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LARGE DEVIATIONS FOR TRUNCATED HEAVY-TAILED

RANDOM VARIABLES: A BOUNDARY CASE

ARIJIT CHAKRABARTY

Abstract. This paper investigates the decay rate of the probability
that the row sum of a triangular array of truncated heavy tailed random
variables is larger than an integer (k) times the truncating threshold, as
both - the number of summands and the threshold go to infinity. The
method of attack for this problem is significantly different from the one
where k is not an integer, and requires much sharper estimates.

1. Introduction

Suppose Y, Y1, Y2, . . . are i.i.d. random variables with P (Y > ·) regularly
varying with index−α, for some α > 0, and let (Mn) be a sequence satisfying

lim
n→∞

nP (Y > Mn) = 0 .

Define the triangular array {Xnj : 1 ≤ j ≤ n} by

(1.1) Xnj := Yj1(|Yj | ≤ Mn) ,

and denote the row sum by

(1.2) Sn :=

n
∑

j=1

Xnj .

This paper studies the decay rate of

(1.3) P (Sn > kMn)

as n → ∞, for a fixed positive integer k, under some additional assumptions.
For the motivation behind studying such a truncated heavy-tailed model,
the reader is referred to Chakrabarty and Samorodnitsky (2009).

The case when k is an integer is more challenging than the case when
k is a fraction because of the following simple reason. When k is not an
integer, a result similar to Theorem 2.2 in Chakrabarty (2011) holds, which
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2 A. CHAKRABARTY

essentially shows that the probability in (1.3) is asymptotically equivalent
to

(

n
⌈k⌉

)

P





⌈k⌉
∑

j=1

Xnj > kMn



 ,

and therefore argues that the probability is of the order {nP (Y > Mn)}
⌈k⌉.

When k is an integer, the natural guess is that the same equivalence holds,
with ⌈k⌉ replaced by k + 1, that is, Sn will be larger than kMn, “if and

only if”,
∑k+1

i=1 Xnji is larger than kMn for some 1 ≤ j1 < . . . < jk+1 ≤ n.
However, as is shown in Theorem 2.1 below, this is not always the case. This
disagreement with intuition is the primary reason behind the boundary case,
that is the case when k is an integer, being harder. The author could solve
this boundary problem only when α ≥ k or α < k/(k + 2). Surprisingly,
it turns out that the asymptotic magnitude of the probability is different
for these two regimes of α, a phenomenon one wouldn’t guess a priori. The
behavior in these two regimes are studied in sections 2 and 3 respectively.
In Section 4, we consider a couple of examples.

We conclude this section by pointing out some classical works in the the-
ory of large deviations for (untruncated) heavy tailed random variables. The
study started in late sixties with Heyde (1968), Nagaev (1969a) and Nagaev
(1969b), significant contributions being made later by Nagaev (1979) and
Cline and Hsing (1991), among others. Recently, Hult et al. (2005) studied
the functional version of the large deviations principle.

2. The case α ≥ k

Suppose that Y, Y1, Y2, . . . are i.i.d. random variables such that P (|Y | > ·)
is regularly varying with index −α, for some α > 1, and

(2.1) p := lim
x→∞

P (Y > x)

P (|Y | > x)
exists, and is positive .

We assume that

(2.2) E(Y ) = 0 .

If α = 2, we assume that

(2.3) E(Y 2) < ∞ .

Furthermore, we assume that given δ > 0, there exist T0 > 0 and u0 ∈ (0, 1)
such that for all T ≥ T0 and 1− u0 ≤ a ≤ b ≤ 1,

(2.4)

∣

∣

∣

∣

P (Y > aT )− P (Y > bT )

P (Y > T )
− (a−α − b−α)

∣

∣

∣

∣

≤ δ(b− a) .

In Section 4, we shall see an example of a random variable with regularly
varying tail, for which this holds.
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Define the quantile sequence (bn) as

(2.5) bn := inf

{

x > 0 : P (Y > x) ≤
1

n

}

.

Let (Mn) be a sequence of positive numbers so that

(2.6) Mn ≫ bn, if α < 2 ,

and

(2.7) Mn ≫ n1/2+γ for some γ > 0, if α ≥ 2 .

The triangular array {Xnj : 1 ≤ j ≤ n} and their row sum Sn are as defined
in (1.1) and (1.2) respectively.

The first result of this paper, Theorem 2.1 below, describes the decay
rate of P (Sn > kMn) when k is a positive integer and α ≥ k, under some
additional assumptions. The result below refers to stable distributions; an
overview of this topic can be found in the first chapter of Samorodnitsky and Taqqu
(1994).

Theorem 2.1. Suppose that α ≥ k, where k is a positive integer (we still
assume that α > 1). Assume furthermore that if α = k ≥ 3, then

(2.8)

∫ ∞

0
yαP (Y ∈ dy) < ∞ .

Then

P (Sn > kMn) ∼ cknn
kM−k

n P (Y > Mn)
k αk

(k!)2

∫ ∞

0
skP (Zα ∈ ds) ,

as n → ∞, where

cn :=

{

bn, α < 2 ,

n1/2, α ≥ 2 ,

and Zα follows an α-stable distribution with scale, location and skewness
parameters as 1, 0 and 2p−1 respectively if α < 2, and a normal distribution
with mean zero and variance same as that of Y if α ≥ 2.

For proving the result, we need some lemmas. First, let us fix some
notations. For l ≥ 1, let Cnl be the set of l-tuples j = (j1, . . . , jl) such that
1 ≤ j1 < . . . < jl ≤ n. For any j ∈ Cnl, denote

jc := {1, . . . , n} \ {j1, . . . , jl} .

Lemma 2.1. Suppose that (xn) is a sequence satisfying

(2.9) Mn ≫ xn ≫ bn, if α < 2 ,

and

(2.10) Mn ≫ xn ≫ n1/2+γ , if α ≥ 2 ,
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where γ is same as that in (2.7). Then,

P





⋂

j∈Cnk







∑

i∈jc

Xni > xn, Sn > kMn









 = O
(

nk+1P (Y > xn)
k+1
)

,

for all fixed k ≥ 1, as n → ∞.

Proof. The proof is by induction on k. The proof for k = 1 is very similar
to the induction step, and hence we do not show the former separately. As
the induction hypothesis, assume that the result is true for 1, . . . , k− 1, and
we shall show it for k. Observe that if α ≥ 2, then

bn = O
(

n1/2+γ
)

,

and hence by (2.9) and (2.10), it follows that

(2.11) bn ≪ xn,

for all α. Since, p as defined in (2.1), is positive, it follows that P (Y > ·) is
regularly varying with index −α. It immediately follows from (2.5) that

(2.12) lim
n→∞

nP (Y > bn) = 1 .

