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Abstract

We study normed groupoids with dilations and their induced deformations.
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1 Normed groupoids

1.1 Groupoids

A groupoid is a small category whose arrows are all invertible. More precisely we have the
following definition.

Definition 1.1 A groupoid over a set X is a set of arrows G along with a target map
ω : G→ X, a source map α : G→ X, a identity section e : X → G which is a injective
function, a partially defined operation (or product) m on G, which is a function:

m : G(2) =
{

(g, h) ∈ G2 : ω(h) = α(g)
}
→ G , m(g, h) = gh

and a inversion map inv : G → G, inv(g) = g−1. These are the structure maps of the
groupoid. They satisfy several identities.

(a) For any (g, h) ∈ G(2) we have

ω(gh) = ω(g) , α(gh) = α(h)

(b) Then for any (g, h), (gh, k) ∈ G(2) we have also (g, hk) ∈ G(2). This allows us to write
the expression g(hk) and to state that the operation m is associative:

(gh)k = g(hk)

(c) for any g ∈ G the identity section satisfies (e(ω(g)), g), (g, e(α(g))) ∈ G(2)) and

e(ω(g)) g = g e(α(g)) = g

(c) The inversion map is an involution: inv inv = id. For any g ∈ G we have (g−1, g) ∈
G(2) and (g, g−1) ∈ G(2) and

g−1 g = e(α(g)) , g g−1 = e(ω(g))
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An equivalent definition of a groupoid emphasizes the fact that a groupoid may be defined
only in terms of its arrows.

Definition 1.2 A groupoid is a set G with two operations inv : G→ G, m : G(2) ⊂ G×G→
G, which satisfy a number of properties. With the notations inv(a) = a−1, m(a, b) = ab,
these properties are: for any a, b, c ∈ G

(i) if (a, b) ∈ G(2) and (b, c) ∈ G(2) then (a, bc) ∈ G(2) and (ab, c) ∈ G(2) and we have
a(bc) = (ab)c,

(ii) (a, a−1) ∈ G(2) and (a−1, a) ∈ G(2),

(iii) if (a, b) ∈ G(2) then abb−1 = a and a−1ab = b.

Starting with the definition 1.2, we can reconstruct the objects from definition 1.1. The
set X = Ob(G) is formed by all products a−1a, a ∈ G. For any a ∈ G we let α(a) = a−1a
and ω(a) = aa−1. The identity section is just the identity function on X.

1.2 Notations.

A groupoid is denoted either by G = (X,G, ω, α, e,m, inv), or by (G,m, inv). In the second
case we shall use the notation X = Ob(G) =

{
a−1a : a ∈ G

}
. In most of this paper we shall

simply denote a groupoid (G,m, inv) by G.

Definition 1.3 The transformation (f, F ) : G→ G′ is a morphism of groupoids defined
from G = (X,G, ω, α, e,m, inv) to G′ = (X ′, G′, ω′, α′, e′,m′, inv′) is a pair of maps: f :
X → X ′ and F : G → G′ which commutes with the structure, that is: f ω = ω′ F ,
f α = α′ F , F e = e′ f , F inv = inv′ F and F is a morphism of operations, from the
operation m to operation m′.

Definition 1.4 A Hausdorff topological groupoid is a groupoid G which is also a Haus-
dorff topological space, such that inversion is continuous and the multiplication is continuous
with respect to the topology on G(2) induced by the product topology on G2.

We denote by dif : G×α G→ G the difference function:

dif(g, h) = gh−1 ∀(g, h) ∈ G×G α(g) = α(h)

1.3 Norms

We shall consider the convergence of nets (aε) of arrows, with ε ∈ I a parameter in a directed
set I. In this paper the most encountered directed set I will be (0,+∞).

Definition 1.5 A normed groupoid (G, d) is a groupoid G = (X,G, ω, α, e,m, inv) with
a norm function d : G→ [0,+∞), such that:

(i) d(g) = 0 if and only if there is a x ∈ X with g = e(x),

(ii) for any (g, h) ∈ G(2) we have d(gh) ≤ d(g) + d(h),

(iii) for any g ∈ G we have d(inv(g)) = d(g).

A norm d is separable if it satisfies the property:

(iv) if there is a net (aε) ⊂ G such that for any n ∈ N α(aε) = x, ω(aε) = y and
lim
ε∈I

d(aε) = 0 then x = y.
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1.4 Other groupoids associated to a normed groupoid

Let (G,m, inv, d) be a normed groupoid and dif its difference function. The norm d com-
posed with the function dif gives a new function d̃:

d̃ : G×α G→ [0,+∞) , d̃(g, h) = d dif(g, h) = d(gh−1)

which induces a distance on the space α−1(x), for any x ∈ X = Ob(G):

dx : α−1(x)× α−1(x)→ [0,+∞) , dx(g, h) = d̃d(g, h) = d(gh−1)

Definition 1.6 The metric groupoid Gm associated to the normed groupoid G is the
following metric groupoid:

- the objects of Gm are the metric spaces (α−1(x), dx), with x ∈ Ob(G);

- the arrows are right translations

Ru : (α−1(ω(u)), dω(u))→ (α−1(α(u)), dα(u)) , Ru(g) = gu

- the multiplication of arrows is the composition of functions;

- the norm is defined by: dm(Ru) = dα(u)(α(u), u) = d(u).

Remark that arrows in the metric groupoid Gm are isometries. It is also clear that Gm is
isomorphic with G by the morphism u ∈ G 7→ R−1

u .

Definition 1.7 The α-double groupoid G×αG associated to G is another way to assem-
bly the metric spaces α−1(x), x ∈ Ob(G), into a groupoid. The definition of this groupoid
is:

- the arrows are G×α G =
⋃

x∈Ob(G)

α−1(x)× α−1(x);

- the composition of arrows is: (g, h)(h, l) = (g, l), the inverse is (g, h)−1 = (h, g),
therefore as a groupoid G ×α G is just the union of trivial groupoids over α−1(x),
x ∈ Ob(G);

- it follows that Ob(G ×α G) = {(g, g) : g ∈ G} and the induced α and ω maps are :
α̃(g, h) = (h, h) and ω̃(g, h) = (g, g), for any g, h ∈ G with α(g) = α(h);

- the norm is the function d̃.

This groupoid has the property that dif is a morphism of normed groupoids.
Finally, suppose that for any x, y ∈ Ob(G) there is g ∈ G such that α(g) = x and

ω(g) = y. Then any separable norm d on G induces a distance on X = Ob(G), by the
formula:

dob(x, y) = inf {d(g) : α(g) = x, ω(g) = y}

If the groupoid is not connected by arrows then dob may take the value +∞ and the space
X decomposes into a disjoint union of metric spaces.
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1.5 Notions of convergence

Any norm d on a groupoid G induces three notions of convergence on the set of arrows G.

Definition 1.8 A net of arrows (aε) simply converges to the arrow a ∈ G (we write
aε → a) if:

(i) for any ε ∈ I there are elements gε, hε ∈ G such that hεaεgε = a,

(ii) we have lim
ε∈I

d(gε) = 0 and lim
ε∈I

d(hε) = 0.

A net of arrows (aε) left-converges to the arrow a ∈ G (we write aε
L→ a) if for all

i ∈ I we have (a−1
ε , a) ∈ G(2) and moreover lim

ε∈I
d(a−1

ε a) = 0.

