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Geometric analysis aspects of infinite semiplanar
graphs with nonnegative curvature

Bobo Hua*  Jiirgen Jost™  Shiping Liut

Abstract

In the present paper, we apply Alexandrov geometry methods to study
geometric analysis aspects of infinite semiplanar graphs with nonnegative
combinatorial curvature in the sense of Higuchi [22]. We obtain the met-
ric classification of these graphs and construct the graphs embedded in
the projective plane minus one point. Moreover, we show the volume dou-
bling property and the Poincaré inequality on such graphs. The quadratic
volume growth of these graphs implies the parabolicity. In addition, we
prove the polynomial growth harmonic function theorem analogous to the
case of Riemannian manifolds.

1 Introduction

In this paper, we study systematically (infinite) semiplanar graphs G of non-
negative curvature. This curvature condition can either be formulated purely
combinatorically, as in the approach of Higuchi [22], or as an Alexandrov curva-
ture condition on the polygonal surface S(G) obtained by assigning length one
to every edge and filling in faces. The fact that these two curvature conditions
— nonnegative Higuchi curvature of G and nonnegative Alexandrov curvature
of S(G) — are equivalent will be systematically exploited in the present paper.
First of all, we can then classify such graphs. Curiously, as soon as the maximal
degree of a face is at least 43, the graph necessarily has a rather special structure.
This will simplify our reasoning considerably. Secondly, as Alexandrov geometry
is a natural generalization of Riemannian geometry, we can systematically carry
over the geometric function theory of nonnegatively curved Riemannian mani-
folds to the setting of nonnegatively curved semiplanar graphs. Starting with
two basic inequalities, the volume doubling property and the Poincaré inequal-
ity, which hold for such spaces, we obtain the Harnack inequality for harmonic
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functions by Moser’s iteration scheme. Here, for defining (sub-, super-)harmonic
functions, we use the discrete Laplace operator of G. Our main results then say
that a nonnegatively curved semiplanar graph is parabolic in the sense that it
does not support any nontrivial positive superharmonic function (equivalently,
Brownian motion is recurrent), and that the dimension of the space of harmonic
functions of polynomial growth with exponent at most d is bounded for any d.
This is an extension of the solution by Colding-Minicozzi [9] of a conjecture of
Yau [40] in Riemannian geometry, see also [30].

Let us now describe the results in more precise technical terms. In [22],
Higuchi introduced a combinatorial curvature condition for planar graphs and
conjectured, as a discrete analog of Myers’ theorem in Riemannian geometry,
that any planar graph with positive curvature everywhere is a finite graph. De-
Vos and Mohar [I6] solved the conjecture by proving the Gauss-Bonnet formula
for infinite planar graphs.

In this paper, we are interested in infinite graphs. Let G be an infinite graph
embedded in a 2-manifold S(G) such that each face is homeomorphic to a closed
disk with finite edges as the boundary. This includes the case of a planar graph,
and we call such a G = (V, E, F') with its sets of vertices V', edges F, and faces
F', a semiplanar graph. For each vertex x € V', the combinatorial curvature at

x is defined as p )
d(r)=1-=2 S
(z) > T (;z deg(o)’

where d, is the degree of the vertex x, deg(o) is the degree of the face o, and the
sum is taken over all faces incident to z (i.e. « € o). The idea of this definition
is to measure the difference of 27 and the total angle ¥, at the vertex x on
the polygonal surface S(G) equipped with a metric structure obtained from
replacing each face of G with a regular polygon of side lengths one and gluing
them along the common edges. That is,

27®(z) =27 — X,

Let x(S(G)) denote the Euler characteristic of the surface S(G). The Gauss-
Bonnet formula of G in [I6] reads as

3" @) < Xx(S(G)),

zeG

whenever ¥, cq.a(2)<0®(2) converges. Furthermore, Chen and Chen [6] proved
that if the absolute total curvature Y, |®(x)] is finite, then G has only finitely
many vertices with nonvanishing curvature. Then Chen [5] obtained the topo-
logical classification of infinite semiplanar graphs with nonnegative curvature:
R?2, the cylinder without boundary, and the projective plane minus one point.
In addition, at the end of the paper [5], he proposed a question on the con-
struction of semiplanar graphs with nonnegative curvature embedded in the
projective plane minus one point.

We note that the definition of the combinatorial curvature is equivalent to the
generalized sectional (Gaussian) curvature of the surface S(G). The semiplanar
graph G has nonnegative combinatorial curvature if and only if the correspond-
ing regular polygonal surface S(G) is an Alexandrov space with nonnegative
sectional curvature, i.e. SecS(G) > 0 (or SecG > 0 for short).



Here, we are referring to another notion of curvature for such polygonal
spaces, or more precisely, of curvature bounds. This paper will derive its in-
sights from comparing these curvature notions. A metric space (X, d) is called
an Alexandrov space if it is a geodesic space (i.e. each pair of points in X can be
joined by a shortest path called a geodesic) and locally satisfies the Toponogov
triangle comparison. For the basic facts of Alexandrov spaces, readers are re-
ferred to [2,[1]. In this paper, we shall apply the Alexandrov geometry to study
the geometric and analytic properties of semiplanar graphs with nonnegative
curvature.

Alexandrov geometry can be seen as a natural generalization of Riemannian
geometry, and many fundamental results of Riemannian geometry extend to
the more general Alexandrov setting. Firstly, the well known Cheeger-Gromoll
splitting theorem for Riemannian manifolds with nonnegative Ricci curvature
was generalized to Alexandrov spaces (see [4, [1]); the result is that if the n-
dimensional Alexandrov space (X, d) with nonnegative curvature contains an
infinite geodesic v, i.e. v : (—o00,00) — X, then X isometrically splits as
Y x R, where Y is an (n — 1)-dimensional Alexandrov space with nonnegative
curvature. In the present paper, we shall prove that if the semiplanar graph G
with nonnegative curvature has at least two ends (geometric ends at infinity),
then S(G) is isometric to the cylinder; this is interesting since we do not use
the Gauss-Bonnet formula here. Moreover, we give the metric classification
of S(G) for semiplanar graphs G with nonnegative curvature. An orientable
S(G) is isometric to a plane, or a cylinder without boundary if it has vanishing
curvature everywhere, and isometric to a cap which is homeomorphic but not
isometric to the plane if it has at least one vertex with positive curvature. A
nonorientable S(G) is isometric to the metric space obtained by gluing in some
way the boundary of [0, a] X R with vanishing curvature everywhere (see Lemma
39).

Secondly, we prove that G inherits some geometric estimates from those
of S(G). Let d° (resp. d) denote the intrinsic metric on the graph G (resp.
polygonal surface S(G)). It will be proved that these two metrics are bi-Lipschitz
equivalent on G, i.e. for any =,y € G,

Cd%(z,y) < d(z,y) < d°(z,y).

We denote by Br(p) = {r € G : d%(p,z) < R} the closed geodesic ball in
G and by Blsz(c)(p) = {x € S(G) : d(p,x) < R} the closed geodesic ball in
S(G) respectively. The volume of Br(p) is defined as [Br(p)| = Y- ,epp(p) da-
The Bishop-Gromov volume comparison holds on the n-dimensional Alexandrov
space (X,d) with nonnegative curvature (see [I]). For any p € X,0 < r < R,
we have

H'(BE () _ (R
(1) more = ()
(1.2 H" (B (0)) < 2"H" (B ()
(1.3 (B () < C)R,

where Bx (p) is the closed geodesic ball in X and H™ is the n-dimensional
Hausdorff measure. We call (ITI)) the relative volume comparison and (L2)



the volume doubling property. Note that S(G) is a 2-dimensional Alexandrov
space with nonnegative curvature if G is a semiplanar graph with nonnegative
combinatorial curvature. Let D¢g denote the maximal degree of the faces in G,
i.e. Dg = maxy,ecp deg(o) which is finite by [6]. In this paper, for simplicity
we also denote D := Dg when it does not make any confusion. The relative
volume growth property for the graph G is obtained in the following theorem.

Theorem 1.1. Let G be a semiplanar graph with SecG > 0. Then for any
pE€G,0<r <R, we have

|Br(p)| R\?
) s <0 )
(1.5) |B2r(p)| < C(D)|Br(p)l,
(1.6) |Br(p)| < C(D)R?,  (R>1)

where C(D) is a constant only depending on D which is the mazimal facial
degree of G.

Thirdly, we show that the Poincaré inequality holds on the semiplanar graph
G with nonnegative curvature. The Poincaré inequality has been proved on
Alexandrov spaces in [29] 25], and also on graphs (e-nets) embedded into Rie-
mannian manifolds with bounded geometry in [12]. Let u be a local W2
function on an n-dimensional Alexandrov space (X, d) with SecX > 0, then

(1.7) | s omre [
B3 (p)

BX (p)

where up, = 3 fBX(p)“' For any function f : G — R, we extend it
R

1
H"(Bg (p
to each edge of G by linear interpolation and then to each face nicely with
controlled energy (see Lemma [6)). So we get a local W12 function on S(G)
which satisfies the Poincaré inequality (7)), and then it implies the Poincaré

inequality on the graph G.

Theorem 1.2. Let G be a semiplanar graph with SecG > 0. Then there exist
two constants C(D) and C such that for anyp € G,R >0, f : Bor(p) = R, we
have

(1.8) Y. (f@) — fpe)ds < C(D)R? Yo (@) - fw)?

zEBR(p) z,yEBor(p)iz~y
where fp, = \BR—l(MI Y weBr(p) f(x)dy, and x ~ y if x and y are neighbors.