Fix

ε ∈

(

0,
1

k + 2

)

,

and let u be such that

0 < u <
1

α

(

1

k + 2
− ε

)

,

and

(2.13)
1− u

2− αu
<

1

2
+ γ .

Notice that by (2.12),

n−ub1/(k+2)−ε
n ∼ P (Y > bn)

ub1/(k+2)−ε
n ≪ P (Y > xn)

ux1/(k+2)−ε
n ,

the inequality following from (2.11) and the fact that the function x going

to P (Y > x)ux1/(k+2)−ε, is regularly varying with a positive index, namely
1/(k + 2)− ε− uα. Thus,

(2.14) b1/(k+2)−ε
n x(k+1)/(k+2)+ε

n ≪ nuP (Y > xn)
uxn .

Let δ ∈ (0, 2 − αu) be such that

1− u

2− αu− δ
≤

1

2
+ γ ;

such a δ exists because of (2.13). When α ≥ 2, observe that

x2nP (Y > xn)
u ≫ x2−αu−δ

n ≫ n(1/2+γ)(2−αu−δ) ≥ n1−u .
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In view of (2.14) and the above inequality, there exists a sequence (zn)
satisfying

(2.15) b
1

k+2
−ε

n x
k+1
k+2

+ε
n ≪ zn ≪ nuP (Y > xn)

uxn, if α < 2 ,

and

(2.16) b
1

k+2
−ε

n x
k+1
k+2

+ε
n +

n

xn
≪ zn ≪ nuP (Y > xn)

uxn, if α ≥ 2 .

Fix such a (zn).
For a set A and m ≥ 1, let Sm(A) denote the family of all subsets of A

that have cardinality m. Fix 1 ≤ l ≤ k − 1. For j ∈ Cnl , define

Dj :=
⋂

i∈Sn−k(jc)







n−k
∑

u=1

Xniu > xn,
∑

v∈jc

Xnv > (k − l)Mn







;

recall the definitions of Cnl and jc from the text preceding the statement of
the current lemma. Define the events

En := {|Xnj | > zn for at least (k + 2) many j’s ≤ n} ,

Fn :=







n
∑

j=1

Xnj1(|Xnj | ≤ zn) > Mn −
xn
2







,

Gn :=

{

Xnj >
xn

2(k + 1)
for at least (k + 1) many j’s ≤ n

}

,

Hn :=
⋃

j∈Cnk

{

Xnji >
xn

2(k + 1)
for 1 ≤ i ≤ k

and
∑

i∈jc

Xni1(|Xni| ≤ zn) >
xn
2

}

,

In :=

k−1
⋃

l=1

⋃

j∈Cnl

[{

Xnji >
xn

2(k + 1)
for 1 ≤ i ≤ l

}

∩Dj

]

.

Our claim is that

(2.17)
⋂

j∈Cnk







∑

i∈jc

Xni > xn, Sn > kMn







⊂ En ∪ Fn ∪Gn ∪Hn ∪ In .

To see this, if possible, fix a sample point in the left hand side, which is in
neither of En, Fn, Gn, Hn or In. Let

l := #

{

u ∈ {1, . . . , n} : Xnu >
xn

2(k + 1)

}

.
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Case 1: l = 0. Write

Sn :=
n
∑

j=1

Xnj1(|Xnj | ≤ zn) +
n
∑

j=1

Xnj1(|Xnj | > zn) .

By the assumption that the sample point does not belong to Fn, it follows
that the first sum on the right is at most Mn−xn/2. Since En does not hold,
the number of surviving summands in the second sum is at most (k + 1).
As l = 0, it follows that each summand is at most xn/2(k + 1). Therefore,
the second sum is at most xn/2. Thus, Sn ≤ Mn, which is a contradiction.
Case 2: 1 ≤ l ≤ k − 1. Let 1 ≤ j1 < . . . < jl ≤ n be such that

Xnji >
xn

2(k + 1)
for all 1 ≤ i ≤ l .

Denote j := (j1, . . . , jl) ∈ Cnl. Clearly Dj is a superset of the left hand side
of (2.17), and hence trivially the sample point is in Dj . Thus, the sample
point is in In, which is a contradiction.
Case 3: l = k. Once again, let j1 < . . . < jk denote the indices i for which
Xni > xn/2(k + 1), and set j := (j1, . . . , jk). Write

∑

i∈jc

Xni =
∑

i∈jc

Xni1(|Xni| ≤ zn) +
∑

i∈jc

Xni1(|Xni| > zn) .

Since Hn does not hold, the first sum on the right is at most xn/2. As En

does not hold, in the second sum, at most (k+1) terms survive. Also, each
summand in that sum is at most xn/2(k + 1). Thus, the second sum is at
most xn/2. This shows that the left hand side is at most xn, which clearly
is a contradiction.
Case 4: l ≥ k+1. This case cannot arise because Gn does not hold. Thus,
the inclusion (2.17) is true.

In view of (2.17), all that needs to be shown is that

(2.18) P (En)+P (Fn)+P (Gn)+P (Hn)+P (In) = O
[

{nP (Y > xn)}
k+1
]

.

To that end, notice that

P (En) ≤ nk+2P (|Y | > zn)
k+2

= O
[

nk+2P (Y > zn)
k+2
]

,(2.19)

the second step following from the assumption that p, as defined in (2.1), is
positive. By (2.11) and (2.12), it follows that

b1/(k+2)−ε
n x(k+1)/(k+2)+ε

n ≫ bn ,

and

(2.20) lim
n→∞

nP (Y > xn) = 0 .

These, in view of (2.15) and (2.16), show that

(2.21) bn ≪ zn ≪ xn .
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Set

θ := α(k + 2)ε ,

and observe that as n → ∞,

nk+2P (Y > zn)
k+2

nk+1P (Y > xn)k+1
∼

{

P (Y > zn)

P (Y > xn)

}k+1 P (Y > zn)

P (Y > bn)

≤ 2

{

(

zn
xn

)−α−θ/(k+1)
}k+1(

zn
bn

)−α+θ

= 2

(

zn

b
1/(k+2)−ε
n x

(k+1)/(k+2)+ε
n

)−α(k+2)

→ 0 ,

the inequality in the second line holding for large n, and following by the
Potter bounds (Proposition 2.6 in Resnick (2007)) and (2.21). This, in view
of (2.19), shows that

P (En) = o
(

nk+1P (Y > xn)
k+1
)

.

It is obvious that

P (Gn) = O
(

nk+1P (Y > xn)
k+1
)

.

Next we proceed to show that

(2.22) P (Hn) = O
(

nk+1P (Y > xn)
k+1
)

.

To that end, we shall use a result from Prokhorov (1959), which states
that if T1, T2, . . . , TN are independent zero mean random variables such that
|Tj| ≤ C for all 1 ≤ j ≤ n, then

(2.23) P





N
∑

j=1

Tj > λ



 ≤ exp

{

−
λ

2C
sinh−1 λC

2Var(
∑N

j=1 Tj)

}

.

