
Original Article

Premium and reinsurance control of an ordinary insurance
system with liabilities driven by a fractional Brownian motion
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This paper investigates the problem of premium and reinsurance control of an ordinary insurance

system when liabilities are driven by a fractional Brownian motion. The reserve equation is considered

using two alternative routes: the first with no reinsurance option, and the second with some

controllable proportional reinsurance coverage. Recent results from the theory of fractional linear-

quadratic control (fractional calculus) are discussed, partially extended and utilized to derive compact

analytical formulae for the optimal functionals of the safety loading (consequently for the respective

premium rate), and the volume of the retained risk (or equivalently, for the proportion of the

reinsurance coverage).
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1. Introduction

The Cramer-Lundberg model sets the insurance systems and their problems within a

dynamic framework. The vital mechanism of a typical insurance system is described by

the following simple mathematical dynamic equation:

F (t)�F (0)�P �t�S(t) t]0; (1)

where F(t) is the reserve value at time t, F(0) is the initial capital of the insurance system,

P is the constant rate of premium which inflows in the system per unit time, and S(t) is

the aggregate claims (liabilities) up to (and including) time t.

The approach above has been fully reviewed by De Finetti (1957), who proposed a

modified random walk for the reserve process with a reflecting barrier at a predefined

level, and Borch (1967) who provided further extension assuming that the premium rate P
may not be constant, but a smoothly controlled item. Then, the premium rate is

composed of the net premium rate p, which equals the constant expected claim rate plus a

variable safety loading u(t) (expressed as a percentage of p). Hence, the basic Eq. (1)

becomes
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F (t)�F (0)�g
t

0

(1�u(s)) pds�S(t): (2)

The ideal mathematical framework for the solution of the problem above has been proved

to be the control theory, and especially the stochastic approach. Vandebroeck & Dhaene

(1990), Martin & Löf (1994) and Zimbidis & Haberman (2001) investigated the problem

of insurance pricing in a discrete control setting, while Ruohonen (1980), Garrido (1989)

and Norberg (1999) employed a continuous mathematical framework.

In this paper, we adapt the continuous formulation described by Eq. (2), and investigate

two different management decisions with respect to the level of the safety loading, u(s),

s �[0,t] and the level of the reinsurance coverage, 1�u(s), s �[0,t], 05u(s)51, assuming that

the liabilities of the system S(t) are driven by a fractional Brownian motion.

Kolmogorov (1940) first introduced such a process, while Mandelbrot & Van Ness

(1968) proposed and investigated potential applications of fBm in financial models forty

years ago. More recently, and motivated also from further applications in other fields

(hydrology, telecommunications, queuing theory) fractional Brownian motion and the

respective fractional noise have gained much popularity. The fBm is considered the ideal

tool for modeling the long-range dependence or long-memory which is suspected to be

present in the financial or insurance market. However, although fBm is suspicious of any

presence behind different financial or insurance data, this is not fully justified yet,

especially for the insurance part.

Of course there are certain empirical studies, such as Cheung (1993) and references

cited therein, that shows the existence of ‘long memory’ in financial time series (e.g., for

the exchange rates). Shiryaev (1999) provides an adequate investigation with respect to the

modeling of financial quantities and fractional Brownian motion. Beran (1994) presents

different statistical methods and tools that can identify the ‘long-range dependency’

within time series data. One of the main difficulties for this test is: how to distinguish

whether there is ‘dependency’ or ‘non-stationarity’ in the available time series. This

difficulty is further enlarged when we have a very small set of data.

Finally, we should state that fractional noise is a process that possesses both the ‘Joseph

and Noah effect’. This characterization is due to Mandelbrot (1968) who was inspired

from the biblical Joseph (with the long sequence of seven good and bad harvests) and

Noah (who survived with his family an enormous flood), providing the names for the

cases for strong dependency and extremal events (see the discussion in Embrechts et al.

(1999)).

2. Stochastic calculus and linear control for fractional Brownian motion

In the remainder of the paper all random variables and processes are defined on a given

complete probability space (/V;F ;PH); where V is the sample space, F is the s-algebra
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generated as the PH-completion of the natural filtration of the WH process, and PH is the

respective probability measure.

The WH�fWH(t); t]0g process is assumed to be a fractional Brownian motion with

a Hurst exponent H; where 0:55H51; and may be regarded as the fractional time

derivative (refer to Jumarie (2005)) of the Gaussian white noise. The basic properties of

such a process are:

Pr[WH(0)�0]�1;

WH(t) is a F measurable function (random variable) for each t �R�; with E[WH(t)]�0;

E[WH(s)WH(t)]�1
2

[s2H�t2H�js�tj2H] for any s; t �R�:

The expectation operator E[ ] is applicable using the PH probability measure.