Finally, we shall study some global properties of harmonic functions on the
semiplanar graph G with nonnegative curvature. Let f : G — R be a function
on the graph G. The Laplace operator L is defined as (see |20} 17 [7])



A function f is called harmonic (subharmonic, superharmonic) if Lf(z) =0 (>
0,<0), for each z € G.

A manifold or a graph is called parabolic if it does not admit any nontrivial
positive superharmonic function. The question when a manifold is parabolic has
been studied extensively in the literature; in fact, parabolicity is equivalent to
recurrency for Brownnian motion (see [19] 24, [34]). Noticing that the semiplanar
graph G with nonnegative curvature has the quadratic volume growth (L6, we
obtain the following theorem in a standard manner (see [24]).

Theorem 1.3. Any semiplanar graph G with SecG > 0 is parabolic.

Since Yau [38] proved the Liouville theorem for positive harmonic functions
on Riemannian manifolds with nonnegative Ricci curvature, the study of har-
monic functions on manifolds has been one of the central fields of geometric
analysis. Yau conjectured in [39, [40] that the linear space of polynomial growth
harmonic functions with a fixed growth rate on a Riemannian manifold with
nonnegative Ricci curvature is of finite dimension. Colding and Minicozzi [9]
gave an affirmative answer to the conjecture by the volume doubling property
and the Poincaré inequality. After then, Li [30] provided a simplified argument
by the mean value inequality (see also [8, [I0]). In this paper, we call this result
the polynomial growth harmonic function theorem. Delmotte [13] proved it in
the graph setting by assuming the volume doubling property and the Poincaré
inequality. Kleiner [28] generalized it to Cayley graphs of groups of polynomial
growth, by which he gave a new proof of Gromov’s theorem in group theory.
Hua [26] generalized it to Alexandrov spaces and gave the optimal dimension
estimate analogous to the Riemannian manifold case.

Let G be a semiplanar graph with nonnegative curvature and H%(G) = {u :
Lu = 0,|u(x)| < C(d%(p,z)+1)?} which is the space of polynomial growth har-
monic functions of growth degree d on G. By the method of Colding-Minicozzi
or Li (see [13]), the volume doubling property (L)) and the Poincaré inequality
(LX) imply that dim HY(G) < C(D)d"P) for any d > 1, where C(D) and v(D)
depend on D. Instead of the volume doubling property (LH), we use the relative
volume comparison ([4) to show that dim H%(G) < C(D)d?. Tt seems natural
that the dimension estimate of H%(G) should involve the maximal facial degree
D because the relative volume comparison and the Poincaré inequality cannot
avoid D, but the estimate is still not satisfactory since C'(D) here is only a
dimensional constant in the Riemannian case.

Furthermore, we note that a semiplanar graph G with nonnegative curvature
and Dg > 43 has a special structure of linear volume growth like a one-sided
cylinder, see Theorem [ZT0l Inspired by the work [37], in which Sormani proved
that any polynomial growth harmonic function on a Riemannian manifold with
one end and nonnegative Ricci curvature of linear volume growth is constant,
we obtain the following theorem.

Theorem 1.4. Let G be a semiplanar graph with SecG > 0 and Dg > 43.
Then for any d > 0,
dim HY(G) = 1.

The final dimension estimate follows from combining the previous two esti-
mates.



Theorem 1.5. Let G be a semiplanar graph with Sec G > 0. Then for any
d>1,

dim HY(G) < Cd?,
where C is an absolute constant.

For convenience, we may change the values of the constants C,C(D) from
line to line in the sequel.

2 Preliminaries

A graph is called planar if it can be embedded in the plane without self-
intersection of edges. We define a semiplanar graph similarly.

Definition 2.1. A graph G = (V, E) is called semiplanar if it can be embedded
into a connected 2-manifold S without self-intersection of edges and each face
is homeomorphic to the closed disk with finite edges as the boundary.

The embedding in the definition is called a strong embedding in [5]. Let
G = (V,E, F) denote the semiplanar graph with the set of vertices, V, edges,
E and faces, F. Edges and faces are regarded as closed subsets of S, and two
objects from V| E, F' are called incident if one is a proper subset of the other.
In this paper, essentially for simplicity, we shall always assume that the surface
S has no boundary except in Remark 3.7 and G is a simple graph, i.e. without
loops and multi-edges. We denote by d, the degree of the vertex z € G and
by deg(o) the degree of the face o € F, i.e. the number of edges incident to o.
Further, we assume that 3 < d, < oo and 3 < deg(o) < oo for each vertex x
and face o, which implies that G is a locally finite graph. For each semiplanar
graph G = (V, E, F), there is a unique metric space, denoted by S(G), which is
obtained from replacing each face of G by a regular polygon of side length one
with the same facial degree and gluing the faces along the common edges in S.
S(G) is called the regular polygonal surface of the semiplanar graph G.

For a semiplanar graph G, the combinatorial curvature at each vertex z € G

is defined as J )
Px)=1- 2= _
() > T ; deg(o)’

where the sum is taken over all the faces incident to . This curvature can be
read from the corresponding regular polygonal surface S(G) as,

27®(z) =27 — X,

where ¥, is the total angle of S(G) at x. Positive curvature thus means convex-
ity at the vertex. We shall prove that the semiplanar graph G has nonnegative
curvature everywhere if and only if the regular polygonal surface S(G) is an
Alexandrov space with nonnegative curvature, which is a generalized sectional
(Gaussian) curvature on metric spaces.

We recall some basic facts in metric geometry and Alexandrov geometry.
Readers are referred to 2] [1].

A curve v in a metric space (X,d) is a continuous map 7 : [a,b] — X. The
length of a curve + is defined as

N
L(v) = sup {Zd(v(yil),v(%)) rany partition a = yo <y1 < ... <yny = b} :
=1



A curve 7 is called rectifiable if L(y) < oo. Given z,y € X, denote by I'(z, y) the
set of rectifiable curves joining z and y. A metric space (X, d) is called a length
space if d(x,y) = inf,cp(gy){L(7)}, for any =,y € X. A curve v : [a,b] = X
is called a geodesic if d(vy(a),v(b)) = L(7). It is always true by the definition of
the length of a curve that d(y(a),y(b)) < L(vy). A geodesic is a shortest curve
(or shortest path) joining the two end points. A geodesic space is a length space
(X, d) satisfying that for any x,y € X, there is a geodesic joining = and y.

Denote by II,, x € R the model space which is a 2-dimensional, simply
connected space form of constant curvature k. Typical ones are

R?, k=0
I, =< S% k=1
H?, k=-1

In a geodesic space (X, d), we denote by 7., one of the geodesics joining = and
y, for z,y € X. Given three points z,y,z € X, denote by A,,. the geodesic
triangle with edges 7uy, Vyz, V2. There exists a unique (up to an isometry)
geodesic triangle, Azgz, in I, (d(z,y) + d(y, 2) + d(z,z) < 2—\/’% if kK > 0) such
that d(Z,9) = d(z,y),d(9,2) = d(y, z) and d(Z,Z) = d(z,x). We call Azys the

comparison triangle in IT,.

Definition 2.2. A complete geodesic space (X, d) is called an Alexandrov space
with sectional curvature bounded below by k (SecX > k for short) if for any
p € X, there exists a neighborhood U, of p such that for any x,y,z € U, (with
d(z,y) +d(y, z) + d(z,2) < 2—\/% if Kk > 0), any geodesic triangle Ny, and any
W € Yy, letting W € 5z be in the comparison triangle Nzyz in 11, satisfying
d(g,w) = d(y,w) and d(w, z) = d(w, z), we have

d(x,w) > d(z, ).

In other words, an Alexandrov space (X, d) is a geodesic space which locally
satisfies the Toponogov triangle comparison theorem for the sectional curvature.
It is proved in [2] that the Hausdorff dimension of an Alexandrov space (X, d),
dimpg(X), is an integer or infinity. One dimensional Alexandrov spaces are:
straight line, S', ray and closed interval.

Let (X,d) be an Alexandrov space, Ba (p) denote the closed geodesic ball
centered at p € X of radius R > 0, i.e. Ba(p) = {z € X : d(p,x) < R}. The
well known Bishop-Gromov volume comparison theorem holds on Alexandrov
spaces [1].

Theorem 2.3. Let (X, d) be an n-dimensional Alexzandrov space with nonneg-
atiwe curvature, i.e. SecX > 0. Then for any p € X,0 < r < R, it holds
that

H(BX () _ (RY'
. ey = (7)
(2.2 H"(B0) < 2" H"(BE ().
(23) H"(Bg; (p)) < C(n)R",

where H™ is the n-dimensional Hausdorff measure.



A curve v : (—o00,00) — X is called an infinite geodesic if for any s,t €
(—00,00), d(7(s),7(t)) = L(7|[s,4q), i-e. every restriction of v to a subinterval is
a geodesic (shortest path). For two metric spaces (X,dx), (Y, dy) , the metric
product of X and Y is a product space X X Y equipped with the metric dxxy
which is defined as

dxxy ((z1,91), (x2,92)) = \/dﬁg(wl,m) + d3-(y1,92),

for any (z1,y1), (z2,y2) € X xY. The Cheeger-Gromoll splitting theorem holds
on Alexandrov spaces with nonnegative curvature [I].

Theorem 2.4. Let (X, d) be an n-dimensional Alexandrov space with SecX > 0.
If it contains an infinite geodesic, then X is isometric to a metric product Y X R,
where Y is an (n — 1)-dimensional Alexandrov space with SecY > 0.

