to assert the prop-
erties of the leading eigenvalue and the corresponding
eigenvectors[§]. Here, we establish a theorem, which gives
less restriction on the entries of M than the Perron-
Frobenius theorem and provides the central theme for
characterizing the process of reaching the state of con-
sensus in a system. As the theorem followed by its proof
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are given below, here we summarize the notation con-
ventions and the corresponding definitions used in the
theorem and the proof. (i) A bar is placed over the head
of a vector, say X, to denote a stochastic vector asso-
ciated with the stochastic matrix M7, a stochastic vec-
tor is subject to the conditions that the components are
positive and the sum of the components equals 1. (i)
Different types of norm for a vector are used for con-

venience: || X |oois the super-norm of the vector X,
defined as || X, = max {|z;|,0 <i< N}; || X]||; is the
one-norm, defined as || X[, = S, |#]; and | X||, is

the two-norm, defined as || X ||, = (3, xf)lm, Different
types of norms are equivalent. (iii) The bracket of two
vectors, (X,Y) = Zfil x;y;, denotes the inner product
of X and Y.

Theorem: Suppose there exists an unit, say «, which
can connect every other unit by a path of length ng, that
is, the entries of the a-th column of M™ are positive.
Then, every trajectory of solution for Eq. () is leaded
to a state of consensus,

X (k) = eI as k — oo. (2)

Here, I denotes the column vector with each entry 1, and
the ¢ value, which signifies the state of consensus, is given
as

c=(X(0),4), 3)

where X (0) is the initial state of the system, and A is the
eigenvector of M™ with eigenvalue 1, M™ - A = A. Here,
the existence and the uniqueness of A are guaranteed
by the Perron-Frobenius theorem|8]. For the speed of

convergence, there exists r > 1 and 0 < A < 1 such that
| X (k) = eI [loo< rA" || X (0) = €I [|oo - (4)

Moreover, the condition for leading to Eq. (@) is also
necessary.

We first give the proof for the sufficient condition by
showing the equivalent form of Eq. (),

X (k) —cI|l, <A/l X (0) —eIll,,  (5)

held for the system evolving to the time step k with & >
ng, where [k/no] is the integer part of k/ng. To show the
inequality of Eq. (@), we consider the dynamics of the
stochastic matrix M7,

Y(k)=M"-Y(k-1). (6)

As M™ has a positive column, the matrix (M7)"® has a
positive row. By defining

T—imin{[(MT)no]ij’1§j§N}’ (™)

we have 0 < 7 < 1, this ylelds 0 < A < 1 for A\ =1— 7.
Following the theorem shown the Appendix of Ref. [7],
we have

| (7 @ = Z @)|| <Y 0 - Z ),

(8)
for k > ng, where Y (0) and Z (0) are two different initial
states for the dynamics of Eq. (@)). Furthermore, because
of M™ - A = A, we have

1

(M™ - (X (0) —cl), A) =0, )

with ¢ given by Eq. @)). Then, Eq. (@) is followed from
Eqs. @) and (@). To see this, we first notice that

| M* - X (0) = eI, = [|M*- (X (0)—cD)||,. (10)

Then, based on Eqs. (@) and (I0) we have

M- X (0) = e, = ZN: ‘<X (0) — eI, (MTY* - (I, —K)>‘ ,

(11)
where 1, is a column vector with only one non-zero en-
try of the value 1 locating at the a-th row, that is,
Zivzl I, = I. The Cauchy inequality is further applied
to the right hand side of Eq. ([ to obtain

X (k) = e, < K3 X (0) = eI {i |- (1. —K)Hl},

(12)
where K is the constant of equivalence between the two-
norm and one-norm. Finally, we apply Eq. (8] to the
second factor on the right hand side of (I2]) to obtain

IX (k) — eI, <2- N - K3 - A8V X (0) = eI|],, (13)

where we use the fact, ||, — Al|, < [[Z.l, + ||A]], = 2.

For the proof of necessary condition, we set the initial
state as X (0) = Zgzl 1, and assume that the state of
consensus is reached as

X (k)y=M"-X(0)—cl (14)

for k — oo, where the ¢ value is ¢ = Zgzl Co With ¢, cor-
responding to the value for the state of consensus when
the initial state is I,,. By observing that the a-th column

of M*is M* - I, we write
MM =[M"- I, M* - L, -, M* - Iy]. (15)
Then, based on Eq. (I4) we have
MF — [eI,eol,- - - en] (16)

for sufficiently large k. Suppose that all ¢, = 0 for a =
1,2, -+, N, this contradicts with the fact that p (M) =
p(M7™) =1, where p (M) is the spectrum radius of M.



Thus, there is at least one ¢, # 0 in Eq. (), and this
gives the condition in the theorem as necessary.

Based on the theorem, we define the unit o as a com-
municator with the first appearance time ng, if ng is the
smallest one among all integers n that the a-th column
is positive for the matrix M™. Since the a-th column
remains to be positive for M™ with n > ng if it is pos-
itive for M™°, an unit once become a communicator, it
remains to be a communicator afterwards. Thus, we can
classify the commutators into the primary, the secondary,
and etc. in the order of the first appearance time from
the earliest to the latest, and characterize the process of
reaching a state of consensus by the sequential appear-
ance of communicators. However, the theorem does not
imply that all units have to become commutators before
reaching the state of consensus, although this may occur
for some forms of M.