A net of arrows (aε) right-converges to the arrow a ∈ G (we write aε
R→ a) if for all

i ∈ I we have (aε, a
−1) ∈ G(2) and moreover lim

ε∈I
d(aεa

−1) = 0.

It is clear that if aε
L→ a or aε

R→ a then aε → a.
Right-convergence of aε to a is just convergence of aε to a in the distance dα(a), that is

lim
ε∈I

dα(a)(aε, a) = 0.

Left-convergence of aε to a is just convergence of a−1
ε to a−1 in the distance dω(a), that

is lim
ε∈I

dω(a)(a
−1
ε , a−1) = 0.

Proposition 1.9 Let G be a groupoid with a norm d.

(i) If aε
L→ a and aε

L→ b then a = b. If aε
R→ a and aε

R→ b then a = b.

(ii) The following are equivalent:

1. G is a Hausdorff topological groupoid with respect to the topology induced by the
simple convergence,

2. d is a separable norm,

3. for any net (aε), if aε → a and aε → b then a = b.

4. for any net (aε), if aε
R→ a and aε

L→ b then a = b.

Proof. (i) We prove only the first part of the conclusion. We can write b−1a = b−1aεa
−1
ε a,

therefore
d(b−1a) ≤ d(b−1aε) + d(a−1

ε a)

The right hand side of this inequality is arbitrarily small, so d(b−1a) = 0, which implies
a = b.

(ii) Remark that the structure maps are continuous with respect to the topology induced
by the simple convergence. We need only to prove the uniqueness of limits.

3. ⇒ 4. is trivial. In order to prove that 4.⇒ 3., consider an arbitrary net (aε) such
that aε → a and aε → b. This means that there exist nets (gε), (g

′
ε), (hε), (h

′
ε) such that

hεaεgε = a, h′εaεg
′
ε = b and lim

i∈I
(d(gε) + d(g′ε) + d(hε) + d(h′ε)) = 0. Let g”ε = g−1

ε g′ε and

h”ε = h′εh
−1
ε . We have then b = h”εag”ε and lim

i∈I
(d(g”ε) + d(h”ε)) = 0. Then h”εa

L→ b

and h”εa
R→ a. We deduce that a = b.
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1.⇔ 3. is trivial. So is 3. ⇒ 2. We finish the proof by showing that 2. ⇒ 3. By a
reasoning made previously, it is enough to prove that: if b = hεagε and lim

i∈I
(d(gε) + d(hε)) =

0 then a = b. Because d is separable it follows that α(a) = α(b) and ω(a) = ω(b). We have
then a−1b = a−1hεagε, therefore

d(a−1b) ≤ d(a−1hεa) + d(gε)

The norm d induces a left invariant distance on the vertex group of all arrows g such that
α(g) = ω(g) = α(a). This distance is obviously continuous with respect to the simple
convergence in the group. The net a−1hεa simply converges to α(a) by the continuity of
the multiplication (indeed, hε simply converges to α(a)). Therefore lim

i∈I
d(a−1hεa) = 0. It

follows that d(a−1b) is arbitrarily small, therefore a = b. �

1.6 Families of seminorms

Instead of a norm we may use families of seminorms.

Definition 1.10 A family of seminorms on a groupoid G is a family S of functions
ρ : G→ [0,+∞) with the properties:

(i) for any x ∈ X and ρ ∈ S we have ρ(e(x)) = 0; if ρ(g) = 0 for any ρ ∈ S then there is
x ∈ X such that g = e(x),

(ii) for any ρ ∈ S and (g, h) ∈ G(2) we have ρ(gh) ≤ ρ(g) + ρ(h),

(iii) for any ρ ∈ S and g ∈ G we have ρ(inv(g)) = ρ(g).

A groupoid G endowed with a family of seminorms S is called a seminormed groupoid.
A family of seminorms S is separable if it satisfies the property:

(iv) if there is a net (aε) ⊂ G such that for any n ∈ N α(aε) = x, ω(aε) = y and for any
ρ ∈ S we have lim

i∈I
ρ(aε) = 0 then x = y.

Families of morphisms induce families of seminorms.

Definition 1.11 Let G be a groupoid and (H, d) be a normed groupoid. A (H, d) family of
morphisms is a set L of morphisms from G to H such that for any g ∈ G there is A ∈ L
with A(g) 6∈ Ob(H).

The following proposition has a straightforward proof which we omit.

Proposition 1.12 Let G be a groupoid, (H, d) be a normed groupoid and L a (H, d) family
of morphisms. Then the set

d(L) = {dA : A ∈ L}

is a family of seminorms.

Definition 1.8 can be modified for the case of families of seminorms.

Definition 1.13 Let (G,S) be a semi-normed groupoid. A net of arrows (aε) simply con-
verges to the arrow a ∈ G (we write aε → a) if:

6



(i) for any i ∈ I there are elements gε, hε ∈ G such that hεaεgε = a,

(ii) for any ρ ∈ S we have lim
i∈I

(ρ(gε) + ρ(hε)) = 0.

A net of arrows (aε) left-converges to the arrow a ∈ G (we write aε
L→ a) if for all

i ∈ I we have (a−1
ε , a) ∈ G(2) and moreover for any ρ ∈ S we have lim

i∈I
ρ(a−1

ε a) = 0.

A net of arrows (aε) right-converges to the arrow a ∈ G (we write aε
R→ a) if for all

i ∈ I we have (aε, a
−1) ∈ G(2) and moreover for any ρ ∈ S we have lim

i∈I
ρ(aεa

−1) = 0.

With these slight modifications, the proposition 1.9 still holds true. This is visible from
the examination of its proof.

Let us finally remark that if (G, dL) is a seminormed groupoid, where L is a (H, d) family
of morphisms, then a net (aε) ∈ G converges (simply, left or right) to a ∈ G if and only if
for any A ∈ L the net (A(aε)) respectively converges in (H, d).

1.7 Uniform convergence on bounded sets

We shall use right-convergence, according to definition 1.8, but left-convergence or simple
convergence could also be used. In relation to this see for example the remark 6.12.

Definition 1.14 Let G be a normed groupoid with a separable norm. A net (fε) of functions
fε : G×αG→ G uniformly converges on bounded sets to the function f : G×αG→ G
(in the sense of the left convergence) if:

(i) for any ε > 0 and (h, g) ∈ G(2) we have α(fε(h, g)) = α(f(h, g)),

(ii) for any λ, µ > 0 there is ε(λ, µ) > 0 such that for any ε ∈ Γ, | ε |≤ ε(λ, µ) and any
(h, g) ∈ G(2) with d(h) ≤ λ, d(g) ≤ λ, we have:

d (fε(h, g)inv(f(h, g))) ≤ µ

In the case of a groupoid G with a separable family of seminorms S, the definition of uniform
convergence is the same, excepting the modification of (ii) above into: for any λ, µ > 0 and
any seminorm ρ ∈ S there is ε(λ, µ, ρ) > 0 such that for any ε ∈ Γ, | ε |≤ ε(λ, µ) and any
(h, g) ∈ G(2) with ρ(h) ≤ λ, ρ(g) ≤ λ, we have:

ρ (fε(h, g)inv(f(h, g))) ≤ µ

Similarly, in a normed groupoid with a separable norm d, the uniform convergence on
bounded sets of a net of functions fε : G → R to f : G → R means that for any λ, µ > 0
there is ε(λ, µ) > 0 such that for any ε ∈ Γ, | ε |≤ ε(λ, µ) and any g ∈ G with d(g) ≤ λ we
have: | fε(g)− f(g) |≤ µ.

