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Abstract. We reminisce and discuss applications of Algorithmic Proba-
bility Theory to a wide range of problems in Artificial Intelligence, philos-
ophy and technological society. We argue that Solomonoff has effectively
axiomatized the field of Artificial Intelligence, therefore establishing it
as a rigorous scientific discipline. We also relate to our own work in in-
cremental machine learning and progress in the open AI problems which
Solomonoff has defined.

1 Introduction

In this paper, we reminisce and discuss applications of Algorithmic Probabil-
ity Theory (ALP) to a wide range of problems in Artificial Intelligence (AI),
philosophy and technological society. We argue that Solomonoff has effectively
axiomatized the field of Artificial Intelligence, therefore establishing it as a rigor-
ous scientific discipline. We also relate to our own work in incremental machine
learning and progress in the three major open problems in AI which Solomonoff
has defined [1, Section 11].

Let M be a reference machine which corresponds to a probabilistic universal
computer with a prefix-free code. By probabilistic universal computer, we mean
a universal computer that has access to a true random number generator. In a
prefix-free code, no code is a prefix of another. This is also called a self-delimiting
code, and most reasonable computer programming languages are self-delimiting.
Given such a machine, Solomonoff inquired the probability that an output string
x is generated by M considering the whole space of possible programs. By giving
each program bitstring p an a priori probability of 2−|p|, we can ensure that the
space of programs meets the probability axioms (by the Kraft inequality). In
other words, we imagine that we toss a fair coin to generate each bit of a random
program. This probability model entails the following probability mass function
(pmf) for strings x ∈ {0, 1}∗:

PM (x) =
∑

M(p)=x

2−|p| (1)

therefore assigning every string a certain probability. PM (x) may be called al-

gorithmic probability of x because it assumes the definition of program based
probability. We use P when M is clear from the context to avoid clutter.
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2 Solomonoff Induction

Using this probability model of bitstrings, one can make predictions. Intuitively,
we can state that it is impossible to imagine intelligence in the absence of any
prediction ability: purely random behavior is decisively non-intelligent. Since, P
is a universal probability model, it can be used as the basis of universal predic-
tion, and thus intelligence. Perhaps, Solomonoff’s most significant contributions
were in the field of AI, as he envisioned a baby machine that can learn any-
thing from scratch. Reviewing his early papers such as [2,3], we see that he has
founded the complete groundwork for machine learning and data mining fields.
Although much weaker methods have been popular in those fields, few other
researchers could make claims about general intelligence. Unfortunately, few of
his ideas have yet found fruition in practice; yet there is little doubt that his ap-
proach was the correct basis for a science of intelligence rather than the ad-hoc
approaches of the days in which he started his patient and meticulous work.

His main proposal for machine learning is inductive inference [4,5], for a va-
riety of problems such as sequence prediction, set induction, operator induction
and grammar induction [6]. Without loss of generality, we can discuss sequence
prediction on bitstrings. Assume that there is a computable probability mass
function of bitstrings P1. Given a bitstring x drawn from P1 (which can be gen-
erated by Monte Carlo methods), Solomonoff states that we can predict the next
bit by finding the most probable program that produces x and let it generate
another bit. Finding the shortest program in general is undecidable, however,
Levin search [7] can be used for this purpose. There are two important results
about Solomonoff induction that we shall mention here. First, Solomonoff induc-
tion converges very rapidly to the real probability distribution. The convergence
theorem states that the expected total square error is related to only the algo-
rithmic complexity of P1, which is independent from x. The following bound [1]
is discussed at length in [8] with a concise proof:

EP ([(PM (am+1 = 1|a1, a2, ...,a m)−P1(am+1 = 1|a1, a2, ...,a m))2]) ≤ −
1

2
lnPM (P1))

(2)
This bound characterizes the divergence of the ALP solution from the real prob-
ability distribution P1. P (P1) is the a priori probability of P1 pmf according to
our universal distribution PM . −lnPM (P1) is roughly kln2 where k is the Kol-
mogorov complexity of P1, thus the entire error is bounded by a constant, which
guarantees that the error decreases very rapidly as example size increases. Sec-
ondly, there is an optimal search algorithm to approximate Solomonoff induction,
which is an application of Levin Search to the kind of prediction problem out-
lined [7,9]. Levin Search time-shares all candidate programs according to their
a priori probability with a clever watchdog policy [9]. It starts with a time limit
t = t0, tries all candidate programs c with that would run in t.P (c) exceeding
a time quantum, and while a solution is not found, it doubles the time limit
t in the next iteration of search. The time t(s)/P (s) for a solution program s
taking time t(s) is called the Conceptual Jump Size, and it has been shown that



Levin Search terminates in at most 2.CJS. This result too is a straightforward
application of ALP that we will not discuss here (as well as its optimal order of
complexity), but more discussion can be found in [7,9,10].