Using the properties above and Kolmogorov’s continuity criterion, we know that

fractional Brownian motion has a version with continuous sample paths with probability

one, but these paths are nowhere differentiable. The physical derivation of such a process

may be found in Mandelbrot & Van Ness (1968). The Hurst exponent is indicated with H
due to the climatologist Hurst (1951) who first observed that nH with H"1

2
is required for

weak convergence of the centered cumulative sums in his statistical analysis describing the

yearly water flows of the Nile river (refer to Embrechts et al. (1999)).

Furthermore, we should state that fBm is a Gaussian process, self-similar with

stationary increments exhibiting long-range dependence. Below, we provide a short

mathematical description for those properties (for further details, refer to Nualart (2006)).

/WH(t) is a Gaussian process if for all 05t15t25 � � �5tn the distribution of the

random vector (/WH(t1); WH(t2); . . . ; WH(tn)) on R n is normal or Gaussian.

/WH(t) is a self-similar process if for any constant s �R�; the processes fsHWH(t); t]

0g and fWH(st); t]0g have the same probability distribution.

/WH(t) has stationary increments when for any s; t �R� the increment of the process in

the interval [s,t] follows the same probability distribution (normal with zero mean and

variance equal to js�tj2H):

/WH(t) exhibits long-range dependence when the following summation of the co-

variances diverges a
�

n�1
E[WH(1)(WH(n�1)�WH(n))]��; although each term of the

summation tends (slowly) to zero.

Obviously, for the special value of the Hurst exponent H�0:5; the process is reduced to

the standard Brownian motion. For H"0:5; the respective process WH is outside the

‘wonderful world’ of Markovian, Martingales or even semi-Martingales processes. So, the

classical stochastic calculus, the respective theory of integration, and the other powerful

tools of stochastic analysis are not, as yet, available, although there are certain simple

integral transformations connecting the fractional Brownian motion with standard

Brownian motion (refer to Norros et al. (1999) and Embrechts et al. (1999) for the

formula below).

WH(t)�c(H)g
R

[((t�x)�)H�1=2�((�x)�)H�1=2]dW(t): (3)

Significant research efforts have been made in two directions.
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a. Stochastic integration, i.e., to establish an analogous theory of stochastic integration

retaining the good properties of the Ito integral as the zero mean property (refer to

Lin (1995), Dai & Heyde (1996), Decreusefond & Üstünel (1998), Alos et al. (1999),

Duncan et al. (2000), Carmona & Coutin (2003) and Hu (2005)).

b. Stochastic control, i.e., to launch a concrete general theory for the control and

optimization of systems driven by fractional Brownian motion (refer to Kleptsyna

et al. (2003) and Hu & Zhou (2005)).

2.1. Stochastic integration for the fBm and the Malliavin derivative

The first attempts by Lin (1995) and Dai & Heyde (1996) to define an integral with

respect to the fractional Brownian motion with a Hurst exponent H�0:5 resulted in a

stochastic integral which does not possess the zero-mean property. Their approach

was rather standard, defining the stochastic integral as the limit of Riemann sums in

L2 (/V;R) � the space of real-valued square integrable functions. As the absence of zero-

mean property is not convenient for either the theoretical development or practical

(usually financial) applications, new proposals have been raised (refer to Decreusefond &

Ustunel (1998), Alos et al. (1999), Duncan et al. (2000) and Carmona & Coutin (2003)).

These alternative proposals have been developed using the techniques of Malliavin

calculus and Wick product.

Hence, given a time interval [0,T ], a function F continuously differentiable that also

satisfies an exponential growth condition and H�0:5; we can define the Wick stochastic

integral with respect to fractional Brownian motion as follows

g
T

0

F (WH(t))2dWH(t)�g
T

0

F (WH(t))dWH(t)�Hg
T

0

F ?(WH(t))t 2H�1dt: (4)

The 2 symbol corresponds to the Wick product, while f
T

0
F (WH(t))dWH(t) is the path-

wise Riemann-Stielges integral. That is well defined using the results of Young (1936) for

H�0:5 given that F is continuously differentiable.

Moreover, the following result holds if F?�F

g
T

0

F (WH(t))dWH(t)�F(WH(T))�F(0) (5)

It is proved that the Wick stochastic integral described above has the zero-mean property

(refer to Duncan et al. (2000)).