2 Normed categories

Sometimes it is interesting to work with normed categories, instead of normed groupoids.
Briefly said, a normed category is a small category endowed with an involutionary antimor-
phism (an ”inverse”) and with a norm function defined on arrows.
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Definition 2.1 A normed category (G, d) is a small category C with inverses: the set
of objects is X = Obj(C), the set of arrows is identified with C; there are two functions
s, t : C → X, named source and target, a multiplication m : C(2) → C (notation:
m(g, h) = gh or m(g, h) = g ◦ h), where

C(2) =
{

(g, h) ∈ C2 : s(g) = t(h)
}

a inversion map inv : C → C (notation inv(g) = g−1) and a norm d : C → [0,+∞), which
satisfy the following conditions:

(i) s(gh) = s(h), t(gh) = t(g), for any (g, h) ∈ C(2),

(ii) the multiplication is associative (gh)k = g(hk)

(iii) the inverse is an involution and a antimorphism: s(g−1) = t(g), (gh)
−1

= h−1g−1.

(iv) d(g) = 0 if and only if there is h ∈ C such that g = h−1h,

(v) for any (g, h) ∈ C(2) we have d(gh) ≤ d(g) + d(h),

(vi) for any g ∈ C we have d(inv(g)) = d(g).

Let α, ω : C → C be defined by α(g) = g−1g, ω(g) = gg−1. The norm d is separable if it
satisfies the property:

(vii) if there is a net (aε) ⊂ C such that for any n ∈ N α(aε) = x, ω(aε) = y and lim
ε∈I

d(aε) =

0 then x = y.

Seminormed categories are defined further, by making a slight modification of definition
1.10.

Definition 2.2 Let C be a category with inverses (which satisfies (i)–(iv) definition 2.1).
Let X = α(C.

A family of seminorms on a category with inverses C is a family S of functions
ρ : C → [0,+∞) with the properties:

(iv)’ for any x ∈ X and ρ ∈ S we have ρ(x) = 0; if ρ(g) = 0 for any ρ ∈ S then g ∈ X ,

(v)’ for any ρ ∈ S and (g, h) ∈ C(2) we have ρ(gh) ≤ ρ(g) + ρ(h),

(vi)’ for any ρ ∈ S and g ∈ C we have ρ(inv(g)) = ρ(g).

A category C with inverses endowed with a family of seminorms S is called a seminormed
category.

A family of seminorms S is separable if it satisfies the property:

(vii)’ if there is a net (aε) ⊂ C such that for any i ∈ I α(aε) = x, ω(aε) = y and for any
ρ ∈ S we have lim

i∈I
ρ(aε) = 0 then x = y.

All considerations made before concerning convergence for normed or seminormed sep-
arable groupoids, extend without effort to normed categories, or to seminormed separable
categories. A little bit of care is needed though: everywhere we should replace source and
target maps (of groupoids) by the (algebraically defined) α(g) = g−1g and ω(g) = gg−1.
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3 Examples of normed groupoids and normed categories

We give several examples of normed groupoids which will be of interest later in this paper.

3.1 Metric spaces

Let (X, d) be a metric space. We form the normed trivial groupoid (G, d) over X:

- the set of arrows is G = X ×X and the multiplication is

(x, y)(y, z) = (x, z)

Therefore we have α(x, y) = y, ω(x, y) = x, e(x) = (x, x), (x, y)−1 = (y, x).

- the norm is just the distance function d : G→ [0,+∞).

It is easy to see that if (X ×X, d) is a normed trivial groupoid over X then (X, d) is a
metric space.

3.1.1 Associated groupoids.

The metric groupoid (X × X)m can be described as the groupoid with objects pointed
metric spaces (X, d, x), x ∈ X, arrows R(x,y) : (X, d, x) → (X, d, y), R(x,y)(z) = z, and

norm dm
(
R(x,y)

)
= d(x, y). The α-double groupoid (X ×X)×α (X ×X) can be described

as the groupoid with arrows X × X × X , composition (x, y, z)(y, v, z) = (x, v, z), inverse
(x, y, z)−1 = (y, x, z) and norm d̃(x, y, z) = d(x, y).

3.1.2 Convergence.

Remark first that d is a separable norm, according to definition 1.5 (iv). Indeed, for any
x, y ∈ X there is only one arrow a ∈ X × X such that α(a) = x, ω(a) = y, namely the
arrow a = (y, x). Any net (aε) with α(aε) = x, ω(aε) = y is the constant net aε = (y, x). If
lim
n→∞

d(aε) = 0 then d(y, x) = 0, therefore x = y. We deduce from proposition 1.9 that we

have only one interesting notion of convergence, which is simple convergence.
In the particular case of normed trivial groupoids the definition 1.8 of simple convergence

becomes: a net (xε, yε) ⊂ (X ×X simply converges to (x, y) if we have

lim
n→∞

(d(x, xε) + d(yε, y)) = 0

that is if the nets xε, yε converge respectively to x, y. Indeed this is coming from the fact
that for any n ∈ N there are unique hε, gε ∈ X ×X such that hε(xε, yε)gε = (x, y). These
are hε = (x, xε) and gε = (yε, y).

3.1.3 Nice families of seminorms on metric spaces.

Let X be a non empty set, let (Y, d) be a metric spaces and (Y 2, d) its associated normed
trivial groupoid. Any function f : X → Y induces a morphism f̄ from the trivial groupoid
X2 to Y 2 by f̄(x, y) = (f(x), f(y)). Any family L of functions from X to Y with the
separation property: for any x, y ∈ X x 6= y there is f ∈ L with f(x) 6= f(y), gives us a
(Y 2, d) family of morphisms, which in turn induces a family of seminorms on X2.
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3.2 Normed groupoids from α-double groupoids

We can construct normed groupoids starting from definition 1.7 of α-double groupoids.

Proposition 3.1 Let (G, d) be a groupoid and (G×αG, d̃) the associated α-double groupoid.
Then for any (g, h) ∈ G×α G and for any u ∈ G with ω(u) = α(g) = α(h) we have

dω(u)(g, h) = dα(u)(gu, hu) (3.2.1)

Conversely, suppose that G is a groupoid and that for any x ∈ Ob(G) we have a distance
dx : α−1(x) × α−1(x) → [0,+∞). If (3.2.1) is true for any (g, h) ∈ G ×α G and for any
u ∈ G with ω(u) = α(g) = α(h) then

d(g) = dα(g)(g, α(g)) and d̃(g, h) = dα(g)(g, h)

define a norm on G such that (G×α G, d̃) is the associated α-double groupoid.

Remark 3.2 Therefore any normed groupoid (G, d) can be seen as the bundle of metric
spaces α : G → Ob(G), such that (a) each fiber α−1(x) has a distance dx, and (b) the
distances dx are right invariant with respect to the groupoid composition, in the sense of
relation (3.2.1).