3 The axiomatization of Artificial Intelligence

We believe in fact that Solomonoff’s work was seminal in that he has single-
handedly axiomatized AI, discovering the sufficient and necessary conditions for
any machine to attain general intelligence.

Informally, these axioms are

AI1 AI must have in its possession a universal computer M (Universality).
AI2 AI must be able to learn any solution expressed in M’s code (Learning

recursive solutions).
AI3 AI must use probabilistic prediction (Bayes’ theorem).
AI4 AI must embody in its learning a principle of induction (Occam’s razor).

While it may be possible to give a more compact characterization, these are
ultimately what is necessary for the kind of general learning that Solomonoff in-
duction achieves. ALP can be seen as a complete formalization of Occam’s razor
[11] and thus serve as the foundation of general purpose (universal) induction,
capable of solving all AI problems of significance. The axioms are important be-
cause they allow us to assess whether a system is capable of general intelligence
or not.

4 Incremental Machine Learning

Levin’s universal search algorithm has been adopted for solving the problem of
universal induction. This algorithm is based on time-sharing all problems accord-
ing to their a priori probability as mentioned above. To avoid the practical impact
of the undecidability of the halting problem, the said procedure time-shares all
candidate programs within a time-limit, and then doubles the time-limit at each
iteration until the solution is found. Levin’s universal search algorithm (and its
variant discussed here) has an optimal order of complexity. In solving a problem
of induction, these methods suffer from the huge computational complexity of
trying to compress the entire input sequence. For instance, if the complexity of
the pmf P1 is about 400 bits, Levin search would take on the order of 2400 times
the running time of the solution program, which is infeasible (quite impossible
in observed universe). Therefore, Solomonoff has suggested using an incremen-

tal machine learning algorithm, which can re-use information found in previous
solutions.

The following argument illustrates the situation more clearly. Let P1 and
P2 be the pmf’s corresponding to a training sequence of two induction problems
(any of them, not necessarily sequence prediction, to which others can be reduced
easily) with data < d1, d2 >. Assume that the first problem has been solved with



Levin search. It has taken at most 2.CJS1 = 2.t(s1)/P (s1) time. If the second
problem is solved in an incremental fashion, making use of the information from
P1, then the running time of discovering a solution s2 for d2 reduces, depending
on the success of information transfer across problems. Here, we quantify how
much in familiar probabilistic terms.

In [8], Solomonoff describes an information theoretic interpretation of ALP,
which suggests the following entropy function:

H∗(x) = −lgP (x) (3)

This entropy function has perfect sub-additivity of information according to the
corresponding conditional entropy definition:

P (y|x) =
P (x, y)

P (x)
(4)

H∗(y|x) = −lgP (y|x) (5)

H∗(x, y) = H∗(x) +H∗(y|x) (6)

This definition of entropy thus does not suffer from the additive constant terms
as in Chaitin’s version. We can instantly define mutual entropy:

H∗(x : y) = H∗(x) +H∗(y)−H∗(x, y) = H∗(y)−H∗(y|x) (7)

which trivially follows.
A KUSP machine is briefly a universal computer that can store data and

methods from previous experience. In 1984, Solomonoff observed that KUSP
machines are especially suitable for incremental learning. In our work [12,13] we
found that, using a KUSP machine was indeed useful (as in OOPS[14]). Here is
how we interpreted incremental learning. After each induction problem, the pmf
P is updated, thus for every new problem a new probability distribution is ob-
tained. Although we are using the same M reference machine for trial programs,
we are referring to implicit KUSP machines which store information about the
experience of the machine so far, in subsequent problems. In our example of
two induction problems, let the updated P be called P ′, naturally there will
be an update procedure which takes time tu(P, s1): the time of update opera-
tion given P and solution s1. Just how much time can we expect to save if we
use incremental learning instead of independent learning? First, let us write the
time bound 2.t(s)/P (s) as t(s).2H

∗(s)+1. If s1 and s2 are not algorithmically
independent, then H∗(s2|s1) is smaller than H∗(s2) . Independently, we would
have t(s1).2

H∗(s1)+1 + t(s2).2
H∗(s2)+1, together, we will have, in the best case

t(s1).2
H∗(s1)+1+t(s2).2

H∗(s2|s1)+1 for the search time, assuming that recalling s1
takes no time for the latter search task. This would be the case, for instance, if it
were an extension of a previous solution (somewhat similar to OOPS). Therefore
in total, we would be saving t(s2).2

H∗(s1:s2)+1− tu(P, s1) in the best case (which
is unlikely since we did not account for recall time). Note that the maximum tem-
poral gain is related to both how much mutual information is discovered across
solutions (and consequently Pi’s), and how much time the update procedure



takes. Clearly, if the update time dominates overall, incremental learning is in
vain. However, if updates are effective and efficient, there is enormous potential
in incremental machine learning.