2.1.1. The Malliavin derivative. Malliavin (1978) launched the Malliavin calculus in

order to provide a probabilistic proof to the Hormander hypoellipticity theorem. It is

actually an infinite dimensional differential calculus with two basic operators � the

Malliavin derivative D, and its adjoint the divergence operator d. Actually, the Malliavin

derivative is a linear map from the space of random variables to a space of processes

indexed by a Hilbert space. Below, we formally provide the definition of the Malliavin

derivative for a special category of random variables F that may be written as
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F�f (WH(h 1); WH(h 2); . . . ;WH(hn))

where f is infinitely differentiable with all partial derivatives polynomially bounded,

WH(h 1); WH(h 2); . . . ;WH(hn) are random variables jointly zero-mean Gaussian, and

E[WH(hi)�WH(hj)]�
1
2

[h2H
i �h2H

j �jhi�hj j
2H

]�hhi; hji for any i,j, while h1, h2, . . . , hn

are elements of the respective index Hilbert space.

Then, the Malliavin derivative of the random variable F is defined as

DHF �
Xn

i�1

@

@xi

F

�
WH(h 1);WH(h 2); . . . ;WH(h n)

�
hi:

If WH(hi)�f
T

0
hi(t)2dWH(t) i�1,2, . . . n, i.e., stochastic integrals with respect to fBm,

then we may assume the derivative DHF is a stochastic process indexed by the interval

[0,T ] and write

DH
t F �

Xn

i�1

@

@xi

F

�
WH(h 1);WH(h 2); . . . ;WH(hn)

�
hi(t):

The existence of the Malliavin derivative may be extended to a wider domain of random

variables. It may also be shown some kind of a chain-rule. Finally, we should stress that a

random variable may be (Malliavin) differentiable but not continuous (refer to Nualart

(2006) for further details).

2.2. Stochastic controls for linear systems driven by fractional noises

We assume the general format of a linear stochastic controlled differential equation

dx(t)�(A(t)x(t)�B(t)u(t))dt�(C(t)x(t)�D(t)u(t)�z(t))dW H(t) (6)

where x(t) is the state variable, u(t) is the control variable, A(t), B(t), C(t), and D(t) are

given essentially bounded deterministic (matrix-valued) functions of t, z(t) a given real-

valued essentially bounded function of t, and WH�fWH(t); t]0g is a fractional

Brownian motion with a Hurst exponent H:

Then, we denote with UH the class of (FH
t )-adapted processes u, where u�{ut, t]0},

for which the system admits a unique strong solution xu. Of course, then xu is an

/(FH
t )-adapted process. Actually, for control purposes, we are interested only in closed-

loop policies. Therefore, we initiate a sub-class of admissible controls as the class UH
ad of

those us in UH which are (FH
t;u)-adapted processes, where (FH

t;u) is the natural filtration of

the corresponding state process xu. Then, the pair (u, xu) is called an admissible pair.

Now, we introduce the functional

J(u):�J(x 0; u)�E

�
g
T

0

(x �(t)Q(t)x(t)�u �(t)R(t)u(t))dt�x �(T)Gx(T)

�
(7)

where, Q(t), R(t) and G are positive definite matrices.
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Hence, the pair (uopt, xu
opt) is defined as the optimal pair if

J(uopt)� inffJ(x 0; u); u � U adg (8)

while the J(uopt) is established as the optimal cost for the system.

As regards the theoretical results with respect to the derivation of the optimal solution

uopt for the system described by expressions (6) and (7), we have the following two basic

theorems.

THEOREM 2.1 Assume that for a.e. t �[0,T], z(t)�0, the optimal solution for the system of

expressions (6) and (7) is determined via the following feedback formula

uopt(t)�K(t)�x(t) (9)

where K(t)�(K1(t), . . . ,Km(t))* satisfies the equation below

K�(t)�R(t)�U(t)�B(t)�g
T

t

U(s)(Q(s)�K�(s)�R(s)�K(s))ds

�D(t)�g
T

t

g
s

0

U(s)�f(s?; t)�(C(s?)�D(s?)�K(s?))�(Q(s)�K�(s)�R(s)�K(s))ds?ds

�G �U(T)

�
B(t)�D(t)g

T

0

f(s?; t)(C(s?)�D(s?)�K(s?))�ds?
�
�0; a:e: s � [0;T ] (10)

while

f(s; t)�H(2H�1)js�tj2H�2
(11)

U(t)�x2
0 �E

�
exp

�
2g

t

0

(A(s)�B(s)�K(s))ds

�g
t

0

g
t

0

f(s; s?)(C(s)�D(s)�K(s))(C(s?)�D(s?)�K(s?))�dsds?
��

: (12)

Proof. Refer to the second special case of Theorem 4.1 of Hu & Zhou (2005).