Proof. For the first implication remark that (gu, hu) ∈ G ×α G. Moreover let g′ = gu,

h′ = hu. Then g′ (h′)
−1

= gh−1, therefore

dω(u)(g, h) = d(gh−1) = dα(u)(gu, hu)

For the converse implication, we have to prove that if g′ (h′)
−1

= gh−1 then d(gh−1) =

d(g′ (h′)
−1

), with d defined as in the formulation of the proposition. This is easy: Let

u = (h′)
−1

)h, then g = g′u, h = h′u and (3.1) implies the desired equality. The verification
that d is indeed a norm on G is straightforward, as well as the fact that d̃ is the induced
norm on G×α G. �

3.3 Group actions

Let G be a group with neutral element e, which acts from the left on the space X. Associated
with this is the action groupoid G n X over X. The action groupoid is defined as: the
set of arrows is X ×G and the multiplication is

(g(x), h)(x, g) = (x, hg)

Therefore α(x, g) = x, ω(x, g) = g(x), e(x) = (x, e), (x, g)−1 = (g(x), g−1),
As a particular case of definition 1.5, a normed action groupoid is an action groupoid

GnX endowed with a norm function d : X ×G→ [0,+∞) with the properties:

(i) d(x, g) = 0 if and only if g = e,

(ii) d(g(x), g−1) = d(x, g),

(iii) d(x, hg) ≤ d(x, g) + d(g(x), h).

Remark that the norm function is no longer a distance function. In the case of a free
action (if g(x) = x for some x ∈ X then g = e) we may obtain a norm function from a
distance function on X. Indeed, let d′ : X × X → [0,+∞) be a distance. Define then
d : X ×G→ [0,+∞) by

d̄(x, g) = d′(g(x), x)

Then (GnX, d̄) is a normed action groupoid.
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3.3.1 Associated groupoids.

The associated α-double groupoid can be seen asX×G×G, with composition (x, g, h)(x, h, l) =
(x, g, l) and inverse (x, g, h)−1 = (x, h, g). For any x ∈ X we have a distance dx : G×G→
[0,+∞), defined by

dx(g, h) = d(h(x), gh−1)

Conversely, according to proposition 3.1 and relation (3.2.1), a norm on a action groupoid
can be constructed from a function x ∈ X 7→ dx which associates to any x ∈ X a distance
dx on G, such that for any x ∈ X and u, g, h ∈ G we have

du(x)(g, h) = dx(gu, hu)

In this case we can define the norm on the action groupoid by d(x, g) = dx(g, e).
A particular case is X = {x}, when a normed action groupoid is just a group endowed

with a right invariant distance.

3.3.2 Convergence.

The norm d is separable if the following condition is satisfied: for any x, y ∈ X and any net
gε ∈ G with the property gε(x) = y for all ε, if lim

ε∈I
dx(gε, e) = 0 then x = y.

3.4 Groupoids actions

Let G and M be two groupoids. We denote by Aut(M) the groupoid which has as objects
sub-groupoids of M and invertible morphisms between sub-groupoids of M as arrows. A
groupoid action of G on M is just a morphism F of groupoids from G to Aut(M). In fewer
words, for any g ∈ G let F (g) be the associated morphism of sub-groupoids, defined from the
sub-groupoid denoted by domg to the sub-groupoid denoted by im g. For any x ∈ domg we
use the notation g.x = F (g)(x). Compositions in G and in M are denoted multiplicatively.
Let GnM be the set

GnM = {(x, g) : x ∈ domg}
The action of G on M satisfies the following conditions:

- for any u, v ∈ G such that α(v) = ω(u) we have domu = domvu, imu = domv and
for any x ∈ domu we have v.(u.x) = (vu).x;

- for any u ∈ G and x, y ∈ domu we have u.(xy) = (u.x)(u.y).

Any groupoid action induces a groupoid structure on G nM , by the composition law
(g.x, h)(x, g) = (x, hg).

At a closer look we may notice an example of a groupoid action in proposition 3.1.
Indeed, let G be a groupoid and G ×α G the associated α-double groupoid. Then G acts
on G ×α G by u.(g, h) = (gu−1, hu−1), for any u ∈ G and any (g, h) ∈ G ×α G such that

α(u) = α(g) = α(h). Therefore domu =
(
α−1(α(u))

)2
and the associated action groupoid

is
Gn (G×α G) = {(g, h, u) : α(g) = α(h) = α(u)}

with multiplication defined by

(gu−1, hu−1, v)(g, h, u) = (g, h, vu)

Relation (3.2.1) in proposition 3.1 tells that G acts on the normed groupoid (G ×α G, d̃)
by isometries. In general, the action groupoid induced by the action of a groupoid G on a
normed groupoid M by isometries may be an object as interesting as a normed groupoid.
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3.5 Riemannian groupoids (not normed)

The references used are Glickenstein [7] and Lott [9] section 5.

Definition 3.3 A smooth étale groupoid G is Riemannian if there is a riemannian metric
on Ob(G) such that the germs of the arrows (arrows are seen as local diffeomeorphisms on
Ob(G)) are isometries.

A Riemannian groupoid is not a normed groupoid.

3.6 Transport category

A good reference for this section is [1] chapters 5 and 6. Much more details could be found,
for instance, in [13].

Let (X, d) be a a complete, separable metric space (Polish space). The class of Borel
probabilities on X is denoted by P(X). If (X1, d1), (X2, d2) are Polish spaces then (X1 ×
X2, d) is also a Polish space, with the distance d defined by d((x1, x2), (y1, y2) = d1(x1, y1)+
d2(x2, y2).

If f : X1 → X2 is a Borel map and µ ∈ P(X1) then the push-forward of µ through f is
the measure f]µ ∈ P(X2 defined by: for any B ∈ B(X2)

(f]µ) (B) = µ(f−1(B))

In particular, the projections πi : X1 × X2 → Xi, i = 1, 2, πi(x1, x2) = xi, define push-
forwards from P(X1 ×X2) to P(Xi).

Definition 3.4 Let X, Y be Polish spaces. A measure-valued map x ∈ X 7→ µx ∈ P(Y ) is
a Borel map if for any Borel set B ∈ B(Y ) the function x 7→ µx(B) is Borel.

The following is the disintegration theorem [1] theorem 5.3.1 (see also references therein).
(In [1] the theorem is formulated for Radon spaces, here we stay in the frame of Polish
spaces).

Theorem 3.5 Let X,Y be two Polish spaces, π : X → Y a Borel map and
mu ∈ P(X), ν = π]µ ∈ P(Y ). Then there exists a Borel measure-valued function y ∈ Y 7→
µy ∈ P(X), which is ν-a.e. uniquely determined, such that:

(a) for ν-a.e. y ∈ Y we have µy(X \ π−1(x)) = 0,

(b) for every Borel map f : X → [0,+∞]∫
X

f(x) dµ(x) =

∫
Y

(∫
π−1(y)

f(x) dµy(x)

}
dν(y)

In the particular case X = X1×X2, π = πi and Y = Xi, i = 1, 2, the disintegration theorem
implies that for any γ ∈ P(X1 ×X2) with marginals

φ1]γ = µ , φ2]γ = ν
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there exist Borel measure-valued maps x1 ∈ X1 7→ γx1 ∈ P(X2), µ-a.e. uniquely determined,
and x2 ∈ X2 7→ γx2

∈ P(X1), ν-a.e. uniquely determined, such that for any Borel function
f : X1 ×X2 → [0,+∞] we have:∫

X1×X2

f(x1, x2) dγ(x1, x2) =

∫
X1

(∫
X2

f(x1, x2) dγx1(x2)

)
dµ(x1) =

=

∫
X2

(∫
X1

f(x1, x2) dγx2
(x1)

)
dν(x2)

For any two probability measures µ, ν on X the set of all transport plans between µ and
ν is defined as:

Π(µ, ν) = {γ ∈ P(X ×X) : φ1]γ = µ , φ2]γ = ν}

Definition 3.6 The category Trans(X) of transport plans on X is the category with in-
verses which has as objects the elements of P(X) and the class of arrows between µ, ν ∈ P(X)
is Π(µ, ν).