By the above, it follows that

P (Hn)

≤ nkP

(

Y >
xn

2(k + 1)

)k

P





n
∑

j=k+1

Xnj1(|Xnj | ≤ zn) >
1

2
xn





= O



P





n
∑

j=k+1

Xnj1(|Xnj | ≤ zn) >
1

2
xn







 ,
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the last step following from (2.20). The assumption (2.2) implies that for n
large,

nE [Xn11(|Xn1| ≤ zn)] = −nE [Y 1(|Y | > zn)]

= O (nznP (Y > zn))

= o (nxnP (Y > xn))

= o(xn) ,(2.24)

where the second step follows from Karamata’s theorem; see Theorem 2.1
in Resnick (2007). Thus, for n large enough,

P





n
∑

j=k+1

Xnj1(|Xnj | ≤ zn) >
1

2
xn





≤ P





n
∑

j=k+1

Xnj1(|Xnj | ≤ zn)− (n− k)E [Xn11(|Xn1| ≤ zn)] >
1

4
xn





(2.25) ≤ exp

{

−K1
xn
zn

sinh−1K2
znxn

(n− k)Var(Xn11(|Xn1| ≤ zn))

}

,

for some finite positive constants K1 and K2. Thus, for (2.22), it suffices to
show that

xnzn ≫ nVar(Xn11(|Xn1| ≤ zn)) ,(2.26)

and
xn
zn

≫ (nP (Y > xn))
−u .(2.27)

This is because if the above hold, then by (2.25) and the fact that

lim
x→∞

sinh−1 x = ∞ ,

it follows that,

P (Fn) = O
(

exp
{

−K1(nP (Y > xn))
−u
})

= o
[

(nP (Y > xn))
k+1
]

.

Notice that (2.27) is a restatement of the second inequalities in (2.15) and
(2.16). We shall show (2.26) separately for the cases α < 2 and α ≥ 2.
Case α < 2: By the Karamata’s theorem, it follows that

nVar(Xn11(|Xn1| ≤ zn)) = O
(

nz2nP (Y > zn)
)

= o(z2n)

= o(znxn) .

Case α ≥ 2: The assumption (2.3) implies that

nVar(Xn11(|Xn1| ≤ zn)) = O(n)

= o(xnzn) ,

the last step following from the left inequality in (2.16). Thus, (2.26) holds,
and hence so does (2.22).
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By similar arguments as above, the fact that

(2.28) P (Fn) = O
(

nk+1P (Y > xn)
k+1
)

will follow once it can be shown that

nE [Xn11(|Xn1| ≤ zn)] = o(M̂n) ,

M̂nzn ≫ nVar(Xn11(|Xn1| ≤ zn)) ,

and
M̂n

zn
≫ (nP (Y > xn))

−u ,

where

M̂n := Mn −
1

2
xn .

These, follow immediately from (2.24), (2.26) and (2.27) respectively, along

with the fact that xn ≪ M̂n. This establishes (2.28).
To show (2.18), and thus complete the proof of the lemma, all that needs

to be shown is

(2.29) P (In) = O
(

nk+1P (Y > xn)
k+1
)

.

This is the only place where we shall use the induction hypothesis; note
that when k = 1, In is the null event, and hence the above arguments give
a complete proof for that case. To the end of proving this for general k,
observe that

P (In) ≤

k−1
∑

l=1

∑

j∈Cnl

P

({

Xnji >
xn

2(k + 1)
for 1 ≤ i ≤ l

}

∩Dj

)

≤
k−1
∑

l=1

(

n
l

)

P

(

Y >
xn

2(k + 1)

)l

P
(

D(1,...,l)

)

=

k−1
∑

l=1

O
[

nlP (Y > xn)
l P
(

D(1,...,l)

)

]

.

Notice that,

P
(

D(1,...,l)

)

= O
(

nk−l+1P (Y > xn)
k−l+1

)

for all fixed l = 1, . . . , k − 1, since by the induction hypothesis, the claim
of the theorem is true for k replaced by k − l. This shows (2.29), and
consequently the result for k, that is, the induction step, which in turn
completes the proof. �

Lemma 2.2. For k ≥ 1, there exists a function εk : (0, 1) × (0,∞) → R

such that

(2.30) lim
T→∞,u↓0

u−kεk(u, T ) = 0 ,
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and

(2.31)
P
(

∑k
i=1Xni > (k − u)Mn

)

P (Y > Mn)k
=

αk

k!
uk + εk(u,Mn) ,

for all n ≥ 1, 0 < u < 1.

Proof. The proof is by induction on k. First let us show the result for k = 1.
To that end, define

ε1(u, T ) :=
P (Y > (1− u)T )− P (Y > T )

P (Y > T )
− αu ,

and notice that (2.31) holds with this ε1(·, ·). Also,

|ε1(u, T )| ≤

∣

∣

∣

∣

P (Y > (1− u)T )− P (Y > T )

P (Y > T )
−
{

(1− u)−α − 1
}

∣

∣

∣

∣

+
∣

∣

{

(1− u)−α − 1
}

− αu
∣

∣ .

By (2.4), the first term on the right hand side is o(u) as T → ∞ and u ↓ 0.
The second term is o(u) by Taylor’s theorem. This shows the result for
k = 1. Suppose now that the claim is true for k; we shall show the same for
k + 1. Clearly, for n ≥ 1 and 0 < u < 1,

P

(

k+1
∑

i=1

Xni > (k + 1− u)Mn

)

=

∫

(1−u,1]
P

(

k
∑

i=1

Xni > {k − (u+ x− 1)}Mn

)

P
(

M−1
n Y ∈ dx

)

= P (Y > Mn)
k

∫

(1−u,1]

[

αk

k!
(u+ x− 1)k + εk(u+ x− 1,Mn)

]

P
(

M−1
n Y ∈ dx

)

.

Define

εk+1(u, T ) :=

∫

(1−u,1]

[

αk

k!
(u+ x− 1)k + εk(u+ x− 1, T )

]

P
(

T−1Y ∈ dx
)

P (Y > T )
−

αk+1

(k + 1)!
uk+1 .

To complete the proof, all that needs to be shown is

(2.32) lim
T→∞,u↓0

u−(k+1)εk+1(u, T ) = 0 .

To that end, we shall first show

(2.33) lim
T→∞,u↓0

u−(k+1)

∫

(1−u,1]
(u+ x− 1)k

P
(

T−1Y ∈ dx
)

P (Y > T )
=

α

k + 1
.
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Fix α > δ > 0, and T0 > 0, u0 ∈ (0, 1) such that (2.4) holds. Then, for
T ≥ T0 and 1− u0 ≤ a < b ≤ 1,

α− δ ≤
P (Y ∈ (aT, bT ])

(b− a)P (Y > T )
≤ α(1− u0)

−α−1 + δ .