Theorem 2.1 (fully proved in Hu & Zhou (2005)) may solve the advanced model with

reinsurance, as described in Section 4. As regards the simple model with no reinsurance,

we use another Theorem 3.1 from Hu & Zhou (2005). The additional problem that must

be dealt with is the existence of the non-zero function z(t). This complication is eliminated

by the proof of the following lemma.

LEMMA 2.1 Let x(t) be the solution of the uncontrolled version of system described in Eq.

(6), i.e., u(t)�0. If A(t) is a measurable and essentially bounded deterministic function in

t, while C(t)�0 a.e. t �[0,T], then the Malliavin derivative of x(t), represented by DH
t x(t)

can be represented as

21Brownian motion



DH
t x(t)�exp

�
gA(t)dt

�
�
�
c�g exp

�
gA(t)dt

�
�z(t)�f(r; t)dt

�
(13)

where c is a constant (see expression (19)) and consequently, the Malliavin derivative of

x(t) is bounded.

Proof. The solution of Eq. (6), x(t), is understood as

x(t)�g
t

0

A(s)x(s)ds�g
t

0

z(s)dW H(s): (14)

We may compute the Malliavin derivative of x(t) using the results of Duncan et al. (2000)

(see especially Theorem 4.2 of their paper). We have

DH
r x(t)�g

t

0

A(s)�DH
r x(s)ds�g

t

0

z(s)�f(r; s)ds �r; t � [0;T ] a:s: (15)

We fix r and denote z(r; t):�DH
r x(t): Then, we may rewrite Eq. (15) in its differential

format

dz(r; t)�A(t)�z(r; t)�dt�z(t)f(r; t)dt

or equivalently,

d

dt
z(r; t)�A(t)�z(r; t)�z(t)f(r; t) (16)

with

z(r; 0)�DH
r x(0)�0: (17)

This is an ordinary linear differential equation, so the solution can be represented as

z(r; t)�exp

�
gA(t)dt

�
�
�
c�g exp

�
gA(t)dt

�
�z(t)�f(r; t)dt

�
(18)

where c is determined by the initial condition (17).

c��g exp

�
gA(t)dt

�
�z(t)�f(r; t)dtj t�0: (19)

The proof is completed.

THEOREM 2.2 Assume that for a.e. t �[0,T], D(t)�0, Q(t)]0, and R(t)�dI for some

given d�0 and G]0. Then, the optimal solution for the system of expressions (6) and (7),

is determined again via the following feedback formula

uopt(t)�K(t)�x(t) (20)

where

K(t)��R�1(t)�B +(t)�p(t) (21)

and p(t) is determined by the solution of the following Riccati equation
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d

dt
p(t)�2p(t)

�
A(t)�C(t) �g

t

0

f(t; s)C(s)ds

�
�Q(t)�B(t)R�1(t)B +(t)p 2(t)�0 (22)

with the terminal condition

p(T)�G: (23)

Proof. Since the Malliavin derivative of x(t) is bounded (see Lemma 2.1), we follow the

exact methodology and arguments of the proof of Theorem 3.1 in Hu & Zhou (2005).

That completes the proof.

3. The basic version of the framework model with no reinsurance

We consider a typical insurance system with an initial reserve. Variable premiums inflow

while claims (liabilities) outflow at a stochastic pattern that may be modeled with S(t) a

drifted fractional Brownian motion under the respective measure PH: So, the system is

well described by the integral Eq. (2) or its equivalent differential format

dF (t)� [1�u(t)]�m(t)�dt�dS(t) (24)

where

dS(t)�m(t)�dt�s(t)�dW H(t): (25)

A similar approach has been proposed by several authors, such as Højgaard & Taksar

(1998) and Schmidli (2001), assuming that the aggregate claims S(t) may be approximated

by a drifted Brownian motion given that the insurance portfolio ‘is made up of a large

number of independent individual risks, none of which is large enough to affect the total

result significantly’ (Norberg (1999)).

In our model, we extend the specific approach by relaxing the assumption of

independence of the individual risks and incorporating some kind of dependence as far

as the Hurst exponent deviates from the critical value of H�0.5, which corresponds to the

traditional Brownian motion. Furthermore, we can also relax the assumption for the

small size of the claims. As we have seen in the introductory section, fractional noise is a

process that exhibits both the ‘Joseph effect’ and ‘Noah effect’. So, we may also model

insurance risks that require heavy-tailed distributions either for the inter-arrival times

(e.g., earthquake insurance) or for the amounts of individual risks (e.g., huge industrial

risks).