The composition of arrows is given by composition of transport plans, defined further. Let
γ ∈ Π(µ, ν) and γ′ ∈ Π(ν, µ′). By the disintegration theorem 3.5, there are ν-a.e. uniquely
defined measure-valued maps x ∈ X 7→ γ′x, γx ∈ P(X) such that for any Borel function
f : X1 ×X2 → [0,+∞] we have:∫

X×X
f(x1, x2) dγ(x1, x2) =

∫
X

(∫
X

f(x1, x2) dγx2
(x1)

)
dν(x2)

∫
X×X

f(x1, x2) dγ′(x1, x2) =

∫
X

(∫
X

f(x1, x2) dγ′x1
(x2)

)
dν(x1)

Then the composition γ′ ◦ γ ∈ Π(µ, µ′) is defined by: for any Borel function f : X1 ×X2 →
[0,+∞]∫

X×X
f(x1, x3) d (γ′ ◦ γ) (x1, x3) =

∫
X

(∫
X×X

f(x1, x3) dγ′x2
(x3) dγx2

(x1)

)
dν(x2)

Finally, this category has a contravariant ”inverse” functor, which associates to each arrow
γ ∈ Π(µ, ν) the arrow γ−1 ∈ Π(ν, µ) defined by: for any Borel function f : X1 × X2 →
[0,+∞] ∫

X×X
f(x1, x2) dγ−1(x1, x2) =

∫
X×X

f(x1, x2) dγ(x2, x1)

We denote by Lip1(X) the class of 1-Lipschitz maps from X to R.

Proposition 3.7 The category Trans(X) is a separable seminormed category, with the
family S of seminorms: for any u ∈ Lip1(X) and any γ ∈ Trans(X)

ρu(γ) = |
∫
X×X

(u(x)− u(y)) dγ(x, y) |

Trans(X) it is also a normed category, with the norm:

d(γ) =

∫
X×X

d(x, y) dγ(x, y)
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The following relation between the norm d in the transport category and the seminorms
ρu, is related to Kantorovich formulation of the transport problem and the dual of this
problem: for any u ∈ Lip1(X) and any γ ∈ Trans(X) we have

d(γ) ≥ ρu(γ)

The topology of Trans(X) with the norm d is called ”strong topology”, while the topology
of Trans(X) as a seminormed groupoid is called the ”weak topology”.

For any pair formed by a Borel function f : X → X and by a measure µ ∈ P(X), there
is an associated transport plan (f, µ) = (id × f)]µ ∈ Π(µ, f]µ).

Definition 3.8 If γ ∈ P(X ×X) is representable as a measure (f, µ) then we say that γ is
induced by a transport map. The category Tmap(X) is the subcategory of Trans(X) with
objects elements of P(X) and arrows transport plans induced by transport maps.

Several facts deserve to be mentioned. Notice that if (f, µ) = (g, µ) then f(x) = g(x)
µ-a.e. in X. Also, in the category Tmap(X) the composition of arrows is the following:

(g, f]µ) ◦ (f, µ) = (g ◦ f, µ)

Finally, the sub-category Invtrans(X) of Tmap(X) with objects elements of P(X) and
arrows (f, µ) such that there exists a Borel function g with (f, µ)−1 = (g, f]µ), is a groupoid.

4 Dilations induced deformations of normed groupoids

Let (G, d) be a normed groupoid with a separable norm. A deformation of (G, d) is basically
a ”local action” of a commutative group Γ on G which satisfies several properties.

(Γ, | · |) is a commutative group endowed with a group morphism | · |: Γ → (0,+∞)
to the multiplicative group of positive real numbers. This morphism induces a invariant
topological filter over Γ (a end of Γ). Further we shall write ε→ 0 for ε converging to this
end, and meaning that | ε |→ 0. The neutral element of Γ is denoted by e.

To any ε ∈ Γ is associated a transformation δε : dom(ε)→ im(ε), which may be called
a dilatation, dilation, homothety or contraction.

For the precise properties of the domains and codomains of δε for ε ∈ Γ see the subsection
4.2. For the moment is sufficient to know that for any ε ∈ Γ we have Ob(G) = X ⊂ dom(ε)
and Ob(G) = X ⊂ im(ε). Basically the domain and codomain of δε are neighbourhoods of
X. Moreover, these sets are chosen so that various compositions of transformations δε are
well defined.

In the formulation of properties of deformations we shall use a uniform convergence on
bounded sets. We explain further what uniform convergence on bounded sets means in the
case of nets of functions indexed with the directed net the group Γ (ordered such that limits
are taken in the sense | ε |→ 0.

4.1 Introducing dilations

Definition 4.1 A dilation of a separated normed groupoid (G, d) is a map assigning
to any ε ∈ Γ a transformation δε : dom(ε)→ im(ε) which satisfies the following:

A1. For any ε ∈ Γ αδε = α. Moreover ε ∈ Γ 7→ δε is an action of Γ on G, that is for any
ε, µ ∈ Γ we have δεδµ = δεµ, (δε)

−1
= δε−1 and δe = id.
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A2. For any x ∈ Ob(G) and any ε ∈ Γ we have δε(x) = x. Moreover the transformation
δε contracts dom(ε) to X = Ob(G) uniformly on bounded sets, which means that the
net d δε converges to the constant function 0, uniformly on bounded sets, in the sense
of definition 1.14.

Moreover the domains and codomains dom(ε), im(ε) satisfy the conditions from definition
4.3, section 4.2.

A dilation of a separated normed or seminormed category is defined in the same
way as a dilation of a normed groupoid, only that α and ω functions are no longer the source
and arrow functions, but α(g) = g−1g and ω(g) = gg−1.

4.1.1 Deformation of the α-double groupoid.

The dilation δ of (G, d) induces a right-invariant dilation of the normed groupoid (G×αD, d̃).
The proof of the following proposition is straightforward and we do not write it.

Proposition 4.2 For any ε ∈ Γ we define δ̃ on G×α G, given by:

δ̃ε(g, h) = (δε(gh
−1)h, h) (4.1.1)

This is a deformation of the normed groupoid (G×αG, d̃) is a normed groupoid and moreover
dif is a morphism of normed groupoids (that is a norm preserving morphism of groupoids),
which commutes with dilations in the sense: for any ε ∈ Γ dif δ̃ε = δε dif .

4.1.2 Morphisms of dilations.

Let (G1, d1, δ
1) and (G2, d2, δ

2) be two dilations of the normed groupoids (G1, d1), (G2, d2)
respectively. Then F : (G1, d1, δ

1) → (G2, d2, δ
2) is a morphism of dilations if: F is a

morphism of groupoids, it preserves the norms (it is a isometry) and it commutes with
dilations (it is ”linear”).

4.2 Domains and codomains of dilations

Dilations are locally defined. This is explained in the following definition, which should be
seen as the axiom A0 of dilations.