Let (X,d) be an n-dimensional Alexandrov space with SecX > k,x € R.
The tangent space at each point p € X is well defined, denoted by 7}, X, which
is the pointed Gromov-Hausdorff limit of the rescaling sequence (X, Ad,p) as
A — oo (see [1]). A point p € X is called regular (resp. singular) if T, X is
(resp. not) isometric to R™. Let S(X) denote the set of singular points in X. It
is known that H™(S(X)) = 0. Otsu and Shioya [33] obtained the C'-differential
and C°-Riemannian structure on the regular part of X, X \ S(X). A function
f defined on a domain 2 C X is called Lipschitz if there is a constant C such
that for any =,y € Q, |f(x) — f(y)| < Cd(x,y). It can be shown that every
Lipschitz function is differentiable H™-almost everywhere and with bounded
gradient |V f| (see [3]). Let Lip(2) denote the set of Lipschitz functions on 2.
For any precompact domain 2 C X and f € Lip(Q), the W12 norm of f is

defined as
1150 = / P2 / Vi
Q Q

The W2 space on €2, denoted by W12(Q), is the completion of Lip(£2) with
respect to the W12 norm. A function f € W,2?(X) if for any precompact
domain Q CcC X, flo € WH2(Q). The Poincaré inequality was proved in
29, 25).

Theorem 2.5. Let (X,d) be an n-dimensional Alexandrov space with SecX > 0
and u € Wllo’f (X), then

(2.4) [ u—un P <comr [
B3 (p)

BX (p)

1

where up,, = T BX0) fB])%((p)u.

Let (X,d) be a geodesic space and {Bg; (p)}:2; be an exhaustion of X, i.e.
Bp (p) C Bf;fi+1 (p) for any i > 1 and X = |J2, By, (p), equivalently R; < Ry
and R; — oo as i — co. A connected component E of X \ By (p) is called
connecting to infinity if there is a sequence of points {g;}52, in E such that
d(p,q;) = oo as j — oo. The number of connected components of X \ Bl)ii- (p)
connecting to infinity, denoted by NV;, is nondecreasing in ¢. Then the limit
N(X) = lim;—, o N; is well defined and called the number of ends of X. It
is easy to show that N(X) does not depend on the choice of the exhaustion



of X, {Bg. (p)}2,. Given a connected graph G = (V,E), let Gy denote the
1-dimensional simplicial complex of G, i.e. a metric space obtained from G by
assigning each edge the length one. Then G; is a geodesic space and N(G1) is
well defined. If G is a semiplanar graph and S(G) is the corresponding regular
polygonal surface, then we can also define the number of ends of S(G), N(S(Q)).

In the sequel, we recall some facts on the combinatorial structure of semi-
planar graphs. The Gauss-Bonnet formula for the semiplanar graph was proved
in [16, [6].

Theorem 2.6. Let G be a semiplanar graph, S(G) be the corresponding regular
polygonal surface, and t = N(S(G)). If G has only finitely many vertices with
negative curvature, then there exists a closed 2-manifold M, so that S(G) is
homeomorphic to M minus t points, and

(2.5) S0 (@) < X(S(G)) = x(M) ~ 1.

zeG
Moreover, G has at most finitely many vertices with nonvanishing curvature.

By the Gauss-Bonnet formula, Chen [5] gave the topological classification of
semiplanar graphs with nonnegative curvature.

Theorem 2.7. Let G be an infinite semiplanar graph with nonnegative cur-
vature everywhere and S(G) be the regular polygonal surface. Then S(G) is
homeomorphic to: R2, the cylinder without boundary or the projective plane
minus one point.

Let G be a semiplanar graph and z € G. It is straightforward that 3 <
dy <6if ®(z) > 0and 3 <d, <5 if &(x) > 0. A pattern of a vertex z is a
vector (deg(1),deg(aa), - ,deg(aa,)), where {o;}%* are the faces incident to
x ordered with deg(o1) < deg(oz) < --- < deg(o4, ). The following table is the
list of all possible patterns of a vertex & with positive curvature (see [16] [6]).

Patterns D(x)

(3,3, %) 3<k —1/6+1/k
4, A<k | =1/12+1/k
5, 5<k =1/30+1/k
, 6<k =1/k

T<k<4l | >1/1722
8< k<23 | >1/552
9< k<17 | >1/306
10< k<14 | >1/210
11<k<13| >1/858

[ ~
R OO
M N N NN T T — —
N

~—

AN TN AN N TN N N N N N N TN TN N N N N S N
LW W W WWOULOt k= WWWwwwwoww
W WWWD UL UL == © 00 Utk

4,k 4<k =1/k

k 5<k<19 | >1/380
.6,k 6<k<1l | >1/132
Tk T<k<9 | >1/252
.5,k 5<k<9 | >1/90
6,k 6<k<7 | >1/105
,3,3,k) 3<k =1/k
,3,4, k) 4<k<11 | >1/132
,3,5,k) 5<k<T7 | >1/105
,4,4,k) 4<k<5 | >1/30
,3,3,3,k) 3<k<5 | >1/30




All possible patterns of a vertex with vanishing curvature are (see [211 [6]):
(3,7,42),(3,8,24)(3,9,18),(3,10,15), (3,11, 12), (3,12, 12), (4, 5, 20),

(4,6,12), (4,8,8), (5,5,10), (6,6,6), (3,3,4,12), (3,3,6,6), (3,4,4,6),
(4,4,4,4),(3,3,3,3,6), (3,3,3,4,4), (3,3,3,3,3,3).
We recall a lemma in [6].

Lemma 2.8. Let G be a semiplanar graph G with SecG > 0 and o be a face of
G with deg(o) > 43. Then
Z O(z) > 1.

reo

Proof. For completeness, we give the proof of the lemma. Since SecG > 0 and
deg(c) > 43, the only possible patterns of the vertices incident to the face o are:

(3,3,k),(3,4,k),(3,5,k),(3,6,k), (4,4, k) and (3,3,3,k), where k = deg(o). In

each case, we have ®(x) > 1 for x € 0. Hence, we get

k>
> d(x) > 1.

reo
[l

Let G = (V, E, F) be a semiplanar graph. We denote by Dg = sup{deg(o) :
o € F} the maximal degree of faces in G. If G has nonnegative curvature
everywhere, then by Theorem 2.6 G has at most finitely many vertices with
nonvanishing curvature which implies that Dg < oco.

Lemma 2.9. Let G be an infinite semiplanar graph with SecG > 0. Then
either Dg < 42, or G has a unique face o with deg(c) > 43 and has vanishing
curvature elsewhere.

Proof. If G has a face o with deg(o) > 43, then by Lemma 2.8

Z O(z) > 1.

reo

Since G is an infinite graph with SecG > 0, by the Gauss-Bonnet formula (23]),

we have
> o) <1,
zeG

because x(M) < 2 and ¢t > 1. Hence >, ., ®(z) = 1 and ®(y) = 0 for any
y & o. Furthermore, the only possible patterns of the vertices incident to o are:
(3,6,k),(4,4,k),(3,3,3,k), because the other three patterns (3,3,k), (3,4, k),
(3,5,k) have curvature strictly larger than 1, where k = deg(0). O

Let G denote the set of semiplanar graphs. We define a graph operation on
G, P:G — G. For any G € G, we choose a (possibly infinite) subcollection
of hexagonal faces of G, add new vertices at the barycenters of the hexagons,
and join them to the vertices of the hexagons by new edges. In such a way, we
obtain a new semiplanar graph, denoted by P(G), which replaces each hexagon
chosen in G by six triangles. We note that P : § — G is a multivalued map

10



depending on which subcollection of hexagons we chosen. The inverse map of
P, denoted by P~!: G — G, is defined as a semiplanar graph P~1(G) obtained
from replacing couples of six triangles incident to a common vertex of pattern
(3,3,3,3,3,3) in G by a hexagon (we require that the hexagons do not overlap).
It is easy to see that S(P(G)) and S(P~1(G)) are isometric to S(G) which
implies that the graph operations P and P~! preserve the curvature condition,
i.e. SecS(P(GQ)) > 0 (or SecS(P~H@G)) > 0) <= SecS(G) > 0.

We investigate the combinatorial structure of the semiplanar graph G with
nonnegative curvature and large face degree, i.e. Dg > 43. Lemma shows
that there is a unique large face o such that deg(c) = Dg = k > 43 and the
only patterns of vertices of o are: (3,6,k), (4,4,k) and (3,3, 3, k). Without loss
of generality, by the graph operation P, it suffices to assume that the semiplanar
graph G has no hexagonal faces. It is easy to show that if one of the vertices
of o is of pattern (4,4, k) (or (3,3,3,k)), the other vertices incident to o are of
the same pattern. We denote by L, the set of faces attached to the large face
o, which are of the same type (triangle or square) and for which the boundary
of 0 U Ly has the same number of edges as the boundary of o. By Lemma [2.9]
G has vanishing curvature except at the vertices incident to o. Hence, 0 U Ly
is in the same situation as ¢. To continue the process, we denote by Lo the set
of faces attached to o U Ly which are of the same type (triangle or square). In
this way, we obtain an infinite sequence of sets of faces, o, L1, Lo, , Ly, -,
where L,, are the sets of faces of the same type (triangle or square) for m > 1.
L,, and L,, (m # n) may be different since they are independent.

Theorem 2.10. Let G be a semiplanar graph with SecG > 0 and Dg > 43,
and let o be the face of mazximal degree. Then either G is constructed from a
sequence of sets of faces, o, L1, Lo, , Ly, -+, where Ly, are the sets of faces
of the same type (triangle or square), denoted by S(G) = o U Jp—1 Lm, or
G = P~Y(G") where G’ is constructed as above.

3 Metric Classification of Semiplanar Graphs with
Nonnegative Curvature

In this section, we prove that any regular polygonal surface is a complete
geodesic space and the combinatorial curvature definition is consistent with the
sectional curvature in the sense of Alexandrov. We then obtain the metric
classification of semiplanar graphs with nonnegative curvature.