Additionally, if we consider that the reserve fund is also invested within a non-

defaulting bank account bearing a variable force of interest, say d(t), then the differential

equation governing the reserve process becomes

dF (t)� [d(t) �F (t)�m(t)�u(t)]�dt�s(t)�dW H(t): (26)

Obviously, Eq. (26) represents the mechanisms of a potentially controlled process, where

u(t) is the control variable based on the decisions of the insurance manager about the level
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of the respective safety loading of the premium rate at time t; WH(t) is the input variable

reflecting the fluctuation of the claim experience; and F(t) is the state variable which

represents the reserve value at time t.

Having described the vital mechanism of the insurance system with Eq. (26), we can

proceed with the exploration of the critical problem of the premium determination P(t) at

time t or equivalently the determination of the safety loading u(t) at time t, as

P(t)�(1�u(t))�m(t) (27)

We solve this problem assuming a finite control horizon up to time T with no reinsurance.

The problem of premium determination requires a criterion that will be optimized

under the constraint of the regulating Eq. (26). Such a typical and well-used criterion is

described by the minimization of the expectation of a quadratic functional:

min
u(t)

E

�
g
T

0

b(t) u2(t)dt�[F (T)�Fp]2

�
(28)

where b(t) is a weighting factor.

The last expression (28) may have a good verbal interpretation in the insurance context.

Normally, the clients of an insurance company require small and smooth (as possible)

premium rates, so the insurance manager should keep a constant zero (as possible) level

for the safety loading u(t) for any t �[0,T], i.e., the manager aims to minimize the

following integral

g
T

0

b(t) u2(t)dt: (29)

Ideally, if u(t) equals zero for any time t, then we obtain the smoothest pattern for premiums

and the smallest value for expression (29). This simple strategy cannot be fully adapted as a

constant zero safety loading increases dramatically the probability of ruin. An alternative

route for smooth premium rates with increased security is the determination of a high

constant positive safety loading. But this approach will ultimately explode the level of re-

serve to undesirable values. So, the manager should balance his decisions, and, conse-

quently, his expectations between a small value for expression (29) and some bounded value

for the final reserve F(T) near the desired final value Fp at the end of a certain period, T.

The balancing effort is formulated and obtained by the introduction of the weighting

factor b(t). The stochastic differential system, described by expressions (26) and (28), may

be solved using Theorem 2.2 analyzed in Section 2 and substituting

A(t)�d(t); B(t)�m(t); C(t)�0; D(t)�0; z(t)��s(t); Q(t)�0; R(t)�b(t); G�1 (30)

in the basic Eq. (22) and the final condition (23). So, we derive the following differential

equation

d

dt
p(t) �d(t)p(t)�

1

b(t)
m 2(t)p 2(t)�0 (31)

with
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p(T)�1: (32)

The general solution of the ordinary differential Eq. (31) under the terminal condition

(32) may be easily verified as the following one (see Polyanin & Zaitsev (2002), Eq. (31) is

characterized as a Bernoulli type)

1

p(t)
�exp

�
2g d(s)ds

�
�
�
c 1�exp

�
2g d(s)ds

�
�g

t

0

1

b(s)
m 2(s) �exp

�
�2g d(s)ds

�
ds

�
(33)

where c1 is a constant determined by the terminal condition (32). For the special case

where d(t)�0 we obtain,

p(t)�
1

1 � g
T

t

m 2(s)

b(s)
ds

: (34)

Hence, the optimal control for the safety loading is

uopt(t)�K(t) �(F (t)�F p) (35)

or equivalently,

uopt(t)��
m(t)

b(t)

1

1 � g
T

t

m 2(s)

b(s)
ds

(F (t)�F p): (36)

4. The advanced version of the framework model with reinsurance

We extend the basic structure of the typical insurance system incorporating the standard

concept of proportional reinsurance coverage. Then, the development of the surplus

reserve follows the general equation below:

[Reserve]�
Initial

Reserve

� �
�

Premiums

Received

� �
�

Claims

Paid

� �
�

Reinsurance

Premiums

� �
�

Claims recovered

by the Reinsurer

� �
:

The mathematical formulation of the process described in the expression above is

provided by the following integral equation

F (t)�F (0)�g
t

0

(1�ur(s))m(s)ds�S(t)�g
t

0

(1�j(s))m(s) (1�v(s))ds�g
t

0

v(s)dS(s) (37)

or using the equivalent stochastic differential format and adding the investment

parameter d(t) (the force of interest), we obtain

dF (t)�d(t)F (t)dt�(1�ur(t))m(t)dt�(1�j(t))m(t)(1�v(t))dt�v(t)dS(t) (38)
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where F(t), F(0), are defined in the same way as at the beginning of Section 3, while ur(t) is

the safety loading of the insurer at time t, t�0; j(t) is the safety loading of the reinsurer at

time t, t�0; 1�v(t) is the proportion of the reinsurance coverage at time t, v(t) �[0,1] for

any t�0 or equivalently, v(t) is the proportion retained by the insurer at time t.