Definition 4.3 The domains and codomains of a dilation of (G, d) satisfy the following
Axiom A0:

(i) for any ε ∈ Γ Ob(G) = X ⊂ dom(ε) and dom(ε) = dom(ε)−1,

(ii) for any bounded set K ⊂ Ob(G) there are 1 < A < B such that for any ε ∈ Γ, | ε |≤ 1:

d−1(| ε |) ∩ α−1(K) ⊂ δε
(
d−1(A) ∩ α−1(K)

)
⊂ dom(ε−1) ∩ α−1(K) ⊂

⊂ δε
(
d−1(B) ∩ α−1(K)

)
⊂ δε

(
dom(ε) ∩ α−1(K)

)
(4.2.2)

(iii) for any bounded set K ⊂ Ob(G) there are R > 0 and ε0 ∈ (0, 1] such that for any
ε ∈ Γ, | ε |≤ ε0 and any g, h ∈| d−1(R) ∩ α−1(K) we have:

dif(δεg, δεh) ∈ dom(ε−1) (4.2.3)

Remark 4.4 Concerning (iii) definition 4.3, the first part of A1 definition 4.1 implies that
dif(δεg, δεh) is well defined for any (g, h) ∈ G×α G such that g, h ∈ dom(ε).

15



4.3 Induced deformations

The purpose of this section is to define several deformations of normed groupoids, such that
the diagram from figure 4.1 becomes a commutative diagram of morphisms of dilations.

Let us consider a triple (G, d, δ) with (G, d) a normed groupoid and δ a dilation. For any
µ ∈ Γ there are two normed induced groupoids, such that the arrows in the diagram (4.1)
are morphisms.

Remark 4.5 As dilatations are not globally defined and they are used to transport groupoid
operations, it follows that the transported objects (operation, norms, ...) are not globally
defined. Therefore the induced groupoids are not groupoids, but ”local” groupoids, in a sense
which is clear in the context.

δµ δµ

αG G

αG G

δµ

( )µ

G

Gµ

dif

difµ

Figure 4.1: Commutative diagram of induced normed groupoids

Definition 4.6 The deformation (Gµ, dµ, δ) is equal to G as a set and its operations, norm
and dilation are transported by the map δµ : Gµ → G (with the precautions concerning the
domains of definition of the transported objects mentioned in remark 4.5).

The deformation
(

(G×α G)µ , d̃µ, δ̃µ

)
is equal to G ×α G as a groupoid and its norm

and dilation are transported by the map δµ × δµ : (G×α G)µ → G×α G.

More precisely, the deformation (Gµ, dµ, δ) is described by:

- Gµ = G as a set, αµ = α and ωµ = ω δµ, which follow from the computations using
A1, A2 definition 4.1:

αµ = δ−1
µ α δµ = δ−1

µ α = α , ωµ = δ−1
µ ω δµ = ω δµ

Also Ob(Gµ) = Ob(G).

- the composition operation and inverse are

mµ(g, h) = δ−1
µ (δµ(g) δµ(h)) , invµ g = δ−1

µ inv δµ (g)

These are well defined (at least locally) because of the axiom A0 definition 4.3. Notice
that difµ from the diagram 4.1 appears as the difference function associated with the
operation mµ, defined as

difµ : Gµ ×αµ Gµ → Gµ , difµ(g, h) = δ−1
µ

(
δµ(g) (δµ(h))

−1
)

(4.3.4)
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- the norm dµ is defined as:

dµ(g) =
1

| µ |
d(δµg) (4.3.5)

- we may transport the dilation δ of (G, d) into a dilation δµ,· of (Gµ, dµ), but from the
commutativity of Γ we get that

δµ,ε = δ−1
µ δε δµ = δε

therefore it is the same dilation.

The deformation
(

(G×α G)µ , d̃µ, δ̃µ

)
is described by:

- (G×α G)µ = G×αG as a groupoid; remark that this is compatible with the transport
of operations using the map δµ × δµ (because this map is an endomorphism of the
groupoid G×α G),

- with respect to the relation (4.3.4), notice that Gµ ×αµ Gµ = G ×α G = (G×α G)µ
and difµ as represented in figure 4.1 is a morphism of groupoids,

- the norm d̃µ is defined as:

d̃µ(g, h) =
1

| µ |
d̃(δµg, δµh) (4.3.6)

and it is easy to check that difµ is also a isometry.

- we transport the dilation δ̃ of
(
G×α G, d̃

)
) into a dilation δ̃µ,·

δ̃µ,ε(g, h) =
(
δµ−1

(
δε

(
δµ(g) (δµ(h))

−1
)
δµ(h)

)
, h
)

(4.3.7)

The commutativity of the diagram 4.1 is clear now.

5 Algebraic operations from dilations

At the core of the introduction of dilations lies the fact that we can construct group op-
erations from them. More precisely we are able to construct, by using compositions of
dilations and the groupoid operation, approximately associative operations which shall lead
us eventually to group operations in the tangent groupoid of a dilation.

5.1 A general construction

Let (G, d, δ) be a dilation and
(
G×α G, d̃, δ̃

)
the associated dilation of the α-double groupoid.

Further we shall be interested only in the properties of the following map.

Definition 5.1 For any x ∈ Ob(G) and any ε ∈ Γ we define the dilatation:

δ(·)
ε (·) : α−1(x)× α−1(x)→ α−1(x) , δhε g = δε

(
g h−1

)
h (5.1.1)
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Remark 5.2 The domain of definition of δ(·)
ε (·) is in fact only a subset of α−1(x)×α−1(x),

according to the Axiom 0 explained in definition 4.3 section 4.2.

This map comes from the definition (4.1.1) of the dilation δ̃, namely

δ̃ε(g, h) =
(
δhε g, h

)
(5.1.2)

For any ε ∈ Γ with | ε | sufficiently small we can define difε (as in figure 4.1) from
(a subset of) G ×α G to G. Remark that α(difε(g, h)) = ω(δεh), therefore the following
composition is well defined:

∆ε(g, h) = difε(g, h) δεh (5.1.3)

Then α∆ε(g, h) = α(g) = α(h).
Related to the function ∆ε is the following

invε(g) = ∆ε(α(g), g) (5.1.4)

The following expression makes sense too, for any pair of elements (g, h) from (a subset
of) G×α G:

Σε(g, h) = δε−1

[
δε

(
g (δεh)

−1
)
δεh
]

(5.1.5)

It is also true that αΣε(g, h) = α(g) = α(h).
These three functions are interesting operations. The function ∆ε is an approximate

difference operation, invε is an approximate inverse and Σε is an approximate sum operation.

5.1.1 A graphic construction of approximate difference operation

A look at the figure 5.1 will help. There is graphically explained how ∆ε(g, h) is constructed.

∆ (g,h)

g
dif (g,h)ε

h

∆ (g,h)ε

δεh

δεg
δεg (δεh )−1

Figure 5.1: The meaning of the ”approximate difference” operation ∆ε(g, h).

Let us imagine that we are looking at a figure in the Euclidean plane. Then δε is just
a homothety, g, h are vectors with the same origin α(g) = α(h), ∆(g, h) is the difference
of vectors −g + h (or h − g, it’s the same as long as we are in a commutative world). In
the Euclidean plane, as | ε | goes to 0, the ”vector” difε(g, h) slides towards ∆(g, h) and
∆ε(g, h) is obtained from difε(g, h) by composition with the vector δεh. Thus ∆ε(g, h) has
the meaning of a approximate difference of vectors g, h.