Let G be a semiplanar graph and S(G) be the corresponding regular polygo-
nal surface. Denote by G the 1-dimensional simplicial complex with the metric,
denoted by d1, by assigning each edge the length one. As a subset of S(G),
(i1 has another metric, denoted by d, which is the restriction of the intrinsic
metric d of S(G) to G1. The following lemma says that they are bi-Lipschitz
equivalent. We note that d%(z,y) = d%(z,y), for any z,y € G.

Lemma 3.1. Let G be a semiplanar graph and S(G) be the regular polygonal
surface of G. Then there exists a constant C such that for any x,y € Gy,

(3.1) Cd (z,y) <d(z,y) < dé (z,y).

To prove the lemma, we need the following lemma in Euclidean geometry.
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Lemma 3.2. Let A\, C R? be a regular n-polygon of side length one (n > 3).
A straight line L intersects the boundary of /\,, at two points, A and B. Denote
by |AB| = d the length of the segment AB, by l1,ls the length of the two paths
Py, P, on the boundary of /\,, joining A and B. Then we have

(32) Cmin{ll, lg} S d S min{ll, 12},
where the constant C' does not depend on n.

Proof. Tt suffices to prove that d > C' min{l,l2}. Without loss of generality, we
may assume [; < ly. It is easy to prove the lemma for n = 3, so we consider
n > 4. If the shorter path P; contains no full edges of A,,, i.e. A and B are on
adjacent edges, then P; and AB form a triangle. Denote by a, b the lengths of
the two sides in P; and by « the angle opposite to AB. Then we have o = @
and [ = a 4+ b. By the cosine rule, we obtain that

d>a—bcosa,

d>b— acosa.

Then it follows that
0 1
2d > (a+b)(1 —cosa) > (a+b)(1 —cos 5) = 511.
Hence
(3.3) i> 3
. =7 1-

If P, contains at least one full edge, we consider the following cases.

Case 1. n < 6.

We choose one full edge in P; and extend it to a straight line, then project
the path P; onto the line. It is easy to show that

d > |ProjPy| > 1,

where ProjP; is the projection of the path P;. Since n < 6, we have I; < 3 and

o~

(3.4) d>1> =2
3

Case 2. n > 1.

Denote by [ the number of full edges contained in P;. We draw the cir-
cumscribed circle of A\,,, denoted by C,, with center O of radius R,, where
2R, sin T = 1. Let the straight line L (passing through A and B) intersect the
circle Cp, at C and D (C' is close to A). Denote by d’ the length of the segment
CD, by 6 the angle of £COD and by I’ the length of the arc CD.

Case 2.1. 1 > 3.

On one hand, by [ > 3, we have 6 > l%’r > 327”. Hence,

0 sin? sin3Z
d =2R,sinz = —2>>_"n —3_4sin " >3 —4sin? = > 2.24.
2 sinZ? sin 7 n 7
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On the other hand, by |[AC| < 1 and |BD| < 1, we obtain that
d —d=|AC|+|BD| < 2.

Then we have

d 2 2
. S22 —¢
(3:5) R T DY
Since d':2Rnsin§ and I’ = R,0, we have
d 2sin? 2.2.2 9
3.6 L B A R
(3.6) l 0 - 0 T
In addition,
l
(3.7) U212h-22 5.

where the last inequality follows from [y > 1 > 3.

Hence, by 3.3 B6) (B0), we have

(3.8) d > Cl,.

Case 2.2. | =1.

We denote by EF the full edge contained in P; (E is close to A) and extend
AFE and BF to intersect at the point H. It is easy to calculate the angle
AEHF =7 — ‘% > - 47“. By an argument similar to the beginning of the
proof, we obtain that
(3.9)

1 4
d=|AB| > 5 (|AH|+ |BH|)(1 - cos(r — 7”)) > C(|AE| + |EF|+|FB|) = Cly,

where the last inequality follows from the triangle inequality.

Case 2.3. 1 = 2.

We denote by EF and FH the full edges contained in P; (E is close to A)
and extend AE and BH to intersect at the point K. Easy calculation shows
that {EKH =m — %’T > — 67“. By the same argument, we get

1
(3.10) d=|AB| > §(|AK| + |BK|)(1 — cos(m — 677T)) > Cl.

Hence, by 33) (34) B.8) (3:9) (3.10), we obtain that
d>Cly,

where C' is an absolute constant. Then the lemma follows. O

Proof of Lemmal3d. For any x,y € G1, it is obvious that d(z,y) < d'(z,y).
Hence it suffices to show the inequality in the opposite direction. Let v : [a, b] —
S(G) be a geodesic joining x and y. By the local finiteness assumption of the
graph G, there exist finitely many faces that cover the geodesic . There is
a partition of [a,b], {y;}Y,, where a = yop < y1 < --- < yny = b, such that
Yiyi_1,y:) 18 @ segment on the face o; and y(y;—1),7(y:) are on the boundary of
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oi, for 1 < i < N. For each 1 < i < N, we choose the shorter path, denoted
by [;, on the boundary of the face o; which joins v(y;—1) and 7(y;). By Lemma
B2 we get

CL(l;) < d(v(yi-1),7(ys)) < L(ls),

where L(l;) is the length of ;. Connecting [;, we obtain a path [ in G joining
z and y. Then we have

Hence,

O

Theorem 3.3. Let G =

(V,E, F) be a semiplanar graph and S(G) be the reqular
polygonal surface. Then (S

(G),d) is a complete metric space.

Proof. We denote by S(G) = |J,er o the regular polygonal surface of G, by

S(G) the completion of S(G) with respect to the metric d. Let (¢), denote
the eg-neighborhood of ¢ in S(G), for ¢y > 0. To prove the theorem, it suffices
to show that there exists a constant €y such that for any face o € F we have
(0)e, C S(G).

Forany o € F,let Q = |J{7 € F: 7No # 0}. By the local finiteness of G, Q
is a union of finitely many faces and the boundary of @), dQ), has finitely many
edges. It is easy to see that d°'(9Q, o) = inf{d® (z,y) : x € 0Q,y € do} > 1.
By Lemma Bl we obtain that for any z € 0Q,y € 9o,

d(z,y) > C = 2e,

where we choose ¢y = % Then we have

d(S(G)\ Q,0) = inf {d(m,y) :xe@\@,y&a} > 2€p > €.

Hence, it follows that
(0)ee CQ C S(G).
O

Corollary 3.4. Let G be a semiplanar graph and S(G) be the regular polygonal
surface. Then G has nonnegative curvature everywhere if and only if S(G) is
an Alexandrov space with nonnegative curvature.

Proof. By Theorem[B3] S(G) is a complete metric space. It is obvious that S(G)
is a geodesic space. Suppose GG has nonnegative curvature everywhere. At each
point except the vertices, there is a neighborhood which is isometric to the flat
disk in R?. At the vertex z € G, the curvature condition ®(z) > 0 is equivalent
to X, < 27. Then there is a neighborhood of x (isometric to a conic surface
in R?) satisfying the Toponogov triangle comparison with respect to the model
space R%. Hence, S(G) is an Alexandrov space with SecS(G) > 0. Conversely,
if S(G) is an Alexandrov space with SecS(G) > 0, then the total angle of each
point of S(G) is at most 27, which implies the nonnegative curvature condition
at the vertices. |
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In the following, we investigate the metric structure of regular polygonal
surfaces by Alexandrov space methods, which is independent of the Gauss-
Bonnet formula.

Lemma 3.5. Let G = (V, E, F) be a semiplanar graph, G1 be the 1-dimensional
simplicial complex and S(G) be the reqular polygonal surface. Then we have

N(G1) = N(5(G)).

Proof. Tt is easy to show that N(S(G)) < N(G1), since G1 C S(G). So it suffices
to prove that N(G1) < N(S(G)).

Let {BIC;1 (p)}32, be an exhaustion of Gy, such that G \ Bgl (p) has N;
different connected components connecting to infinity, denoted by Ef,--- , E} ,
and N(G1) = lim;—, o N;. By the local finiteness of G, N; < co. For any ¢ > 1,
let Q@ = J{o € F:on Bgil (p) # 0}, i.e. the union of the faces attached
to Bgil (p). By the local finiteness of G, @Q; is compact. We shall prove that
S(G)\ Qi has at least N; different connected components connecting to infinity,
then we have N(S(G)) > N; for any ¢ > 1, which implies the lemma.

For fixed i > 1, let H; := E; N(S(G)\ Q:),7 =1,---,N;. It is easy to see
that H; # 0, since EJl is connecting to infinity for 1 < j < N;. We shall prove
that for any j # k, H; and Hj, are disconnected in S(G) \ Q;. Suppose it is not
true, then there exist x € H;, y € Hy and a curve v : [a,b] = S(G) in S(G)\ Q;
joining x and y, i.e.

(3.11) YNQ; = 0.

As in the proof of Lemma Bl we can find a curve 4’ : [a,b] — G; in G; such
that 7/ and 7 pass through the same faces, i.e. for any ¢ € [a,b], there is a
face 7 such that v(t) € 7 and /(¢) € 7. Since H; and H}, are disconnected in
G1\ Bgl (p), we have +/(to) € Bgl (p), for some ty € [a,b]. Then there exists a
face T such that y(to) € 7 and 7/(tg) € 7. Hence 7 C Q; and v N Q; # 0, which
contradicts to (EIT]).

|

By this lemma, we can apply the Cheeger-Gromoll splitting theorem to the
polygonal surface of the semiplanar graph with nonnegative curvature.