Similarly, with the arguments and procedures adapted in Section 3, we reformulate the

differential Eq. (38) as

dF (t)� d(t)F (t)� ur tð Þ� 1�v tð Þð Þj(t½ Þ½ �m(t)�dt�s(t)v tð ÞdW H tð Þ (39)

where W H(t) is a fractional Brownian motion under the respective measure PH:

We must also notice that normally, the following inequality does truly hold

ur(t)5j(t) for any t: (40)

The supporting argument for the validity of the expression above is the ‘no arbitrage’

opportunity. If there exist t0 such that ur(t0)�j(t0), then the insurer has the opportunity

to make risk-less profit by ceding the total risk to the reinsurer paying a reinsurance

premium smaller than the insurance premium.

Having described the mechanisms of the advanced version of the framework model

which includes a reinsurance option, we proceed with the exploration of the basic

question, as in Section 3, i.e., we determine the two potentially controlled variables ur(t)

and v(t).

We define a new quantity v(t) such that

ur(t)�j(t)�v(t): (41)

This new variable v(t) represents the difference between the insurer’s and reinsurer’s

loading, and according to inequality (40), should be normally positive. Then, Eq. (39)

becomes

dF (t)� [d(t)F (t)�[v(t)�v(t)j(t)]m(t)]dt�s(t)v(t)dW H(t) (42)

or in matrix format

dF (t)� d(t)F (t)�[m(t) m(t)j(t)]
v(t)

v(t)

� �� �
dt�[0 �s(t)]

v(t)

v(t)

� �
dW H(t): (43)

As objective function, we use a similar criterion as described before in expression (28)

min
v(t); v(t)

E

�
g
T

0

b(t) (v(t)�j(t)) 2dt�[F (T)�Fp]2

�
(44)

(expressions (28) and (44) are equivalent since ðv(t)�j(t)) 2�(j(t)�v(t))2�u r
2(t)):

The actual problem is described by the objective function (44) under the constraint of

the stochastic differential equation (43). We solve this optimization problem by applying

Theorem 2.1 described in Section 2, and substituting the general matrices with the specific

values

A(t)�d(t); B(t)� [m(t) m(t)j(t)]; C(t)�0; D(t)� [0 �s(t)];

Q(t)�0; R(t)�
b(t) 0

0 0

� �
; G�1

: (45)
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Hence, the optimal control for v(t) and v(t) is established as a feedback mechanism of

the reserve value

u(t)�J(t)�K(t)�(F (t)�Fp) (46)

where

u(t)�
v(t)

v(t)

� �
; J�

j(t)

0

� �
and K(t)�

K 1(t)

K 2(t)

� �
(47)

while K(t) is determined by the general Eq. (10) substituting the values determined by

relationships (45). So, we derive the following matrix integral equation

U(t)[b(t)K 1(t) 0]�[m(t) m(t)j(t)]g
T

t

U(s)�b(s)�K 1(s)ds

� [0 �s(t)]�g
T

t

g
s

0

U(s)�f(s?; t)�(�s(s?)�K 2(s?))(b(s)�K 1
2(s))ds?ds; a:e: s � [0;T ]

� U(T)

�
[m(t) m(t)j(t)]�[0 �s(t)]g

T

0

f(s?; t)(�s(s?)�K 2(s?))ds?
�
�0 (48)

where U(t) is determined via expression (12) as follows

U(t)�F 2(0)�E
�

exp

�
2g

t

0

(d(s)�m(s)�K 1(s)�m(s)�j(s)�K 1(s))ds

�g
t

0

g
t

0

f(s; s?)s(s)�K 2(s)�s(s?)�K 2(s?)dsds?
��

(49)

or equivalently we obtain a system of two integral equations as below

b(t)U(t)K 1(t)�m(t)g
T

t

U(s)�b(s)�K 1(s)ds�m(t)�U(T)�0 (50)

m(t)j(t)g
T

t

U(s)�b(s) �K 1(s)ds�s(t)�g
T

t

g
s

0

U(s)�f(s?; t)�s(s?) �K 2(s?)�b(s)�K 1
2(s)ds?ds

�m(t)j(t)U(T)�s(t)g
T

0

f(s?; t)�s(s?)�K 2(s?)ds?�0 (51)

The system above, in the most general format, cannot be solved analytically. So we

examine a special case which appears quite interesting, where the insurer does not actually

control its loading, but follows exactly the reinsurer’s policy. In that case, we find an

elegant result as regards the control of the retained risk or the proportion of reinsurance

coverage.