During the experimental tests of our Stochastic Context Free Grammar based
search and update algorithms [13], we have observed that in practice we can re-
alize fast updates, and we can still achieve actual code re-use and tremendous
speed-up. Using only 0.5 teraflop/sec of computing speed and a reference ma-
chine choice of R5RS Scheme, we were able to solve 6 simple operator induction
problems in 245.1 seconds. Scaled to human-level processing capacity of 100
teraflop/sec, this would mean that our system could learn and solve the entire
training sequence in 1.25 seconds, which is (arguably) better than most human
students. This running time is compared to 7150 seconds without any updates.
In one particular operator induction problem (fourth power, x4), we saw ac-
tual code re-use: (define (pow4 x ) (define (sqr x ) (* x x)) (sqr (sqr x )

)), and an actual speedup of 272. The gains that we saw confirmed the incre-
mental learning proposals of Solomonoff, mentioned in a good number of his
publications, but most clearly [9,10,15]. Based on our work and OOPS [14], we
have come to believe that incremental learning has the epistemological status of
an additional AI axiom:

AI5 AI must be able to use its previous experience to speed up subsequent
prediction tasks (Transfer Learning).

This axiom is justified by observing that many induction problems are completely
unsolvable by a system that does not have the adequate sort of algorithmic

memory.

We should also account our brief correspondence with Solomonoff. We ex-
pressed that the algorithms were very powerful but it seemed that too little
memory was used. Solomonoff responded by mentioning the potential stochastic
grammar and genetic programming approaches. Our present research was mo-
tivated by a problem he posed during the discussions of his 2006 seminars in
Istanbul: “We can use grammar induction for updating a stochastic context free
grammar, but there is a problem. We already know the grammar of the refer-
ence machine.”. The 2009 implementation of gigamachine algorithms [12] were
designed in response to this problem in late 2006. Solomonoff has also guided our
research by making a valuable suggestion, that it is not so significant to solve a
difficult problem by spending lots of supercomputer time, but it is important to
show whether incremental learning works over a sequence of simpler problems.

5 Cognitive Architecture

Another important discussion is whether a cognitive architecture is necessary.
The axiomatic approach was seen counter-productive by some leading researchers
in the past. However, we think that their opinion can be expressed as follows:
the minimal program that realizes these axioms is not automatically intelligent,



because in practice an intelligent system requires a good deal of algorithmic in-
formation to take off the ground. This is not a bad argument, since obviously,
the human brain is well equipped genetically. However, we cannot either rule out
that a somewhat compact system may achieve human-level general intelligence.
The question therefore, is whether a simply described system like AIXI(t,s) [16]
is sufficient in practice, or is there a need for a modular/extensible cognitive
architecture that has been designed in particular ways to promote certain kinds
of mental growth and operation. Some proponents of general purpose AI re-
search think that such a cognitive architecture is necessary such as OpenCog
[17]. Schmidhuber has suggested the famous Godel Machine which has a me-
chanical model of machine consciousness [18]. Solomonoff himself has proposed
early on in 2002, the design of Alpha, a generic AI architecture which can ulti-
mately solve free-form time-limited optimization problems [10]. Although in his
later works, Solomonoff has not made much mention of Alpha and has instead
focused on the particulars of the required basic induction and learning capabil-
ity, nonetheless his proposal remains as one of the most extensible and elegant
self-improving AI designs. Therefore, this point is open to debate, though some
researchers may want to assume another, entirely optional, axiom:

AI6 AI must be arranged such that self-improvement is feasible in a realistic
environment (Cognitive Architecture).

It is doubtful for instance whether a combination of incremental learning and
time/space bounded AIXI will result in a practical reinforcement learning agent.
Neither it is well understood whether autonomous systems with built-in util-
ity/goal functions are suitable for all practical purposes. We anticipate that such
questions will be settled by experimenters, as the complexity of interesting ex-
periments will quickly overtake the analysis that can be furthered in theoretical
papers.