Theorem 3.6. Let G be a semiplanar graph with SecG > 0, S(G) be the regular
polygonal surface. If N(G1) > 2, then S(G) is isometric to a cylinder without
boundary.

Proof. By Lemma B3] it follows from N(G;) > 2 that N(S(G)) > 2. A stan-
dard Riemannian geometry argument proves the existence of an infinite geodesic
v i (—00,00) = S(G). Since S(G) is an Alexandrov space with nonnegative cur-
vature, the Cheeger-Gromoll splitting theorem, Theorem 24 shows that S(G)
is isometric to Y x R, where Y is a 1-dimensional Alexandrov space without
boundary, i.e. straight line or circle. Because N(S(G)) > 2, Y must be a circle.
Hence, S(G) is isometric to a cylinder without boundary. |

Remark 3.7. Since the Cheeger-Gromoll splitting theorem holds for Alexan-
drov space with boundary, we may formulate the above theorem in the case of
regular polygonal surfaces with boundary (homeomorphic to a manifold with
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boundary). For the vertex x on the boundary, we define the combinatorial

curvature as d 1 >
T ™ — x
Plx)=1- 2= =
() 2 " Z deg(o) 2

oox

where ¥, is the total angle at z. Let G be a semiplanar graph with nonnegative
curvature everywhere and N(G1) > 2, then the polygonal surface S(G) is iso-
metric to either the cylinder without boundary or the cylinder with boundary,
ie. [a,b] x R.

Next we consider the tilings (or tessellations) of the plane (see [2I]) and the
construction of semiplanar graphs with nonnegative curvature.

Let G be a semiplanar graph with nonnegative curvature and S(G) be the
regular polygonal surface of G. If S(G) is isometric to the plane, R?, then G
is just a tiling of the plane by regular polygons called a regular tiling. Then
G has vanishing curvature everywhere. There are infinitely many tilings of the
plane. A classification is possible only for regular ones. In this paper, we only
consider regular tilings. A tiling is called monohedral if all tiles are congruent.
The only three monohedral tilings are by triangles, squares or hexagons. There
are 11 distinct tilings such that all vertices are of the same pattern:

(39)(3%,6)(33,4%)(32,4,3,4)(3,4,6,4)(3,6,3,6)(3,12%) (4") (4, 6,12)(4, 82)(6%).

They are called Archimedean tilings and they clearly include the three mono-
hedral tilings.

If S(G) has at least two ends, then by Theorem it is isometric to a
cylinder without boundary and G has vanishing curvature everywhere. If S(G)
is nonorientable, then by the Gauss-Bonnet formula ([235) S(G) is homeomor-
phic to the projective plane minus one point and G has vanishing curvature
everywhere.

Conversely, if G has vanishing curvature everywhere, then so does S(G).
Hence, S(G) is isometric to R?, or a cylinder if it is orientable. S(G) is homeo-
morphic to the projective plane minus one point if it is nonorientable.

In addition, if G has positive curvature somewhere, then so does S(G), which
implies that S(G) is not isometric to R?, but by the Gauss-Bonnet formula (Z.1]),
it is homeomorphic to R?. We call it a cap.

An isometry of R? is a mapping of R? onto itself which preserves the Eu-
clidean distance. All isometries of R? form a group. It is well known that every
isometry of R? is of one of four types: 1. rotation, 2. translation, 3. reflection
in a given line, 4. glide reflection, i.e. a reflection in a given line composed with
a translation parallel to the same line (see [21]).

For any tiling ¥, an isometry is called a symmetry of ¥ if it maps every tile
of ¥ onto a tile of X. It is easy to see that all symmetries of ¥ form a subgroup
of isometries of R2. We denote by S(3) the group of symmetries of 3. For any
L € S(X), we denote by < ¢ > the subgroup of S(X) generated by the symmetry
t. The metric quotient of R? by < ¢+ >, denoted by R?/ < ¢ >, is a metric space
with quotient metric obtained by the group action < ¢ > (see [1]). The following
lemma shows the construction of the tilings of a cylinder.

Lemma 3.8. There is a correspondence between a planar tiling 3 with a trans-
lation symmetry T, (3,T) and a tiling of a cylinder.
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Proof. For any planar tiling 3 with a translation symmetry 7', the metric quo-
tient R?/ < T > is isometric to a cylinder. The tiling ¥ induces a tiling of
R?2/ <T>.

Conversely, given a tiling ¥’ of a cylinder W, we lift W to its universal cover
R? by amap 7 : R? — W. It is easy to see that 7 is locally isometric, since W is
flat. The tiling ¥’ can be lifted by 7 to a tiling 3 of R2, which has a translation
symmetry by construction. [l

Next we consider the metric structure of the semiplanar graph with nonneg-
ative curvature such that the corresponding regular polygonal surface is nonori-
entable, i.e. homeomorphic to the projective plane minus one point.

Lemma 3.9. There is a correspondence between a planar tiling > with a glide
reflection symmetry ¢, (2,1) and a tiling of the projective plane minus one point
with nonnegative curvature.

Proof. Let 3 be a planar tiling with symmetry of a glide reflection
t=Ty0F,=FpoTq,,

where a > 0, L is a straight line, T, 1, is a translation along L through distance a
and Fp, is a reflection in the line L. The metric quotient R?/ < ¢ > is isometric
to the metric space obtained from gluing the boundary of [0,a] x R, which
is perpendicular to the line L, by the glide reflection ¢. It is easy to see that
R?/ < ¢ > is homeomorphic to the projective plane minus one point and has
vanishing curvature everywhere. Hence the planar tiling ¥ and the symmetry ¢
of ¥ induce a tiling of R?/ < ¢ > .

Conversely, let ' be a tiling of RP? \ {0}, with nonnegative curvature (ac-
tually with vanishing curvature everywhere). We construct a covering map of
RP?\ {0} with a Zs action,

7: 8%\ {S,N} = RP?\ {o},

where S and N are the south and north pole of S2. We lift the tiling ¥’ to
a tiling %" of §2\ {S,N}. Since ¥’ has vanishing curvature everywhere, so
does the lifted tiling ¥”. Note that S? \ {S, N} has two ends. By Theorem
B8 the regular polygonal surface S(X”) is isometric to a cylinder, denoted by
(%Sl) x R. By Lemma B8 the tiling of a cylinder ¥” induces a planar tiling
¥ and a translation symmetry Ty, with Th,-invariant domain [0, 2a] x R € R2.
Since the Zs action of 7, the tiling X"/ has a glide reflection symmetry

t=FpoT,1,
where L is parallel to the direction of the translation T5,. O

By the discussion above, we obtain the metric classification of S(G) for a
semiplanar graph G with nonnegative curvature.

Theorem 3.10. Let G be a semiplanar graph with nonnegative curvature and
S(G) be the regular polygonal surface of G. If G has positive curvature some-
where, then S(G) is isometric to a cap which is homeomorphic but not isometric
to the plane. If G has vanishing curvature everywhere, then S(G) is isometric
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to a plane, or a cylinder without boundary if it is orientable, and S(G) is iso-
metric to a metric space obtained from gluing the boundary of [0,a] x R by a
glide reflection, v = Ty 1, o Fr,, where L is perpendicular to the cylinder, if it is
nonorientable.

At the end of the paper [5], Chen raised a question on the classification of
infinite graphs with nonnegative curvature everywhere which can be embedded
into the projective plane minus one point. By Lemma [3.9] it suffices to find the
planar tiling with a glide reflection symmetry.

Theorem 3.11. The monohedral tilings of the projective plane minus one point
with nonnegative curvature are of three types: triangle, square, hexagon.

Proof. By Lemma [3.9] the monohedral tiling of the projective plane minus one
point with nonnegative curvature is induced by the monohedral tiling of the
plane of triangles, of squares or of hexagons and a glide reflection for the tiling.

O

Chen [5] gave two classes of monohedral tilings of the projective plane with
nonnegative curvature: PS,, (nis even) and PH,, (nis odd). PS, is induced by
the monohedral tiling of the plane of squares. In fact, PH,, (n is odd) is a proper
subset of monohedral tilings of the projective plane minus one point which are
induced by the monohedral tiling of the plane by hexagons. We give an example
below (see Figure[ll 2]) which is induced by the tiling of the plane by hexagons,
but is not included in PH,, (n is odd). Let PT, PS, PH denote the tilings of the
projective plane minus one point which are induced by the monohedral tiling of
the plane of triangles, squares, hexagons and a glide reflection symmetry. They
provide the complete classification of monohedral tilings of the projective plane
minus one point with nonnegative curvature.

Figure 1: (6,6,6) Figure 2: (6,6,6) in RP?

In addition, as the Archimedean tilings of the plane, we can classify the
tilings of the projective plane minus one point with nonnegative curvature for
which each vertex has the same pattern.
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Theorem 3.12. The tilings of the projective plane minus one point with non-
negative curvature such that the pattern of each vertex is the same are induced
by the Archimedean tilings of the plane and a gilde reflection symmetry.

We give two examples of tilings of the projective plane minus one point
which are induced by the Archimedean tilings and glide reflection symmetries
(see Figure 3 [ B [@). It is easy to see that there are infinitely many tilings
of the projective plane minus one point with nonnegative curvature because of
the complexity of the tilings of the plane. Another way to see the complexity is
that we can apply the graph operation P on the tiling of the projective plane
minus one point with hexagonal faces to obtain a new one.

Figure 5: (3,4,6,4) Figure 6: (3,4,6,4) in RP?
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4 Volume Doubling Property and Poincaré In-
equality

In this section, we shall prove the volume doubling property and the Poincaré
inequality for semiplanar graphs with nonnegative curvature.