For the purpose of illustration, we consider a simple
model for the transition matrix M. The fractional rate
for the persistence of the present attitude is assumed
to be the same for all units and given by the parame-
ter s with the setting m;; = s, where 0 < s < 1 and
i = 1,2,-- - N. For the off-diagonal entries, we as-
sume that the environmental influence comes from the
connected neighbors given by the connection matrix I.
Moreover, the average of the attitudes of the neighbors
is used to represent the social atmosphere faced by an
unit. These amount to set the off-diagonal entries as
mi; = (1—8)7,;;/2, where v,; are the entries of T,
and z; = E;\Ll 7,;; is the inward degree of the unit .
The undirected Watts-Strogatz networks are used to de-
fine the connection matrices I'. We first place N units
around a circle with the degree of an unit kg connect-
ing to the right and to the left neighbors symmetrically;
then a value, called rewiring probability p, is assigned to
rewire the edges randomly|9]. Consequently, the mem-
bers of Watts-Strogatz networks have different degrees
of randomness from regular lattices (p = 0) to random
graphs (p=1). For a symmetric I, the matrix M is
symmetric and stochastic. Then, the eigenvector of the
eigenvalue 1 for M™ is A = (1/N) I, this leads to the
state of consensus as the mean value of the initial state,
c = Zil x; (0) /N, which gives the state of consensus
¢ = 1/2 for a strongly disorder initial state. By setting
set N = 1000, kg = 4, and p = 0.1 for the network and
s = 0.3 for the self-persistence, we show the results in
Fig. 1(a) for the first appearance time t. of a communi-
cator n in a trajectory from a strongly disorder state to
the state of consensus ¢ = 1/2 (the upper part) and the
corresponding degree of connection k of the communica-
tor n (the lower part). The results indicate that there
does not exist a definite relation between the first ap-
pearance time of a communicator and its degree of con-
nection. However, the corresponding k values, in general,
are larger for the communicators that the t. values are

smaller as shown in Fig. 1(b), where, based on the re-
sults of Fig. 1(a), the average of the first appearance
time of the communicators with the same k value, (t.),
as a function of k is shown. It is worthy to notice that
contrary to the sequential appearance of communicators
for the Watts-Strogatz networks with p # 0, all units
appear to be communicators simultaneously for regular
lattices (p = 0) owing to the indistinguishability between
the units of the system.

[Figure Caption|Fig.1: (a) The first appearance time
of a communicator, t. (the upper part), and the corre-
sponding degree of connection, k (the lower part), for
different units of the system, n, where the unit n is la-
belled in accordance with the order of the ¢, value from
small to large. (b) The average value of the first appear-
ance times of the communicators, (t.), as a function of k
for the results shown in (a).

The identification of communicators may provide a
powerful tool for social dynamics. Here, we give an exam-
ple by considering a merger between two systems. Sup-
pose that two systems, P and @, evolve according to the
dynamics of Eq. () with the transition matrices Mp
and Mg which have the dimensions Np and Ng. We
further assume that both P and @ are able to achieve
some states of consensus, the theorem then implies that
there exists integers n, and n4 such that M;p and Mg"
have a positive column locating respectively at, say, the
ath and the Sth. As the two systems are merged to form
the system R = P U @ by adding some connections be-
tween P and @, the resultant transition matrix Mg takes
the form of

([ Mp C
MR_<CT MQ>7 (17)

where the matrix C' specifies the connections between P
and @, and C7 is the transpose of C'. Note that because
of the added connections, some entries of Mp and Mg
may have to be modified; but, the positive entries remain
to be positive after the modification, it does not affect
the result obtained below. By defining n, = [n,,n,], the

—~

least common multiple of n, and ng, and setting Mp =

np\ Nr/n — n,\ /M
(Mg?) "/™ and Mg = (MQ‘I) , we then have

Mp 0
MRt > P ). Mg, 18
R _< 0 My R (18)

which yields

ML > Mp-Mp Mp-C | (19)
Mg -C™ Mg - Mo

Suppose that the new connection is added between the
unit o of P and the unit 8 of @, this gives a positive entry



(a, B) of C. Since the ath column of Mp and the ﬁth col-
umn of M, Q are p051t1ve we have the Sth column of M, pC

and the ath column of MQ -C7 being positive. Hence, the
ath and the (Np 4+ £)th column of MgTH are positive,
and a state of consensus for the merged system R can be
achieved according to the Theorem. This gives the con-
clusion that only one connection between two communi-
cators of different systems is required for the existence of
a state of consensus in the merged system. However, the
efficiency of reaching a consensus for the merged system
depends on the levels of the connected communicators
of different systems. To show the dependence explicitly,
we consider the mergence of two systems defined in the
Watts-Strogatz networks with N = 100, kg = 4 for p =0
and 0.1. The previous model for the transition matrix
with s = 0.3 is used to classify the communicators of two
systems. All units are the primary communicators for
the system p = 0, and the numbers of communicators at
different levels are different for the system p = 0.1. By
connecting a fixed unit of the system p = 0 to one of the
communicators at a given level in the system p = 0.1, we
use the enlarged transition matrix to calculate the time-
steps of reaching the state of consensus from a strongly
disorder state, and then calculate the average value over
the time-steps required for different communicators at
the same level in the system p = 0.1. The results are
shown as the plot of the number of the average time-
steps of reaching the state of consensus ¢ = 0.5, denoted
as (T), vs. the level of the connected communicator of
the system p = 0.1, denoted as L, in Fig. 2. Our results
indicate that the connection between a pair of primary
commutators belonging to different systems provides the
minimal and the most efficient way to have the merged
system reaching the state of consensus.

In summary, we present a novel way for characteriz-
ing the process of reaching the state of consensus in a
social system. The characterization provide not only the
insights on the occurrence of system-wide harmonic be-
haviors but also a useful tool for the study of social dy-
namics. The foundation for the characterization is the
theorem we establish, which can be viewed as an impor-
tant extension of the Perron-Frobenius theorem.
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