We presented these important capabilities as axioms, so that they may be
referred to more easily, as in subscribing to one axiom and rejecting another in
a particular AI system.

6 Foundations of Mathematics

An unexpected consequence of the algorithmic probability approach is the halt-
ing probability of a random program of M , which is denoted as ΩM . Chaitin has
shown that ΩM has an infinite amount of information, and thus it corresponds
to a strong definition of mathematical randomness. Therefore, ALP does not
merely build upon the probability axioms, but also serves as a foundation for
probability theory itself. Furthermore, it is well known that classical information
theory can be derived from algorithmic information theory, further clenching the
epistemological status of ALP and AIT (which are converse ways of looking at
the same problem).

An interesting question is whether ALP encourages a realist or a construc-
tivist attitude towards mathematics. No theorem in ALP requires accepting



constructively unjustifiable claims, therefore we think that ALP is compatible
with constructivism. This is most strikingly viewed in the question of whether Ω
exists. It is true that the bits of Ω are both certain and are essentially the same
when we change the reference machine. This has led some thinkers to assume
a Platonist position with regards to Ω. However, we think that position is un-
justified, for the approximation procedure for Ω suggests that novel algorithmic
information can be generated by spending adequate physical resources (time, en-
ergy, space). Therefore, we suggest that algorithmic information evolves; it has
not been created before evolution. The certainty of machine description must
not be confused with independent existence.

7 Intellectual Property Towards Infinity Point

Solomonoff has proposed that infinity point, also known as the singularity, is
the result of accelerated progress caused by trans-human AI’s, to accelerate our
progress even further ad infinitum [19]. Solomonoff has proposed five milestones
of AI development: A: modern AI phase (1956 Dartmouth conference), B: gen-
eral theory of problem solving (our interpretation: Solomonoff Induction, Levin
Search), C: self-improving AI (our interpretation: Alpha architecture, 2002), D:
AI that can understand English (our interpretation: not realized yet), E: human-
level AI, F: an AI at the level of entire computer science (CS) community, G: an
AI many times smarter than entire CS community.

A weak condition for infinity point may be obtained by an economic argu-
ment, also covered in [19] briefly. The human brain produces 5 teraflops/watt
roughly. Current NVIDIA GPGPU architectures achieve about 6 gflops/watt.
Assuming 85% improvement in power efficiency per year, in 12 years, the human-
level computing power-efficiency will be achieved. After that date, even if AI
fails, we will be able to run our “uploads” faster than us, using less energy
than humans, effectively creating a bioinformation based AI which meets the
basic requirement of infinity point. This weaker condition rests on an economic
observation: the economic incentive of cheaper intellectual work will drive the
proliferation of personal use of uploads. According to NVIDIA’s own projections,
thus, we can expect the necessary conditions for the infinity point to materialize
by 2023, after which point technological progress will accelerate very rapidly.

Assume that we are progressing towards infinity point. Then, the entire hu-
man civilization may be viewed as a global intelligence working on technological
problems (And from another perspective, the whole evolution may be viewed
as computing the bits of ΩM as in Chaitin’s work). The practical necessity of
incremental learning suggests that when faced with more difficult problems, bet-
ter information sharing is required. If no information sharing is present between
researchers (i.e., different search programs) then, they will lose time traversing
overlapping program subspaces. This is most clearly seen in the case of simulta-

neous inventions when an idea is said to be “up in the air” and is invented by
different parties on near dates. If, intellectual property laws are too rigid and
costly, this would entail that there is minimal information sharing, and after



some point, the global efficiency of solving non-trivial technological problems
would be severely hampered. Therefore, to utilize the infinity point effects bet-
ter, knowledge sharing must be encouraged in the society. Maximum efficiency
in this fashion can be provided by free software licenses, and a reform of the
patent system. The conclusion is that no single company can (or should) have
a monopoly on the knowledge resources to attack problems with truly large
algorithmic complexity. Therefore, sharing of facts and technology is the most
efficient path towards the infinity point (i.e., singularity).

8 Conclusion

We have mentioned diverse applications of ALP in artificial intelligence, axiom-
atization of AI, philosophy of mathematics and technological society. We have
related our own research to Solomonoff’s open AI problems. We interpret ALP
as a fundamentally new world-view which allows us to approach a plethora of
complex subjects more scientifically, bridging the gap between complex natural
phenomena and positive sciences more closely than ever. This paradigm shift has
resulted in various breakthrough applications and is likely to benefit the society
in the foreseeable future.
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