Let G be a semiplanar graph and S(G) be the regular polygonal surface of
G. For any p € G and R > 0, we denote by Br(p) = {z € G : d°(p,z) < R} the
closed geodesic ball in the graph G, and by B}i(G)(p) ={z € S(G) : d(p,z) < R}
the closed geodesic ball in the polygonal surface S(G). The volume of Bg(p)
is defined as [Br(p)| = > ,epp(p) dos and the volume of Blsz(G)(p) is defined as

|B§(G)(p)| = HQ(BIi(G)(p)), where H? is the 2-dimensional Hausdorff measure.
We denote by §Bgr(p) the number of vertices in the closed geodesic ball Br(p).
Note that for any semiplanar graph G with nonnegative curvature, 3 < d, < 6,
for any = € G. Hence |Br(p)| and §Bgr(p) are equivalent up to a constant, i.e.
34Br(p) < |Br(p)| < 64Br(p), for any p € G and R > 0.

Theorem 4.1. Let G = (V, E, F) be a semiplanar graph with SecG > 0. Then
there exists a constant C(D) depending on D, such that for any p € G and
0 <r < R, we have

Ba) R\
(4.1) B = D) (3)

Proof. We denote Bp, := Br(p) and B}, := Bg(G)(p) for short. By Lemma B.1]
we have BS, NG C Bg C By NG. For any o € F, C < |o| := H?(0) < C2(D).
Let Hg := {0 € F : 0 N B # (0} denote the faces attached to Br. Then

(4.2) |Brl= > d. <D-Hp,

rEBR

where §Hp is the number of faces in Hgr. For any o € F, since the intrinsic

diameter of ¢ is bounded, i.e. diam o := sup{d(z,y) : z,y € o} < C5(D), we
have for any face 0 € Hp

s s
0 C BRidiame C Brycy(p)-

Hence it follows that

(4.3) CifHR < Z o] < |BIS%+CS(D)|-

oc€HRr

By the volume comparison of S(G) (Z3)) and (@2)([@3), we obtain

(4.4 (Brl < C(D)|BSs,cy ) < CD)(R + (D))

For R > C3(D), we have |Br| < 4C(D)R% For 1 < R < C3(D), we have
|Br| < 6 - 6C:(D) < C(D)R?. Hence, for any R > 1, the quadratic volume
growth property follows

(4.5) |Br| < C(D)R?.
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For any r > %, where C is the constant in Lemma B.1] let ' = Cr —

C3(D). We denote by W, = {0 € F : 0 N B # 0} the faces attached to B2,
and by W, = (J, ¢, 0. For any vertex z € W, NG, there exists a o € W, such
that « € o, so that d(p,z) <7’ +diamo <1’ + C5(D) = Cr. By Lemma[31] we
have d%(p,z) < C~'d(p,z) < r, which implies that W, NG C B,. It is easy to
see that

(4.6) IBI| < Wl = ) |o| < Ca(D)iW,,
oceW,

where §W,. is the number of faces in W,.. Moreover, by 3 < deg(c) < D for any
o€eF,

(4.7) W, < 3 dego) < > do <6H(W, NG,
ocEWr 2eW, NG

where #(W, N G) is the number of vertices in W, N G.

Hence by (£6) (@1), we have
(4.8) |BY| < C(D)(W, NG) < C(D)iB, < C(D)|B,|.

By the relative volume comparison ([ZI)) and [@4) (£J), we obtain that for

any r > —CSéD),

s 2
| Br| |BRtcs(py! ( R+ C5(D) )
<D ——— <O0D)| ————~L
B, =P =CON\aTao)
Let r9(D) := 2ch(D)_ For ro(D) < r < R < o0, r—% > 5 and R+
C3(D) < 2R, so that we have

R\ 2

(4.9) < (D) (—) .
B, |

For 0 < r < R < ro(D), by [@3), we have

| Br] < | By (D)l

(4.10) <
| Br| | Bo|

1
< Z
-3

For 0 < r < ro(D) < R, by ([@H), we have

\Br| _ C(D)R? R R

a2 < ST <oy < oo (3) -

Hence it follows from ([@9) (£I0) and @II) that for any 0 < r < R,

||];f|| < (D) (%)2'

O

From the relative volume comparison, it is easy to obtain the volume dou-
bling property.

21



Corollary 4.2. Let G be a semiplanar graph with SecG > 0. Then there exists
a constant C(D) depending on D, such that for any p € G and R > 0, we have

(4.12) |Bar(p)| < C(D)|Br(p)|.

In the rest of this section, we shall prove the Poincaré inequality on a semi-
planar graph with nonnegative curvature.

Theorem 4.3. Let G be a semiplanar graph with SecG > 0. Then there exist
two constants C(D) and C such that for anyp € G,R > 0, f : Bor(p) — R,
we have

(4.13) S (f(@) = f5y)%de <CD)R® > (f(x)— fy)?,

z€BRr(p) z,y€EBcor(p);z~y
where fp, = ‘BR—l(m Y wcBr(p) f(x)dy, and x ~ y if x and y are neighbors.

For any function on G, f : G — R, we shall construct a local W2 function,
denoted by fo, on S(G) with controlled energy in two steps, and then by the
Poincaré inequality (24]) on S(G), we obtain the Poincaré inequality on the
graph G. At step 1, by linear interpolation, we extend f to a piecewise linear
function on G1, f1 : G1 — R. In step 2, we extend f; to each face of G. For any
regular n-polygon A, of side length one, there is a bi-Lipschitz map

Ly : A, — By,

where B, is the circumscribed circle of A, of radius r, = m (for a,, = 27’7)
2

Without loss of generality, we may assume that the origin o = (0,0) of R? is
the barycenter of A\, the point (z,y) = (r,,0) € R? is a vertex of A, and
B, = B, (0). Then in polar coordinates, L,, reads

Ly &n 3 (r,0) = (p,n) € By, (0),
where for 0 € [jan, (j + Dayl, 5=0,1,--- ,;n—1,
{ o= T cos (07(2j+1)0‘7")

n==~0

It maps the boundary of A, to the boundary of B, (o). Direct calculation
shows that L,, is a bi-Lipschitz map, i.e. for any z,y € A, we have C1|z —y| <
|Lpx — Lyl < Cslx — y|, where C7 and C2 do not depend on n. Then for
any o € F, we denote n := deg(c). Let g : B, (o) — R satisfy the following
boundary value problem

{ Ag =0, in érn (0)
9los, (0 = froL,!

where B,., (0) is the open ball. Then we define f; : S(G) — R as
(4.14) fole = go L.

It can be shown that f5 is local W12 function on S(G), since the singular points
of S(G) are isolated (see [29]).

We need to control the energy of fo by its boundary values. The following
lemma is standard. We denote by B; the closed unit disk in R2.
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Lemma 4.4. For any Lipschitz function h : 0B1 — R, let g : By — R satisfy
the following boundary value problem

{ Ag =0, in By
9|8B1 =h

/IVQI2 / ha,
0B

/ h2<C / g +/ h2

0B, B1 0B,

Proof. Let \/%7, %, C(j?l:@ (for n = 1,2,---) be the orthonormal basis of

L?(0By). Then h : B; — R can be represented in L?(0B1) by

0 sinnf
h(0) = ap—— +Z( e bn&j;).

So the harmonic function g with boundary value h is

0 in nd
g(r,0) + Z (an —cosn + b, r" —SI% ) .

Since Ag = 0, we have Ag? = 2|Vg|?, then

1 dg?
2 A 2 / e
/ Vg|® = / op O

which follows from integration by parts. So that

Then we have

where hg = %.

o0

/B IVg|? = /63 99+ = > _n(a} +b3).

n=1

In addition,
hy =Y n*(a +b2).

Hence,

(4.15) /|Vg|2§/ h3.
B 0B,

The second part of the theorem follows from an integration by parts and the
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Hoélder inequality.

/ h = / (h2x) T = V- (9290)
631 aBl Bl

= 2/ g2—|—2/ gVg-x
B B

< 2f geaf P VP bylel <)
By By By
< 3/ 92+/ Vg|?
By By
< 3/ 92+/ . (by @IH)
By 9B
O
Note that for the semiplanar graph G with nonnegative curvature and any
faceo:AnofG,wehave3§n§D,\/ngrn:sin;lgmﬁ:C(D).
n D

Then the scaled version of Lemma [£.4] reads

Lemma 4.5. For 3 < n < D, and any Lipschitz function h : 0B, — R,
we denote by g the harmonic function satisfying the Dirichlet boundary value
problem
{ Ag =0, in B,,
glos,, =h
Then it holds that

/ Vgl? < C(D) / B2,
B OB

n n

/ h2sc<D>(/ g2+/ h%>,
dB,, B 9B,

where T = %89 is the unit tangent vector on the boundary 0B, and hr is the
directional derivative of h in T.

Tn

The following lemma follows from the bi-Lipschitz property of the map L,, :
ANy, = By

Lemma 4.6. Let G be a semiplanar graph with SecG > 0. Let o be a face such
that 0 = A\,. Let fa|, be constructed as ({.14), then we have

(4.16) /A VhP? < C(D) /6 (R

(4.17) [ peow) ( /A e /a N <f1>Tn> ,

where T, is the unit tangent vector on the boundary 0N, and (f1)r, 1is the
directional derivative of f1 in T,.
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Let e C A, be an edge with two incident vertices, v and v. By linear
interpolation, we have

[ #2= [ ar+ (- 0@l = 5(@R + Fu)fo) + F0P),
e 0

hence

(118) SU@? + 70 < [ £ < 5007 + 10,

In addition,

(4.19) / (F1)2, = (Fu) — f(0))2.

Now we can prove the Poincaré inequality.