Thus, for T ≥ T0 and 0 < u ≤ u0,

(α− δ)

∫ 1

1−u
(u+ x− 1)kdx ≤

∫

(1−u,1]
(u+ x− 1)k

P
(

T−1Y ∈ dx
)

P (Y > T )

(2.34) ≤
{

α(1 − u0)
−α−1 + δ

}

∫ 1

1−u
(u+ x− 1)kdx .

Since δ and u0 can be chosen to be arbitrarily small, it follows that as T → ∞
and u ↓ 0,

∫

(1−u,1]
(u+ x− 1)k

P
(

T−1Y ∈ dx
)

P (Y > T )
∼ α

∫ 1

1−u
(u+ x− 1)kdx

=
α

k + 1
uk+1 .

This shows (2.33). Now using the induction hypothesis that

lim
T→∞,u↓0

u−kεk(u, T ) = 0 ,

and the above computations, (2.32) follows. This establishes the induction
step, and thus completes the proof of the lemma. �

Lemma 2.3. Under the assumptions of Theorem 2.1,

(2.35) lim
n→∞

∫ ∞

0
skP

(

c−1
n Sn ∈ ds

)

=

∫ ∞

0
skP (Zα ∈ ds) < ∞ ,

where (cn) and Zα are as defined in the statement of that theorem.

Proof. Since α is always assumed to be larger than 1, notice that either
k < α < 2 or α ≥ 2 always holds. In the former case, Zα has an α-stable
distribution, and hence the integral on the right hand side of (2.35) is finite
because k < α. In the latter case Zα is a normal random variable, and hence
the integral is finite for all k.

Notice that the assumption (2.2) implies that as n → ∞,

c−1
n

n
∑

j=1

Yj =⇒ Zα .

Recall that Sn, defined in (1.2), is the row sum of the triangular array
{Xnj : 1 ≤ j ≤ n}. Notice that

P



Sn 6=
n
∑

j=1

Yj



 ≤ nP (|Y | > Mn)

= o(1) ,
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the last equality being an immediate consequence of (2.6) and (2.7). Thus,
it follows that

(2.36) c−1
n Sn =⇒ Zα .

For the proof, we shall use Theorem 3.2 in de Acosta and Giné (1979),
which states the following:
Let {Vnj : 1 ≤ j ≤ n} be a triangular array satisfying

(2.37) lim
n→∞

max
1≤j≤n

P (|Vnj| > ε) = 0 for all ε > 0 ,

and the row sum S̃n :=
∑n

j=1 Vnj converges weakly to a probability measure

ν. If φ is a continuous function from R to [0,∞) such that there exists
a ∈ (0,∞) with

(2.38) φ(x+ y) ≤ aφ(x)φ(y) for all x, y ,

and

(2.39) lim
T→∞

sup
n≥1

n
∑

j=1

E [φ(Vnj)1(|Vnj | > T )] = 0 ,

then

lim
n→∞

Eφ(S̃n) =

∫

R

φdν .

The plan is to use the above result with φ defined by

φ(x) := 2 + |x|k1(x > 0) .

A quick inspection will reveal that φ thus defined, satisfies (2.38) with a =
2k. Let {Xnj} be as defined in (1.1), and set

Vnj := c−1
n Xnj , 1 ≤ j ≤ n .

Thus, checking (2.37) and (2.39) suffices for the proof of the lemma. Veri-
fying (2.37) is trivial. A quick argument will yield that instead of showing
(2.39), it is enough to show

(2.40) lim
T→∞

lim sup
n→∞

n
∑

j=1

E [φ(Vnj)1(|Vnj | > T )] = 0 .

For (2.40), observe that
n
∑

j=1

E [φ(Vnj)1(|Vnj | > T )]

= 2nP (|Xn1| > cnT ) + nc−k
n E

[

Xk
n11 (Xn1 > cnT )

]

≤ 2nP (|Y | > cnT ) + nc−k
n

∫

[cnT,∞)
ykP (Y ∈ dy) .

By (2.3), it follows that when α ≥ 2,

(2.41) P (Y > x) = o(x−2) as x → ∞ .
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This, along with (2.12), shows that

(2.42) lim sup
n→∞

nP (|Y | > cn) < ∞ ,

for all α. In view of this, it follows that there is a finite constant C, inde-
pendent of T and n, satisfying

lim sup
n→∞

nP (|Y | > cnT ) = CT−α .

Thus, it follows that

(2.43) lim
T→∞

lim sup
n→∞

nP (|Y | > cnT ) = 0 .

For (2.40), it remains to show that

(2.44) lim
T→∞

lim sup
n→∞

nc−k
n

∫

[cnT,∞)
ykP (Y ∈ dy) = 0 .

We shall prove (2.44) separately for the cases α > k and α = k.
Case α > k: Observe that for fixed T > 0, by the Karamata’s theorem,

lim sup
n→∞

nc−k
n

∫

[cnT,∞)
ykP (Y ∈ dy) =

α

α− k
T k lim sup

n→∞
nP (Y > cnT )

≤ C
α

α− k
T k−α .

This completes the proof of (2.44).
Case α = k: Since the assumption α > 1 is in force, for this case it is
necessarily true that α = k ≥ 2. Thus, for T ≥ 1,

nc−k
n

∫

[cnT,∞)
ykP (Y ∈ dy) ≤ nc−k

n

∫

[cn,∞)
ykP (Y ∈ dy)

= n1−k/2

∫

[n1/2,∞)
yαP (Y ∈ dy)

≤

∫

[n1/2,∞)
yαP (Y ∈ dy) .

By the assumptions (2.3) and (2.8), it follows that rightmost quantity goes
to zero as n → ∞. This shows (2.44). Equations (2.43) and (2.44) establish
(2.40), which completes the proof. �

Proof of Theorem 2.1. We start with proving the upper bound, that is,

(2.45) lim sup
n→∞

P (Sn > kMn)

nkP (Y > Mn)kcknM
−k
n

≤
αk

(k!)2

∫ ∞

0
skP (Zα ∈ ds) .

To that end, observe that

(2.46) Mn ≫ cn ,

which is a consequence of (2.6) and (2.7). Our first claim is that

(2.47) Mk
nP (Y > Mn) ≪ cknn

−1 .
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We shall show this separately for the cases α > k and α = k.
Case α > k: By (2.46) and the fact that α > k, it follows that

Mk
nP (Y > Mn) ≪ cknP (Y > cn) = O

(

ckn/n
)

,

the rightmost equality following from (2.42).
Case α = k: It is necessary that in this case α ≥ 2. By (2.41) and the
assumption (2.8), it follows that

Mk
nP (Y > Mn) ≪ 1 ≤ nk/2−1 = cknn

−1 .