5.2 Idempotent right quasigroup and induced operations

5.2.1 Approximate operations from dilatations

The functions ∆ε, invε and Σε can be expressed in terms of dilatations introduced in def-
inition 5.1. Indeed, let us define, for any triple u, g, h ∈ G with α(u) = α(g) = α(h), and
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such that d(u), d(g), d(h) are sufficiently small, the following approximate difference function
with three arguments:

∆u
ε (g, h) = δ

δuε g

ε−1δ
u
ε h (5.2.6)

the approximate inverse function with two arguments:

invuε (g) = δ
δuε g

ε−1u = ∆u
ε (g, u) (5.2.7)

and the following approximate sum function with three arguments:

Σuε (g, h) = δuε−1 δ
δuε g
ε h (5.2.8)

We have then:

∆ε(hu
−1, gu−1) = ∆u

ε (g, h)u−1) , Σε(hu
−1, gu−1) = ∆u

ε (g, h)u−1) (5.2.9)

5.2.2 Γ-idempotent right quasigroups

We are in the framework of emergent algebras and idempotent right quasigroups, as intro-
duced in [6]. We recall here the definition of a idempotent right quasigroup and induced
operations.

Definition 5.3 An idempotent right quasigroup (irq) is a set X endowed with two operations
◦ and •, which satisfy the following axioms: for any x, y ∈ X

(P1) x ◦ (x • y) = x • (x ◦ y) = y

(P2) x ◦ x = x • x = x

We use these operations to define the sum, difference and inverse operations of the irq: for
any x, u, v ∈ X

(a) the difference operation is (xuv) = (x ◦ u) • (x ◦ v). By fixing the first variable x
we obtain the difference operation based at x: v −x u = difx(u, v) = (xuv).

(b) the sum operation is )xuv( = x •((x ◦ u) ◦ v). By fixing the first variable x we obtain
the sum operation based at x: u +x v = sumx(u, v) = )xuv(.

(a) the inverse operation is inv(x, u) = (x ◦ u) • x. By fixing the first variable x we
obtain the inverse operator based at x: −x u = invxu = inv(x, u).

For any k ∈ Z∗ = Z \ {0} we define also the following operations:

- x ◦1 u = x ◦ u, x •1 u = x • u,

- for any k > 0 let x ◦k+1 u = x ◦ (x ◦k u) and x •k+1 u = x • (x •k u),

- for any k < 0 let x ◦k u = x •−k u and x •k u = x ◦−k u.

For any k ∈ Z∗ the triple (X, ◦k, •k) is a irq. We denote the difference, sum and inverse
operations of (X, ◦k, •k) by the same symbols as the ones used for (X, ◦, •), with a subscript
”k”.

For any ε ∈ Γ and for any x ∈ X we can define a irq operation on α−1(x) by g ◦ε h = δgεh.
We have then:

u +g h = Σgε(u, h) , u −g h = Σgε(h, u)
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By computation it follows that (◦ε)k = ◦εk . The approximate difference, sum and inverse
operations are exactly the ones introduced in the preceding section. In [6] we introduced
idempotent right quasigroups and then iterates of the operations indexed by a parameter
k ∈ N. This was done in order to simplify the notations mostly. Here, in the presence of the
group Γ, we might define a Γ-irq.

Definition 5.4 Let Γ be a commutative group. A Γ-idempotent right quasigroup is a set X
with a function ε ∈ Γ 7→ ◦ε such that (X, ◦ε) is a irq and moreover for any ε, µ ∈ Γ and any
x, y ∈ X we have

x ◦ε (x ◦µ y) = x◦εµ

It is then obvious that if (X, ◦) is a irq then (X, k ∈ Z 7→ ◦k) is a Z-irq (we define
x ◦0 y = y).

The following is a slight modification of proposition 3.4 and point (k) proposition 3.5
[6], for the case of Γ-irqs (the proof of this proposition is almost identical, with obvious
modifications, with the proof of the original proposition).

Proposition 5.5 In any irq (X, ◦ε)ε∈Γ be a Γ-irq. Then we have the relations:

(a) (u +x
ε v) −xε u = v

(b) u +x
ε (v −xε u) = v

(c) v −xε u = (−xεu) +x◦u
ε v

(d) −x◦uε (−xε u) = u

(e) u +x
ε (v +x◦u

ε w) = (u +x
ε v) +x

ε w

(f) −xε u = x −xε u

(g) x +x
ε u = u

(k) for any ε, µ ∈ Z∗ and any x, u, v ∈ X we have the distributivity property:

(x ◦µ v) −xε (x ◦µ u) = (x ◦εµ u) ◦µ
(
v −xεµ u

)
Later we shall apply this proposition for the irq α−1(x) with the operations induced by

dilatations δε.

6 Limits of induced deformations

As | µ |→ 0 the components of the deformations indexed by µ from the diagram 4.1 (namely
the operation, norm and respective dilation maps) may converge in the sense of section 1.7
to the components of another normed groupoid with dilations.
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6.1 The weak case: dilatation structures on metric spaces

This is the case when only
(

(G×α G)µ , d̃µ, δ̃µ

)
converges. There is no condition of conver-

gence upon (Gµ, dµ, δ), nor upon the difference function difµ.

Definition 6.1 A dilation (G, d, δ) is a groupoid weak δ-structure ( gw δ-structure) if
it satisfies the following two axioms:

A3. There is a function d̄ : G×α G ∩ U2 → R which is the limit

lim
ε→0

1

| ε |
d dif(δεg, δεh) = d̃0(g, h)

uniformly on bounded sets in the sense of definition 1.14. Moreover the convergence
with respect to d̄ is the same as the convergence with respect to d̃ and in particular
d̃0(g, h) = 0 implies g = h.

A4weak. There is a dilation δ̄ of the normed groupoid (G×α G, d̃0) such that for any ε ∈ Γ the
transformation δ̃µ,ε converges uniformly on bounded sets to δ̄ε.

Remark 6.2 For a gw δ-structure the function d̄ has the following properties of a distance:
for any (g, h) ∈ G×α G ∩ U2

(a) d̄(g, h) = 0 if and only if g = h,

(b) d̄(g, h) ≤ d̄(g) + d̄(h),

(c) d̄(g, h) = d̄(h, g).

This means that for any x ∈ Ob(G) the function d̄ gives a distance on the set α−1(x) ∩ U .

Indeed, these properties of the function d̄ come from the following observation. Let us define
on G×α G the function:

d(g, h) = d(gh−1) = d dif(g, h)

Then for any x ∈ Ob(G) the function d (with two arguments) gives a distance on the set
α−1(x). In the case of a δ-structure the axiom A3 can be written as:

lim
ε→0

1

| ε |
d(δεg, δεh) = d̄(g, h) (6.1.1)

uniformly on bounded sets. This gives properties (b), (c) above from a passage to the limit
of the properties of the distance d.

For any x ∈ Ob(G) the restriction of the norm d̃ on the trivial groupoid α−1(x)×α−1(x)
gives a distance on the space α−1(x). The dilatation δ̃ has the property: for any ε ∈ Γ and
x ∈ Ob(G)

δ̃ε α
−1(x) ⊂ α−1(x)

therefore we can define δhε from (a subset of) α−1(α(h)) to α−1(α(h)) by:

δhε g = δε(gh
−1)h (6.1.2)

Theorem 6.3 Suppose that (G, d, δ) is a gw δ-structure. Then for any x ∈ Ob(G) the
triple (α−1(x), d̃, δ) is a dilatation structure, with δ defined by (6.1.2) and d̃ restrictioned to
α−1(x).