Proof of Theorem[{.3 Let Bgl = Bgl(p) denote the closed geodesic ball in
_ 1

G1. We set the constant cg = f5 gs = m—— [pns fa. By
2’BR+1+03(D) |BR+1+C’3(D)‘ BR+1+03(D)
([£18), we have

(420) S () —enpde <6 [ (= en)

Let Wry1 = {o € F: 0N BfL, # 0} and W1 = Uyew,,, 0 Since BGL, C
Usewp,, 90, we have

azy [ G- < X [ (fi-enp

1
R+1 cEWR41 90

cD) Y (/(fzfcR)QﬂL/ (fl)%)v

ceEWR41 g 9o

IN

where the last inequality follows from (£.I7)). For any y € Wgr41, since diam o <
C3(D) for any o € F, we have d(p,y) < R+ 1+ C3(D). It implies that Wry1 C

BIS%+1+C3(D)' Hence by (#21))

[ e < cw) [

(fa=cr)*+C(D) /B(fl)QT

R+1 IS%+1+03(D) cEWRt1
(4.22) < C(D)(R+1+ C3(D))? IV fal* +
1%+1+C3(D)
weo) Y [ ok
c€EWR+1 9o

where we use the Poincaré inequality ([2.4).
Let Upyr == {7 € F : 7N Bji, 1, c,p) # 0} Since BL, C Bryt C
B§+1+03(D)’ we have Wgy1 C Ugt1. By Lemma Bl it follows that

G1
(423) UR+1 NGy C BCfl(R-i-l-i-Cg(D))—i-D'
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By (£16) (19)(@.22) and (£23]), we obtain that
[ -t < comrrieoy Y [1967+
B 1

R41 T€EUR+1 " T
+0<D>a€%l /a 3
< com+1+aoP X [ e
TEUR+1 or
+C(D) Y (f1)7
ccEWRt1 9o
< CD)R+1+C3(D)? > (7
TEUR41 Y T
(4.24) < C(D)(R+1+ C3(D))? > (f(z) — f(y))*.

TYEBC-1(Ry1405(D)+D
T~y

For R > C~Y(C3(D)+1)+ D = ro(D), we have C~1(R+1+C5(D))+ D <
(C-'+1)R=CiRand R+ 1+ C3(D) < 2R. Let fp,, = \B—lRl Yweny f(@)de,

then by (£20) and [@24) we obtain

(4.25)
D (@)= fBe)de < Y (f(2) —cr)’de <C(D)R® > (f(2) — f()

T~y

For 1 < R < ro(D), let GE = (VE  EF) be the subgraph induced by Bg. For
any € G®, we denote by d, gr the degree of the vertex  in G®. The volume
of G is defined as volG¥ = 3", cord, gr and the diameter of G* is defined

as diamG" = inf, ,cqr dGR(z,y). Let A\1(GT) be the first nonzero eigenvalue
of the Laplacian of G®, then the Rayleigh principle implies that

inf Zx,yEGR;zNy(f(‘T) - f(y))2
[:GRE=R ZzEGR(f(x) - fGR)Qdm,GR ’

A (GRY =

where fgr = ﬁ S eear f(x)d, gr. We recall a lower bound estimate for
A1 (GE) by the diameter and volume of GF (see [7]),

1

R > -
M(GT) = diamGE - volGR”

Since 3 < d, < 6, we have %dz <d, gr < dg. It is easy to see that diamGT < 2R
and volGF < |Bg| < C(D)R? by [&H). So that we have
1

1
MG 2 s e 2 wmem) - cym) = CP)

which implies that

> (f@) = far) e <CD) Y (fl@) = fW)

zeGR z,yeGRz~y
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for any f: G — R.
Hence we obtain that

S U@~ folde < 5 3 (@)~ for)d g
rEBR zeGR
< ooy Y (fl@) - fw)?
z,yeGRz~y
(4.26) < COR* > (fl@) - f)*

z,yEBRr;z~y

For 0 < R < 1, the Poincaré inequality (£I3)) is trivial. The theorem is

proved by ([{25), (£24]). O

5 Analysis on Semiplanar Graphs with Nonneg-
ative Curvature

In this section, we shall study the analytic consequences of the volume dou-
bling property and the Poincaré inequality.

In Riemannian manifolds, it is well known that the volume doubling property
and the Poincaré inequality are sufficient for the Nash-Moser iteration which
implies the Harnack inequality for positive harmonic functions (see [18| [35]).

Let G be a graph. For a function f : G — R, the Laplace operator L is
defined as

The gradient of f is defined as

V() =Y (fly) - f(x)).

y~z

Given a subset 2 C G, a function f is called harmonic (subharmonic, superhar-
monic) on Q if Lf(z) =0(>0,<0) for any x € Q.

It was proved by Delmotte [14] and Holopainen-Soardi [23] independently
that the Harnack inequality for positive harmonic functions holds on graphs
satisfying the volume doubling property and the Poincaré inequality. Applying
their results to our case, we obtain the following theorem.

Theorem 5.1 ([14, 23]). Let G be a semiplanar graph with SecG > 0. Then
there exist constants Ch > 1, Cy(D) < oo such that for any R > 0,p € G and
any positive harmonic function u on Be, g(p), we have
(5.1) max u < Cy(D) min w.

Br(p) Br(p)
Remark 5.2. In [15], Delmotte obtained the parabolic Harnack inequality and

the Gaussian estimate for the heat kernel which is stronger than the elliptic one
of the preceding theorem.

In the Nash-Moser iteration, the mean value inequality for nonnegative sub-
harmonic functions is obtained (see [I1]). Since the square of a harmonic func-
tion is subharmonic, we obtain
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Lemma 5.3. Let G be a semiplanar graph with SecG > 0. Then there exist two
constants C1 and Ca(D) such that for any R > 0,p € G, any harmonic function
u on Be,r(p), we have

2 _Ga(D) u’(z
(5.2) u”(p) < |Be,r(p)| zeB%:R(m o

The Liouville theorem for positive harmonic functions follows from the Har-
nack inequality (see [36]).

Theorem 5.4. Let G be a semiplanar graph with SecG > 0. Then any positive
harmonic function on G must be constant.

Proof. Since G be a semiplanar graph with SecG > 0, then Dg < oo. Let u be
a positive harmonic function on G. By the Harnack inequality (5.I]), we obtain

. . < o
(5.3) r%ix(u Héf u) < C3(Dg) né;n(u Héf u),

for any R > 0. The right hand side of (53] tends to 0 if R — co. Hence,

u = inf u = const.
G

O

A manifold or a graph is called parabolic if it does not admit any nontrivial
positive superharmonic function. The parabolicity of a manifold has been ex-
tensively studied in the literature (see [19, 24, [34]). Let G be a graph, C; be a
finite subset of G and C; C Cy C G. The capacity of C; with respect to Cs is
defined as

Cap(Cy,Cs) = inf { Z |Vu|?(2) : u is finitely supported in Cy,u|c, = 1} )
z€G

where the function w is called an admissible function for (C,Cs). For Cy = G,
we denote Cap(Cy) = Cap(Ch, G).

The following lemma is a criterion of the parabolicity of a graph by Kanai
[27].

Lemma 5.5. A graph G is parabolic if and only if Cap(S) = 0, for some
nonempty finite subset S C G.

The following theorem is standard in the Riemannian case, and we prove it
in the graph setting. Readers are referred to [24 [19].

Theorem 5.6. A graph G is parabolic if

<t , — i
(5.4) /1 0] =00 (equwalently; 0] = 00),

where V(t) = |By(p)| for some p € G.
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Proof. Let By = B2k (p), Cx = Bozkt1(p), for k = 0,1,--- . It is obvious that
By cCyCc By CCy C---. Weclaim that

(5.5) Cap(By) < <ZCap Bk,Ck)> .

For any € > 0, there exist admissible functions wy, for (B, Ck) such that ug|p, =
1,uk|G_Ck = 0, and

> IVugl* () < Cap(By, Cy) +
zeG

Let N € NN, Ok > 0 for £ =0,1,---,N, and Zk oar = 1. We define a
function v = Zk o aruy which is finitely supported and v|p, = 1. Then by the
definition of Cap(By), we have

Cap(Bo) < Y IVuP =30 30| anun(y) — ui(a))

zeG z€G y~z Lk=0

= Z Z Zai(uk(?}) — up(x))?

zeG y~x k=0

N
= ZakZ|Vuk| Z +Cap(By, Cy) +Zake
= zeG k=0 k=0

N

Z aiCap(By, Cy) + Z ae
k=0 k=0

N

= Z aiC’ap(Bk, Ck) + ¢
k=0

IN

where we use (u;(y) —u;(x))(u;(y) —u;(y)) = 0 in the second line, for any ¢ # j

Cap™ I(Bk Cr)
and let € — 0, then
Zk o Cap~ (B, Ck )’ ’

-1
Cap(Byp) < <ZCap Bk,Ck)> .

We prove the claim by N — oc.
Next, we estimate the capacity of (By, Cy), Cap(By,Cy), for k = 0,1,---
Let

and x ~ y. We choose a, =

1’ dG(pax) < 22k
wk(x) = 22k+1_2‘ic(pa$) 22k < dG(p ZC) < 22k+1
D) ) > )
0, 221 < d%(p, x)

It is easy to see that wy, is an admissible function for (By, C) and |Vwg|?(x) <
2% for any € G which is supported in Cy = Ba2xr+1. Hence

(22k+1)

Cap(Bg, C) < Z |Vwk|2
zeG
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By the claim (5.5]), we have

00 -1
(5.6) Cap(Bo) < (Z e ) :

k=0

By the assumption (5.4), we have

S 00 92k+3
o= [ 4 = —dt
L vw = 2
- >, 92k+3 (22K+3 _ 92kt1)
= V (22541
k=0

24k

= O vy

Hence by (5.6), we obtain that Cap(Bg) = 0, which implies that G is parabolic
by Lemma
O

Corollary 5.7. Let G be a semiplanar graph with SecG > 0. Then G is
parabolic.