Special case: ur(t)�j(t)
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We consider the case where the insurer’s loading is fully equated with the level of the

reinsurer’s loading. This action offsets any undesirable and unaffordable losses for the

insurer, which may occur when there is a great distance between the two loadings: ur(t)

and j(t).

So, we put v(t)�0 for any t and consequently

ur(t)�j(t): (52)

Substituting the relationship (52) in the differential equation (39) we obtain

dF (t)� [d(t)F (t)�m(t)j(t)v(t)]dt�s(t)v(t)dW H(t): (53)

We solve the problem assuming a finite control horizon up to time T and using a

reduced version of the objective function compared with the basic version of the control

problem, i.e.

min
v(t)

Ef[F (T)�Fp]2g: (54)

Actually, the structure of expression (54) supports that the decision-maker of the

system penalize the large deviations between the desired final value Fp and the actual final

value F(T) of the reserve process. Alternatively, the decision-maker is trying to secure that

the system will finally arrive closely to the desired profitable (assuming that Fp�F(0))

financial position.

Hence, the actual problem is described by the objective function (54) under the

constraint of the stochastic differential equation (53). We solve this optimization problem

by applying Theorem (2.1) described in Section 2, and substituting the general matrices

with the specific values:

A(t)�d(t) ; B(t)�m(t)j(t) ; C(t)�0 ; D(t)��s(t) ; Q(t)�0; R(t)�0 ; G�1: (55)

Finally, the optimal control is established as a feedback mechanism of the reserve value

v(t)�K(t)�(F (t)�F p) (56)

where K(t) is determined by the general Eq. (10) substituting the values determined by

relationships (55). So, we derive a special integral equation described as Carleman type.

g
T

0

f(s; t)�K(s)ds��
m(t)

s 2(t)
j(t): (57)

The general solution of Eq. (57) is:

K(t)��aH �t 0:5�H �
d

dt g
T

t

�
w 2H�1 �(w�t) 0:5�H�

d

dw
�g

w

0

z0:5�H �(w�z) 0:5�H �
�
�

m(t)

s 2(t)
j(z)

�
dz

�
dw (58)

where
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aH �
G(2 � 2H)

2H � G(0:5 �H) � G(1:5 �H) 3
: (59)

The relationship (58) may be further simplified for the special case where

m(t)

s 2(t)
j(z)�

m

s 2
j; �t � [0;T ]: (60)

By removing the functional structure, the second integral in expression (58) may be easily

calculated using the Beta function, i.e.

g
w

0

z 0:5�H �(w�z) 0:5�Hdz� w2(1�H) �B(1:5�H; 1:5�H): (61)

Consequently,

d

dw g
w

0

z0:5�H �(w�z) 0:5�Hdz� 2(1�H)�w1�2H �B(1:5�H; 1:5�H): (62)

Substituting the last result (62) in the complex expression (58), we finally obtain a short

compact analytic expression for the feedback factor

K(t)��aH �bH �
m

s 2
j �t 0:5�H �(T�t) 0:5�H (63)

where

bH�2�(1�H)�B(1:5�H; 1:5�H): (64)

Using the general relationship between the Beta and Gamma functions, i.e.,

B(a; b)�
G(a) � G(b)

G(a � b)
; (65)

the recursive relationship for the values of the Gamma function, i.e.

G(a�1)�a�G(a) (66)

and substituting expression (63) in relationship (56), we finally obtain the rule for the

optimal functional for the retained percentage of risk via a typical feedback mechanism

v(t)��aH �bH �
m

s 2
j�t 0:5�H �(T�t) 0:5�H �(F (t)�F p) (67)

or equivalently

v(t)��
1

G(0:5 �H) � G(1:5 �H)
�

mj

2Hs 2
�t 0:5�H �(T�t) 0:5�H �(F (t)�F p): (68)

Keeping in mind that v(t) is a percentage in the interval [0, 1], we may easily conclude that

when the reserve exceeds the predefined desired value of the profitable level (F(t)�Fp)

then v(t)�0. That means the insurer will be fully reinsured passing the total risk to the

reinsurer.
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Table 1.