This completes the proof of (2.47). Thus, it follows that

(2.48) P (Y > Mn)
k+1 ≪ cknn

−1M−k
n P (Y > Mn)

k .

Set

β :=

{

0, α < 2 ,
γ, α ≥ 2 ,

where γ is same as that in (2.7). It follows that

Mn ≫ nβcn .

This, along with (2.48), shows that

P (Y > Mn)
k+1 ≪ min

{

cknn
−1M−k

n P (Y > Mn)
k, P (Y > nβcn)

k+1
}

.

The right hand side, clearly, goes to zero. Thus, there exists a sequence (Tn)
satisfying

P (Y > Mn)
k+1 ≪ P (Y > Tncn)

k+1

≪ min
{

cknn
−1M−k

n P (Y > Mn)
k, P (Y > nβcn)

k+1
}

.(2.49)

Let us record some quick consequences of the above. One immediate obser-
vation is that

(2.50) nβcn ≪ cnTn ≪ Mn .

In particular,

(2.51) lim
n→∞

Tn = ∞ .

Notice that

{Sn > kMn} ⊂





⋃

j∈Cnk

{

k
∑

u=1

Xnju > kMn − Tncn, Sn > kMn

}





∪





⋂

j∈Cnk







∑

i∈jc

Xni > Tncn, Sn > kMn









 ,
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where Cnk, as defined earlier, denotes the set of k-tuples
j = (j1, . . . , jk) such that 1 ≤ j1 < . . . < jk ≤ n. Thus,

P (Sn > kMn)

≤

(

n
k

)

P

(

k
∑

i=1

Xni > kMn − Tncn, Sn > kMn

)

+

P





⋂

j∈Cnk







∑

i∈jc

Xni > Tncn, Sn > kMn











=: Q1 +Q2 .

Clearly,

(

n
k

)−1

Q1

=

∫

(0,Tn]
P

(

k
∑

i=1

Xni > kMn − scn

)

P

(

c−1
n

n
∑

i=k+1

Xni ∈ ds

)

+P

(

k
∑

i=1

Xni > kMn − Tncn

)

P

(

n
∑

i=k+1

Xni > Tncn

)

=: Q11 +Q12 .

Denote

(2.52) Pn(ds) := P

(

c−1
n

n
∑

i=k+1

Xni ∈ ds

)

.

By Lemma 2.2, it follows that

Q11 = P (Y > Mn)
kα

k

k!
cknM

−k
n

∫

(0,Tn]
skPn(ds)

+P (Y > Mn)
k

∫

(0,Tn]
εk
(

scnM
−1
n ,Mn

)

Pn(ds)

=: Q111 +Q112 ,

where εk(·, ·) satisfies (2.30). Clearly,

Q111 ≤ P (Y > Mn)
kα

k

k!
cknM

−k
n

∫ ∞

0
skPn(ds)

∼ P (Y > Mn)
kα

k

k!
cknM

−k
n

∫ ∞

0
skP (Zα ∈ ds) ,
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the equivalence following from Lemma 2.3. Also,

|Q112| ≤ P (Y > Mn)
kcknM

−k
n

∫ ∞

0
skPn(ds) sup

0<t≤cnTnM
−1
n

|εk(t,Mn)|

tk

= o
(

P (Y > Mn)
kcknM

−k
n

)

,

the second equality following by (2.30), (2.50) and Lemma 2.3. Hence,

(2.53) lim sup
n→∞

Q11

P (Y > Mn)kcknM
−k
n

≤
αk

k!

∫ ∞

0
skP (Zα ∈ ds) .

Next, we proceed to show that

(2.54) Q12 = o
(

P (Y > Mn)
kcknM

−k
n

)

.

To that end, notice that

P

(

n
∑

i=k+1

Xni > Tncn

)

≤ P

(

n
∑

i=k+1

Yi > Tncn

)

+ nP (|Y | > Mn) .

It is well known that

P

(

n
∑

i=k+1

Yi > Tncn

)

= O (nP (Y > Tncn) ;

see, for example, Lemma 2.1 in Hult et al. (2005). This, in view of (2.50),
shows that

P

(

n
∑

i=k+1

Xni > Tncn

)

= O (nP (Y > Tncn) .

Using Lemma 2.2 once again, it follows that

P

(

k
∑

i=1

Xni > kMn − Tncn

)

= O
(

P (Y > Mn)
k(TncnM

−1
n )k

)

.

Thus,

Q12 = O
(

nP (Y > Tncn)P (Y > Mn)
k(TncnM

−1
n )k

)

.

In view of this, (2.54) will follow if it can be shown that

(2.55) lim
n→∞

nP (Y > Tncn)T
k
n = 0 .

Once again, (2.55) will be shown separately for the cases α > k and α = k.
Case α > k: Fix δ ∈ (0, α − k). By (2.42), it follows that there exists
K < ∞, independent of n, such that

nP (Y > Tncn)T
k
n ≤ K

P (Y > Tncn)

P (Y > cn)
T k
n

≤ 2KT k−α+δ
n ,
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for n large enough, the second inequality following by the Potter bounds
and (2.51). This shows (2.55).
Case α = k: By (2.41), and the assumption (2.8), it is ensured that

nP (Y > Tncn)T
k
n ≪ nc−k

n = n1−k/2 ≤ 1 .

Thus, (2.55) holds, and hence so does (2.54). By (2.53) and (2.54), it follows
that

(2.56) lim sup
n→∞

Q1

nkP (Y > Mn)kcknM
−k
n

≤
αk

(k!)2

∫ ∞

0
skP (Zα ∈ ds) .

By Lemma 2.1 and (2.50), it follows that

Q2 = O
(

nk+1P (Y > Tncn)
k+1
)

= o
(

nkP (Y > Mn)
kcknM

−k
n

)

,

the second inequality following from (2.49). This, along with (2.56), com-
pletes the proof of the upper bound (2.45).

Next we proceed to establish the lower bound, that is

(2.57) lim inf
n→∞

P (Sn > kMn)

nkP (Y > Mn)kcknM
−k
n

≥
αk

(k!)2

∫ ∞

0
skP (Zα ∈ ds) .

To that end, fix T > 0 and define the event

Bj :=

{

k
∑

i=1

Xnji > kMn − Tcn, Sn > kMn

}

, j = (j1, . . . , jk) ∈ Cnk .

Clearly,

P (Sn > kMn) ≥ P





⋃

j∈Cnk

Bj





≥
∑

j∈Cnk

P (Bj)−
∑

j1,j2∈Cnk ,j1 6=j2
P
(

Bj1 ∩Bj2
)

=

(

n
k

)

P
(

B(1,...,k)

)

−
∑

j1,j2∈Cnk ,j1 6=j2

P
(

Bj1 ∩Bj2
)

=: Q3 −Q4 .