The proof is just a translation of the definition 6.1 in terms of metric spaces, using the
equivalence between metric spaces and normed trivial groupoids. At the end we obtain
definition 6.4 of dilatation structures on metric spaces, given further.
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6.1.1 Dilatation structures on metric spaces.

For simplicity we shall list the axioms of a dilatation structure (X, d, δ) without concerning
about domains and codomains of dilatations. For the full definition of dilatation structure,
as well as for their main properties and examples, see [3], [4], [5]. The notion appeared from
my efforts to understand the last section of the paper [2] (see also [12], [8], [10], [11]).

However, notice several differences with respect to the original definition of dilatation
structures:

(a) in the following definition 6.4 we are no longer asking the metric space (X, d) to be
locally compact. Also, uniform convergence in compact sets is replaced by uniform
convergence in bounded sets.

(b) because of the modifications explained at (a), we have to ask explicitly that the uni-
formities induced by dx and d are the same.

(c) finally, dilatation structures in the sense of the following definition 6.4 are a bit stronger
than dilatation structures in the sense introduced and studied in [3], [4], namely we
ask for the existence of a ”limit dilatation”, see the last axiom. This limit exists for
strong dilatation structures, but not for dilatation structures in the sense introduced
in [3], [4].

Definition 6.4 A triple (X, d, δ) is a dilatation structure if (X, d) is a metric space and

δ : Γ× {(x, y) ∈ X ×X : y ∈ dom(ε, x)} → X , δ(ε, x, y) = δxε y

is a function with the following properties:

A1. For any point x ∈ X the function δ induces an action δx : Γ → End(X, d, x), where
End(X, d, x) is the collection of all continuous, with continuous inverse transforma-
tions φ : (X, d)→ (X, d) such that φ(x) = x.

A2. The function δ is continuous. Moreover, it can be continuously extended to Γ̄×X×X
by δ(0, x, y) = x and the limit

lim
ε→0

δxε y = x

is uniform with respect to x, y in bounded set.

A3. There is A > 1 such that for any x there exists a function (u, v) 7→ dx(u, v), defined
for any u, v in the closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup

{
| 1

| ε |
d(δxεu, δ

x
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}
= 0

uniformly with respect to x in bounded set. Moreover the uniformity induced by dx is
the same as the uniformity induced by d, in particular dx(u, v) = 0 implies u = v.

A4weak. (for metric spaces) The following limit exists:

lim
ε→0

δxε−1 δ
δxεu
µ δxε v = δ̄x,uµ v

for any µ ∈ Γ, uniformly with respect to x, u, v in bounded sets.
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Remark 6.5 In particular the axiom A1 tells us that δxεx = x for any x ∈ X, ε ∈ Γ, also
δx1y = y for any x, y ∈ X, and δxε δ

x
µy = δxεµy for any x, y ∈ X and ε, µ ∈ Γ.

Remark 6.6 In axiom A2 we may alternatively put that the limit is uniform with respect to
d(x, y). Similarly, we may ask in axiom A4weak (for metric spaces) that the limit is uniform
with respect to d(x, u), d(x, v).

Remark 6.7 It is easy to see that:

(a) If (X, d) is locally compact then the function dx is continuous as an uniform limit
of continuous functions on a compact set. If (X, d) is also separable then from the
existence of the limit dx and from axiom A1 we obtain the fact that dx and d induce
the same uniformities.

(b) By definition dx is symmetric and satisfies the triangle inequality, but it can be a
degenerated distance function: there might exist v, w such that dx(v, w) = 0.But the
end of axiom A2 eliminates this possibility.

Proposition 6.8 Let (X, d, δ) be a dilatation structure, x ∈ X, and let

δxε d(u, v) =
1

| ε |
d(δxεu, δ

x
ε v)

Then the net of metric spaces (B̄d(x,A), δxε d) converges in the Gromov-Hausdorff sense to
the metric space (B̄d(x,A), dx). Moreover this metric space is a metric cone, in the following
sense: for any µ ∈ Γ such that | µ |< 1 we have δ̄x,xµ = δxµ and

dx(δxµu, δ
x
µv) = | µ | dx(u, v)

Proof. The first part of the proposition is just a reformulation of axiom A3, without the
condition of uniform convergence. For the second part remark that

δxε−1 δ
δxεx
µ δxε v = δxµv

and also that
1

| ε |
d(δxε δ

x
µu, δ

x
ε δ

x
µv) = | µ | δxεµ d(u, v)

Therefore if we pass to the limit with ε → 0 in these two relations we get the desired
conclusion. �

6.1.2 The translation groupoid associated to a dilatation structure

We may associate to a dilatation structure a groupoid which is not normed, which look
similar to a Riemannian groupoid (section 3.5).

Definition 6.9 Let (X, d, δ) be a dilatation structure. The translation groupoid Tr(X, d, δ)
has as objects the distances

dxε (u, v)
1

| ε |
d (δxεu, δ

x
ε v)

for all x ∈ X and all ε ∈ Γ. The arrows are of the form Σxε (u, ·), with

α (Σxε (u, ·)) = d
δxεu
ε , ω (Σxε (u, ·)) = dxε

Composition of arrows is composition of functions.
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Proposition 6.10 Tr(X, d, δ) is a groupoid. Moreover, arrows are isometries, in the sense
that for any ε ∈ Γ and x, u ∈ X the arrow Σxε (u, ·) is an isometry from the source to the
range: for ant v, w ∈ X we have:

dxε (Σxε (u, v),Σxε (u,w)) = d
δxεu
ε (v, w)

Proof. Use proposition 5.5. For example, the fact that composition of arrows is well
defined is equivalent with (e) from the mentioned proposition. Invertibility of arrows is (a),
and so on. The isometry claim follows from a straight computation. �

This is not a normed groupoid but it can be made into one by adding a random walk
which embedd the translation groupoid into the transport normed category.

6.2 The strong case

Definition 6.11 A groupoid strong δ-structure (or a gs δ-structure) is a triple (G, d, δ)
such that δ is a map assigning to any ε ∈ Γ a transformation δε : dom(ε) → im(ε) which
satisfies the axioms A1, A2 from definition 6.1 and the following axioms A3mod and A4:

A3mod. There is a function d̄ : U → R which is the limit

lim
ε→0

1

| ε |
d δε(g) = d̄(g)

uniformly on bounded sets in the sense of definition 1.14. Moreover, if d̄(g) = 0 then
g ∈ Ob(G).

A4. the net ∆ε converges uniformly on bounded sets to a function ∆.

Remark 6.12 In the case of a gs δ-structure, notice that A2 and A4 imply that the net
difε simply converges to ∆, uniformly on bounded sets.

Proposition 6.13 A gs δ-structure is a gw δ-structure. More precisely A1, A2, A3mod and
A4 imply A3 with

d̄(g, h) = d̄∆(g, h)

Proof. Indeed, we have:

1

| ε |
d(dif(δε(g), δε(h)) =

1

| ε |
d δε difε(g, h)

We reach to the conclusion by using the remark 6.12 and A3mod. �
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Geometry, A. Belläıche, J.-J. Risler eds., Progress in Mathematics, 144, Birkhäuser,
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