Proof. Since D¢ < oo, we have the quadratic volume growth property (&35,

|Br(p)| < C(De)R?

| vm=

which implies that G is parabolic by Theorem O

Hence

In the last part of the section, we investigate the polynomial growth harmonic
function theorem on graphs. For Riemannian manifolds, the polynomial growth
harmonic function theorem was proved by Colding and Minicozzi in [9], then
the proof was simplified by Li [30]. By assuming the volume doubling property
(#I2) and the Poincaré inequality ([@I3]) on the graph, Delmotte [I3] proved
the polynomial growth harmonic function theorem with the dimension estimate
in our case

dim H4(G) < ¢(D)d*P),

where C(D) and v(D) depend on the maximal facial degree D of the semipla-
nar graph G with nonnegative curvature. We improve Delmotte’s dimension
estimate of H%(G) by using the relative volume comparison (&) instead of the
volume doubling property ([I2]).

Theorem 5.8. Let G be a semiplanar graph with SecG > 0. Then
(5.7) dim H4(G) < C(D)d?

for any d > 1.
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Our proof of the theorem follows Li’s argument by the mean value inequality.
From now on, we fix some vertex p € G, and denote Br = Bg(p) for short. We
need the following lemmas.

Lemma 5.9. For any finite dimensional subspace K C H(Q), there exists a
constant Ry(K) depending on K such that for any R > Ro(K), u,v € K,

Ap(u,v) := Z u(z)v(x)d,
r€EBR
is an inner product on K.

Proof. The lemma is easily proved by a contradiction argument (see [26]). O

Lemma 5.10. Let G be a semiplanar graph with SecG > 0, K be a k-dimensional
subspace of HY(G). Given 8> 1,8 > 0, for any Ry > Ro(K) there exists R > R;

such that if {u;}¥_, is an orthonormal basis of K with respect to the inner prod-

uct Agg, then

k
Z AR(UZ'; Uz) Z kﬂi(2d+2+6).
i=1
Proof. The proof is same as [31], [13] [26]. O

Lemma 5.11. Let G be a semiplanar graph with SecG > 0, K be a k-dimensional
subspace of HY(G). Then there exists a constant C(D) such that for any basis
of K, {u;}f_,, R>0,0<e< %, we have

k
ZAR(Uian) <C(D)e?  sup Z u?(y)d,,
=1 ue<AU> YEB(1+eR
where < A, U >:={w = Ei-c:l ai; Zle a? = 1}.

Proof. For any © € Bg, we set K, = {u € K : u(z) = 0}. It is easy to see
that dim K/K, < 1. Hence there exists an orthonormal linear transformation
¢ : K — K, which maps {u;}¥_; to {v;}¥_; such that v; € K, for i > 2. The
mean value inequality (B.2]) implies that

Zuf(x) = Zv?(x)va(w)

< C(D)|B(1+€)R7T(I)|_1 Z U% (y)dy
YEB1+e)R—r(a)(T)

< C(D)|B(1+€)R—T(I)|_1 sup Z U2(y)dy,
ueE<A,U> Y€Baton

where r(z) = d%(p, x).
By the relative volume comparison (&J]), we have

o) (LD )

v

|B(1+€)R—T(I) |

c(0) (LD B = (D) Bl

Y
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Hence, by 3 < d, <6 for any = € G,

Z Z u?(z)d, < 62 Z u?(z) < C(D)e™?  sup Z u?(y)d,.

i—1 2€Bg i=1 2€Bn we<AU> yeB L or
O

Proof of Theorem[5.8. For any k—dimensional subspace K C HY(G), we set
B = 14€. By Lemma[BET0 there exists R > Ry(K) such that for any orthonormal
basis {u;}¥_; of K with respect to A(14e)r, We have

k
Z Apr(ui,ui) > k(1 + 6)*(2d+2+5).
i=1
Lemma [B.TT] implies that
k
> Ag(ui,u;) < C(D)e >,
i=1

1

34> and letting 6 — 0, we obtain

1 —2 1 2d+2+6 )
< — — < .
() (o) zcmn

Setting € =

O

The dimension estimate in (B7)) is not satisfactory since in Riemannian
geometry the constant C'(D) depends only on the dimension of the manifold
rather than the maximal facial degree of G. Note that Theorem 210 shows that
the semiplanar graph G with SecG > 0 and Dg > 43 has a special structure,
i.e. the one-side cylinder structure of linear volume growth. In Riemannian
geometry, Sormani [37] used Yau’s gradient estimate and the nice behavior of
the Busemann function on a one-end Riemannian manifold with nonnegative
Ricci curvature of linear volume growth to show that it does not admit any
nontrivial polynomial growth harmonic function. Inspired by the work [37] and
the special structure of semiplanar graphs with nonnegative curvature and large
face degree, we shall prove the following theorem.

Theorem 5.12. Let G be a semiplanar graph with SecG > 0 and Dg > 43.
Then for any d > 0,
dim H4(G) = 1.
To prove the theorem, we need a weak version of the gradient estimate [32].

We recall the Cacciappoli inequality for harmonic functions on the graph G.

Theorem 5.13. Let G be a graph and d,, = sup,ecgds. For any harmonic
function u on Bg,., r > 1, we have

C(dy)
> 1vupe) < L% S )y,
zEB, Y€ Ber

Moreover for any x € B,

(5.8) VuP(e) < CYm) 5™ 2,
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Corollary 5.14. Let G be a semiplanar graph with SecG > 0 and Dg > 43.
For any harmonic function u on G, we have

(D)

(5.9) [Vu|(z) < W 0SCBg, (z)Us

where 0SCpg, (z)U = MAXpg (z) U — MG, (z) U.

Proof. By Theorem 210, the regular polygonal surface S(G) has linear volume
growth. As same as in the proof of (@3] in Theorem L], we obtain that for any
re€Gandr>1,

(5.10) |By(z)| < C(D)r.

By (&8) in Theorem 513l and d,,, < 6, we have

(5.11) |Vul?(z) < ¢ > wi(y)dy < 9|B (z)] max |ul?
' — 72 v 2P gy

yEBf,T(CE)

We replace u by u — ming,, () in (EI0]), noting that (E.I0), to obtain that

(D)
\/7_,.

[Vul(z) <

OSCRq,. (z)U-

O

Remark 5.15. We call (5.8) the weak version of the gradient estimate since
its scaling is not as usual, but it suffices for our application.

Proof of Theorem [5.12. Let G be a semiplanar graph with Sec G > 0 and D¢ >
43. Let o be the largest face with deg(c) = Dg = D > 43. By Theorem 210,
either G looks like o, L1, Ly, -+, Ly, -- where each L,, has the same type of
faces (triangle or square), i.e. G =0 U(J*_y Ly, or G = P~ (o U Jpe_; L),
where P~! is the graph operation defined in section 2. Denote by A = ¢ N G
the set of vertices incident to o, by d%(z, A) = minye4 d(z,y) the distance
function of A in G. Let B,(A) = {z € G : d®(x,A) < r} and 9B,.(A) = {x €
G : d%(x, A) = r}. By the construction of G, for any z,y € 0B, (A), there is a
path joining = and y in B, (A) with length less than or equal to 5D. In addition,
for any ¢ € A, we have

(5.12) 9B,(A) C Br1p(q) \ Br—p(q)-

Let v € HY(G) and M(r) = 08CypB, (A) = Maxyp, (4) U — Mingp (). By the
maximal principle which is a direct consequence of the definition of the harmonic
function, we have maxyp, (4) ¥ = maxp, (4) u and mingp, (4) ¥ = Ming_(4) u, SO
that M (r) is nondecreasing in r. To prove the theorem, it suffices to show that
M(r) = 0 for any large r. Let y,, z, € 0B,(A) satisfy u(y,) = maxpp, (4)u and
u(r,) = mingp, () u. Then there exists a path in B,.(A) such that

Yr =20~ 21~ "~ 2= T,
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where z; € B,.(A) for 0 <i <!l and ! <5D. Hence

-1
M(r) = uly,) —ulx,) <> [Vaul(z)
i=0
-1 (D)
< C Z OSCRBg,.(2:)u
i=0 Vr
< C(D)M - (5D)
T
0SCRB.. ,op(A)U
M
(5.13) < C(D) \(/Q_T) for r>D,
r

where we use ([2.9)) in Corollary 514 Bg,(2;) C Bryp+er(q) and (@I2).

Let r > Ro(D,d) = (@)2, for § < 1 which will be chosen later. Then we

have % <6 < 1. By &I3), for any r > Ry(D,d), we obtain that for k > 1,

M(r) < 6M(9r) < §FM(9Fr).
Since u € HY(G),

M(r) <2 max |u| <2C((r+ D)% +1).

BT+D(‘1)

Hence

3

1
M(r) < C8*((9%r + D)* + 1) < C2%H16%(9%r)? = C(d)(§)krd
if we choose § = 347. Then for any r > Ry(D,d) = (C(D)2-9%)2, we have

M(r) < C(d)(5)"+.

By k — oo, we obtain M (r) = 0, which proves the theorem. O

Combining Theorem 5.8 with Theorem [5.12] we obtain a dimension estimate
that does not depend on the maximal facial degree Dg.

Theorem 5.16. Let G be a semiplanar graph with Sec G > 0. Then for any
d>1,
dim H4(G) < Cd?,

where C is an absolute constant.
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