Note that

Q3 ∼
nk

k!
P
(

B(1,...,k)

)

≥
nk

k!

∫

(0,T )
P

(

k
∑

i=1

Xni > kMn − scn

)

Pn(ds) ,
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where Pn(·) is as defined in (2.52). By Lemma 2.2, (2.36) and arguments
similar to those leading to (2.53), it follows that as n → ∞,

∫

(0,T )
P

(

k
∑

i=1

Xni > kMn − scn

)

∼
αk

k!
M−k

n P (Y > Mn)
kckn

∫

(0,T )
skP (Zα ∈ ds) .

This shows that

lim inf
n→∞

Q3

M−k
n P (Y > Mn)kcknn

k
≥

αk

(k!)2

∫

(0,T )
skP (Zα ∈ ds) .

If it can be shown that

Q4 = o
(

M−k
n P (Y > Mn)

kcknn
k
)

,(2.58)

then (2.57) will follow by letting T → ∞. To that end, write

Q4 =
k−1
∑

l=0

∑

j1,j2∈Cnk :#(j1∩j2)=l

P
(

Bj1 ∩Bj2
)

.

Fix l ∈ {0, . . . , k− 1} and j1, j2 ∈ Cnk such that #(j1 ∩ j2) = l. Notice that
for n so large that c−1

n Mn ≥ 2T ,

P
(

Bj1 ∩Bj2
)

≤ P

(

k
∑

i=1

Xni > (k − 1/2)Mn,

2k−l
∑

i=k−l+1

Xni > (k − 1/2)Mn

)

≤ P (Xni > Mn/2, 1 ≤ i ≤ 2k − l)

≤ KlP (Y > Mn)
2k−l ,

for some Kl independent of j
1 and j2. Thus,

Q4 =

k−1
∑

l=0

O
(

n2k−lP (Y > Mn)
2k−l

)

= O
(

nk+1P (Y > Mn)
k+1
)

= o
(

M−k
n P (Y > Mn)

kcknn
k
)

,

the equality in the last line following from (2.47). This shows (2.58), which
in turn establishes the lower bound (2.57), and thus completes the proof. �

3. The case α < k/(k + 2)

Suppose that the random variables Y1, Y2, . . . are as defined in the begin-
ning of Section 2, except that now we assume 0 < α < 1. The assump-
tion (2.4) is still in force. Let (Mn) be a real sequence, the assumption on
which will be stated in the main result, namely Theorem 3.1 below. Suppose
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that {Xnj : 1 ≤ j ≤ n} and Sn are as defined in (1.1) and (1.2) respectively.
The above mentioned result studies the behavior of P (Sn > kMn) when k
is a positive integer satisfying α < k/(k+2). For stating the result, we need
some more notations. For k ≥ 1, define the function ck from [k − 1, k] to
[0,∞] recursively, by

c1(t) = t−α − 1 for 0 ≤ t ≤ 1 ,

ck+1(t) = α

∫ 1

t−k
ck(t− z)z−α−1dz for k ≤ t ≤ k + 1, k ≥ 1.

In the preceding definition, we have followed the convention that 0−α = ∞.

Theorem 3.1. For a positive integer k,

(3.1) ck+1(k) < ∞ .

Suppose that 0 < α < k/(k + 2) and

(3.2) M
1−

α(k+2)
k

−γ
n ≫ n

1
α

for some 0 < γ < 1− α(k+2)
k . Then, as n → ∞,

(3.3) P (Sn > kMn) ∼
ck+1(k)

(k + 1)!
nk+1P (Y > Mn)

k+1 .

Notice that the assumption (3.2) implies that

(3.4) lim
n→∞

nP (Y > Mn) = 0 ,

which in particular shows that this is stronger than the corresponding as-
sumption (2.6), for the case 1 < α < 2 in Theorem 2.1. Before starting the
proof of Theorem 3.1, we shall prove a couple of lemmas, which will be used
in the proof of the former.

Lemma 3.1. For k ≥ 1, and x ∈ (k − 1, k],

(3.5) P





k
∑

j=1

Xnj > xMn



 ∼ ck(x)P (Y > Mn)
k ,

as n → ∞, and (3.1) is true.

Proof. Since k > α by assumption, the proof of the lemma will be complete
if we can show that for all k ≥ 1, (3.5) holds, and

(3.6) ck(k − u) = O
(

uk
)

,

as u ↓ 0.
The proof is by induction on k. For k = 1, (3.5) and (3.6) are trivial to

check. As the induction hypothesis, we assume them to be true for k. We
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proceed to show them to be true for k + 1. To that end, fix x ∈ (k, k + 1],
and write

P
(

∑k+1
j=1 Xnj > xMn

)

P (Y > Mn)k+1

=

∫

(x−k,1]

P
(

∑k
j=1Xnj > (x− s)Mn

)

P (Y > Mn)k
P (Xn1 ∈ Mnds)

P (Y > Mn)
.(3.7)

Using the induction hypothesis (3.5) for k, and the fact that the function

s 7→
P(

∑k
j=1 Xnj>(x−s)Mn)
P (Y >Mn)k

is non-decreasing, it follows that the convergence

is uniform, that is,

lim
n→∞

sup
s∈[x−k,1]

∣

∣

∣

∣

∣

∣

P
(

∑k
j=1Xnj > (x− s)Mn

)

P (Y > Mn)k
− ck(x− s)

∣

∣

∣

∣

∣

∣

= 0 .

Thus, as n → ∞,

∫

(x−k,1]

P
(

∑k
j=1Xnj > (x− s)Mn

)

P (Y > Mn)k
P (Xn1 ∈ Mnds)

P (Y > Mn)

(3.8) =

∫

(x−k,1]
ck(x− s)

P (Xn1 ∈ Mnds)

P (Y > Mn)
+ o(1) .

Clearly,

lim
n→∞

∫

(x−k,1]
ck(x−s)

P (Xn1 ∈ Mnds)

P (Y > Mn)
=

∫

(x−k,1]
ck(x−s)αs−α−1ds = ck+1(x) .