MFF(t)

t /H�0:5 /H�0:6 /H�0:7 /H�0:8 /H�0:9 /H�1:0

0 1,000 1,530 1,429 1,334 1,245 1,162

1 1,000 1,221 0,910 0,678 0,505 0,376

2 1,000 1,146 0,801 0,559 0,391 0,273

3 1,000 1,106 0,747 0,504 0,340 0,230

4 1,000 1,082 0,714 0,471 0,311 0,205

5 1,000 1,065 0,691 0,449 0,292 0,189

6 1,000 1,053 0,676 0,434 0,279 0,179

7 1,000 1,044 0,665 0,424 0,270 0,172

8 1,000 1,039 0,658 0,417 0,264 0,167

9 1,000 1,035 0,654 0,413 0,261 0,165

10 1,000 1,034 0,653 0,412 0,260 0,164

11 1,000 1,035 0,654 0,413 0,261 0,165

12 1,000 1,039 0,658 0,417 0,264 0,167

13 1,000 1,044 0,665 0,424 0,270 0,172

14 1,000 1,053 0,676 0,434 0,279 0,179

15 1,000 1,065 0,691 0,449 0,292 0,189

16 1,000 1,082 0,714 0,471 0,311 0,205

17 1,000 1,106 0,747 0,504 0,340 0,230

18 1,000 1,146 0,801 0,559 0,391 0,273

19 1,000 1,221 0,910 0,678 0,505 0,376

20 1,000 1.530 1,429 1,334 1,245 1,162

0,000

0,200

0,400

0,600

0,800
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1,200

1,400
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)

Figure 1. The pattern of the MFF quantity is quite interesting. Here are some basic notes.

. The shape of the MFF graph is symmetric and similar for all values of H; apart from the extreme value

H�0:5 where we obtain a straight line.

. Again apart from the extreme value H�0:5; as H increases the MFF also increases for all values of t and

the specific rate of increase is also increasing.

. The MFF is greater at the beginning or at the end of the control period approaching infinity for t�0.20. It

achieves its minimum (for all values of H) exactly in the middle of the control period, t�10. That is quite a

peculiar result. It suggests that the decision-maker should retain greater volumes of risk at the beginning or

at the end of the control period as long as the actual reserve value differs from the desired target value.
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5. Conclusions and further research

The management of both premium and reinsurance policies is a critical aspect for all

insurance organizations. The responsible decision-makers should always balance the

demand of policyholders for smooth development or constant pattern for premium rates

and the requirement of shareholders for increased protection of the system, and ultimately

achievement of a profitable position. In this paper, we deal with both these two problems

and obtain compact analytical formulae, which reveal very interesting results.

As regards the safety loading which actually determines the level of insurance premium,

we derive Eq. (36). It is obvious that whenever the reserve F(t) exceeds the desired

predefined value Fp, then the safety loading is negative while in the opposite case it is

positive. That is expected, as whenever the reserve exceeds the predefined value, then there

is no need to receive any additional loading to further enhance that difference, but receive

a reduced premium in order to cut down the specific undesirable surplus and attract the

clients to remain with the company. In the opposite case, where F(t) remains below Fp, we

increase the loading to recover the undesirable deficit. Additionally, the structure of Eq.

(36) supports that the level of the loading is proportional to the drift m(t) of the fractional

Brownian motion (representing the liabilities of the system) and the future sequence of

weighting factors b(s), tBsBT, while reversal analogous to the weighting factor b(t) and

the future sequence of the drifts m(s), tBsBT.

As regards the retained proportion of risk v(t) (or equivalently, the proportion of

reinsurance coverage 1-v(t)), we conclude that whenever F(t) exceeds the desired

predefined value Fp, then the decision-maker retains no risk (v(t)�0) as they have no

incentive to make any insurance business since the profitability of the system is well above

expectations. In the opposite situation, where F(t) remains below Fp, the decision-maker

(greatly concerned to reach the profitability target) reduces the proportion of reinsurance

in order to save money and upgrade the reserve level near to the desired value. The

retained proportion of risk is also analogous to the modified feedback factor MFF(t) that

is defined explicitly below as

MFF(t;H)�
1

2 �H � G(0:5 �H) � G(1:5 �H)
�t 0:5�H �(T�t) 0:5�H: (69)

We have plotted the MFF quantity using a certain control period T�20 and six different

values for the Hurst exponent H�0:5; 0:6; 0:7; 0:8; 0:9 and 1.0 (see Table 1 and

Figure 1).

In conclusion, we should point out some further directions for future research. We can

incorporate additional control variables for the investment management of the reserve

fund or consider other reinsurance treaties as the excess of loss or stop loss cover.
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