This, in view of (3.7) and (3.8), shows that (3.5) holds for k+1. That (3.6)
holds with k + 1, follows trivially from the hypothesis that the same holds
with k, and the definition of ck+1(·). This completes the induction step, and
thus completes the proof of the lemma. �

Lemma 3.2. If k is a positive integer, and (εn) is a sequence of positive
numbers such that

(3.9) εn = o
(

P (Y > Mn)
1/k
)

,

then

(3.10) P





k+1
∑

j=1

Xnj > (k − εn)Mn



 ∼ ck+1(k)P (Y > Mn)
k+1 ,

as n → ∞.
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Proof. The proof is again by induction on k. Our induction hypothesis is a
bit stronger than the statement of the result, namely the following. For all
k ≥ 1,

P





k+1
∑

j=1

Xnj > (k − u)Mn



(3.11)

= O
(

ukP (Y > Mn)
k + P (Y > Mn)

k+1
)

,

as u ↓ 0 and n → ∞. In addition, if (εn) is a sequence of positive numbers
satisfying (3.9), then (3.10) holds. We first verify this hypothesis for k = 1.
To that end, fix 0 < u < δ < 1/2, and notice that

P (Xn1 +Xn2 > (1− u)Mn)

=

∫

(−u,1]
P (Xn1 > (1− u− z)Mn)P (Xn1 ∈ Mndz)

=

∫

(−u,0]
+

∫

(0,δ]
+

∫

(δ,1−δ]
+

∫

(1−δ,1−u]
+

∫

(1−u,1]

=: I1 + I2 + I3 + I4 + I5 .

Clearly,

I1 ≤ P (Xn1 > (1− u)Mn)

= O (uP (Y > Mn)) ,

as u ↓ 0 and n → ∞, the last step following from Lemma 2.2. Using that
result once again, it follows that there is C < ∞ independent of n, u and δ,
satisfying

I2 ≤ CP (Y > Mn)

∫

(0,δ]
(u+ z)P (Xn1 ∈ Mndz)

≤ CP (Y > Mn)

[

u+M−1
n

∫

(0,δMn]
zP (Y ∈ dz)

]

.

By the Karamata’s theorem, it follows that as n → ∞,

M−1
n

∫

(0,δMn]
zP (Y ∈ dz) ∼

α

1− α
δ1−αP (Y > Mn) .

This shows that

I2 = O
[

uP (Y > Mn) + P (Y > Mn)
2
]

.

A restatement of Lemma 3.1 is that

P (Y > Mn)
−1P (Xn1 > ·) → c1(·) ,

uniformly on [δ/2, 1], from which it follows that for u ≤ δ/2,

lim
n→∞

sup
δ≤z≤1−δ

∣

∣

∣

∣

P (Xn1 > (1− u− z)Mn)

P (Y > Mn)
− c1(1− u− z)

∣

∣

∣

∣

= 0 .
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Thus,

I3 ∼ P (Y > Mn)

∫

(δ,1−δ]
c1(1− u− z)P (Xn1 ∈ Mndz)

∼ P (Y > Mn)
2α

∫ 1−δ

δ
c1(1− u− z)z−α−1dz ,

as n → ∞. In other words,

I3 = O
(

P (Y > Mn)
2
)

.

By arguments similar to those leading to (2.34), it follows that for δ small
enough and n large enough,

I4 ≤ 2αP (Y > Mn)

∫ 1−u

1−δ
P (Xn1 > (1− u− z)Mn) dz

= 2αP (Y > Mn)M
−1
n

∫ (δ−u)Mn

0
P (Y > v)dv

≤ 2αP (Y > Mn)M
−1
n

∫ δMn

0
P (Y > v)dv

∼ 2
α

1− α
δ1−αP (Y > Mn)

2 ,

as n → ∞, the last step following from Karamata’s theorem. Consequently,

I4 = O
(

P (Y > Mn)
2
)

.

Finally, the same arguments show that,

I5 = O

(

P (Y > Mn)

∫ 1

1−u
P (Xn1 > (1− u− z)Mn) dz

)

= O (uP (Y > Mn)) .

The above calculations show that (3.11) holds for k = 1. Now suppose that
(εn) is a sequence of positive numbers satisfying

εn = o (P (Y > Mn)) .

Define I1 to I5 as above, with u replaced by εn. The same calculations as
above, will reveal that

I3 ∼ α

∫ 1−δ

δ
c1(1− z)z−α−1dz

as n → ∞, and

lim
δ↓0

lim sup
n→∞

[I1 + I2 + I4 + I5] = 0 .

Thus, (3.10) holds, again with k = 1.
Next, we proceed to prove the induction step, that is, assuming that

the hypothesis is true for k − 1, we shall show that to be true for k. Let
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0 < u < δ < 1/2, and write

P





k+1
∑

j=1

Xnj > (k − u)Mn





=

∫

(−u,1]
P





k
∑

j=1

Xnj > (k − u− z)Mn



P (Xn1 ∈ Mndz)

=

∫

(−u,0]
+

∫

(0,δ]
+

∫

(δ,1−δ]
+

∫

(1−δ,1−u]
+

∫

(1−u,1]

=: J1 + J2 + J3 + J4 + J5 .

By similar arguments as above, it follows that

J1 + J2 = O
(

ukP (Y > Mn)
k + P (Y > Mn)

k+1
)

,

as u ↓ 0 as n → ∞, and

J3 ∼ P (Y > Mn)
k+1

∫ 1−δ

δ
ck(k − u− z)αz−α−1dz ,

as n → ∞. Once again, by arguments similar to those leading to (2.34), it
follows that for δ small enough and n large enough,

J4 ≤ 2αP (Y > Mn)

∫ 1−u

1−δ
P





k
∑

j=1

Xnj > (k − u− z)Mn



 dz

≤ 2αδP (Y > Mn)P





k
∑

j=1

Xnj > (k − 1)Mn



 .

Using the induction hypothesis (3.11) for k − 1, it follows that

P





k
∑

j=1

Xnj > (k − 1)Mn



 = O
(

P (Y > Mn)
k
)

,

which in turn, shows that there exists C < ∞ (independent of δ, u and n)
satisfying

J4 ≤ CδP (Y > Mn)
k+1 ,

for n large and δ small enough. Finally, the same arguments show that,

J5 = O



P (Y > Mn)

∫ 1

1−u
P





k
∑

j=1

Xnj > (k − u− z)Mn



 dz



 .

Using the induction hypothesis, we claim that there is C < ∞ such that

P





k
∑

j=1

Xnj > (k − u− z)Mn



 ≤
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C
[

(u+ z − 1)k−1P (Y > Mn)
k−1 + P (Y > Mn)

k
]

,

whenever 1− u ≤ z ≤ 1, and u small enough. Thus, for such an u,

∫ 1

1−u
P





k
∑

j=1

Xnj > (k − u− z)Mn



 dz

≤ C

[

P (Y > Mn)
k−1

∫ 1

1−u
(u+ z − 1)k−1dz + P (Y > Mn)

k

]

= C

[

P (Y > Mn)
k−1u

k

k
+ P (Y > Mn)

k

]

.

This shows that

J5 = O
(

ukP (Y > Mn))
k + P (Y > Mn))

k+1
)

,

and thus concludes the proof of (3.11) for k. Once again, a close inspection
of the calculations above will reveal that if (εn) is a sequence of positive
numbers satisfying (3.9), then (3.10) holds. This proves the induction step,
and thus completes the proof of the lemma �

Proof of Theorem 3.1. In view of Lemma 3.1, (3.3) is what remains to show.
To that end, we start with the proof of the upper bound, that is the lim sup
of the left hand side divided by the right one is at most 1. Define

un := P (Y > Mn)
1/kMn, n ≥ 1 .

By (3.2), it follows that

P (Y > Mn)
− k+1

k+2P (Y > un) ≪ n− 1
k+2 ,

which we restate as

P (Y > un) ≪ n− 1
k+2P (Y > Mn)

k+1
k+2 .

Clearly, the right hand side goes to zero as n → ∞, and hence there exists
a sequence (zn) satisfying

(3.12) P (Y > un) ≪ P (Y > zn) ≪ n− 1
k+2P (Y > Mn)

k+1
k+2 .

Fix such a (zn). An immediate consequence of the left inequality above is
that

zn ≪ P (Y > Mn)
1/kMn .

Fix a sequence (εn) satisfying

(3.13)
zn
Mn

≪ εn ≪ P (Y > Mn)
1/k .
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Define the events

En :=

{

k+1
∑

i=1

Xnji > (k − εn)Mn for some 1 ≤ j1 ≤ . . . ≤ jk+1 ≤ n

}

,

Fn := {|Xnj | > zn for at least (k + 2) many j’s ≤ n} ,

Gn :=







n
∑

j=1

Xnj1 (|Xnj | ≤ zn) > εnMn







,

Hn :=

{

k
∑

i=1

Xnji > (k − εn)Mn for some 1 ≤ j1 ≤ . . . ≤ jk ≤ n

}

.

Clearly, for n large enough so that εn ≤ 1, it holds that

{Sn > kMn} ⊂ En ∪ Fn ∪Gn ∪Hn .

Note that

P (En) ≤
nk+1

(k + 1)!
P





k+1
∑

j=1

Xnj > (k − εn)Mn





∼
nk+1

(k + 1)!
ck+1(k)P (Y > Mn)

k+1 ,

as n → ∞, the equivalence following from Lemma 3.2 and the right inequal-
ity in (3.13). In order to complete the proof of the upper bound, we shall
next show that

(3.14) P (Fn) + P (Gn) + P (Hn) = o
(

nk+1P (Y > Mn)
k+1
)

.

To that end, notice that the right inequality in (3.12) implies that

P (Fn) = o
(

nk+1P (Y > Mn)
k+1
)

.

By Lemma 2.2, it follows that

P (Hn) = O
(

nkεknP (Y > Mn)
k
)

= o
(

nkP (Y > Mn)
k+1
)

= o
(

nk+1P (Y > Mn)
k+1
)

,

the equality in the second line following from the right inequality in (3.13).
For estimating P (Gn), we shall appeal once more to the result in Prokhorov
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(1959); see (2.23). First notice that

E

∣

∣

∣

∣

∣

∣

n
∑

j=1

Xnj1 (|Xnj | ≤ zn)

∣

∣

∣

∣

∣

∣

≤ n

∫

[0,zn]
xP (|Y | ∈ dx)

= O (nznP (Y > zn))

= o
[

zn {nP (Y > Mn)}
k+1
k+2

]

= o(zn)

= o(εnMn) ,

the last three steps following from the right inequality in (3.12), the limit in
(3.4) and the left inequality in (3.13) respectively. Thus, for n large enough,
(2.23) implies that

P (Gn) ≤ exp

{

−K1
εnMn

zn
sinh−1K2

εnMnzn
nVar[Xn11(|Xn1| ≤ zn)]

}

,

for some finite and positive constants K1 and K2. Note that

εnMnzn
nVar[Xn11(|Xn1| ≤ zn)]

≥
εnMnzn

nE[X2
n11(|Xn1| ≤ zn)]

∼ K
εnMn

nznP (Y > zn)

≫ [nP (Y > zn)]
−1

≫ [nP (Y > Mn)]
−(k+1)/(k+2) ,

where K is the constant from Karamata’s theorem. In view of this, the fact
that sinh−1 x ≥ log x for x > 0, and (3.13), it follows that

−K1
εnMn

zn
sinh−1K2

εnMnzn
nVar[Xn11(|Xn1| ≤ zn)]

≫ − log [nP (Y > Mn)] ,

which shows that

P (Gn) = o
(

nk+1P (Y > Mn)
k+1
)

.

This completes the proof of (3.14), and thus shows that

(3.15) lim sup
n→∞

P (Sn > kMn)

nk+1P (Y > Mn)k+1
≤

ck+1(k)

(k + 1)!
.

For the reverse inequality with lim inf, notice that for all ε > 0,

{Sn > kMn} ⊃
⋃

j∈Cnk







k+1
∑

i=1

Xnji > (k + ε)Mn,

∣

∣

∣

∣

∣

∣

∑

i∈jc

Xni

∣

∣

∣

∣

∣

∣

≤ εMn







,
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where Cnk and jc are as defined just before Lemma 2.1. By arguments
similar to those proving (2.58), it follows that

P





⋃

j∈Cnk







k+1
∑

i=1

Xnji > (k + ε)Mn,

∣

∣

∣

∣

∣

∣

∑

i∈jc

Xni

∣

∣

∣

∣

∣

∣

≤ εMn











∼
∑

j∈Cnk

P





k+1
∑

i=1

Xnji > (k + ε)Mn,

∣

∣

∣

∣

∣

∣

∑

i∈jc

Xni

∣

∣

∣

∣

∣

∣

≤ εMn





=

(

n
k + 1

)

P

(

k+1
∑

i=1

Xni > (k + ε)Mn

)

P

(∣

∣

∣

∣

∣

n
∑

i=k+2

Xni

∣

∣

∣

∣

∣

≤ εMn

)

.

By Lemma 3.1 and the fact that M−1
n

∑n
i=k+2Xni goes to zero in probability,

it follows that the right hand side is asymptotically equivalent to

nk+1

(k + 1)!
P (Y > Mn)

k+1ck+1(k + ε) .

The above calculations put together show that

lim inf
n→∞

P (Sn > kMn)

nk+1P (Y > Mn)k+1
≥

ck+1(k + ε)

(k + 1)!
.

By letting ε ↓ 0, the reverse inequality of (3.15) with lim inf, follows. This
completes the proof. �

4. Examples

We end the paper with a couple of examples. The first example is of a
random variable with a regularly varying tail, for which (2.4) does not hold.
Let α > 0 and suppose Y is a random variable whose tail probability is
given by

P (Y > x) =
1

2

(

1 +
1

⌊x⌋

)

x−α, x ≥ 1 .

Set

an := 1− n−2, n ≥ 1 ,

and observe that

lim
n→∞

1

1− an

[

P (Y > nan)

P (Y > n)
− a−α

n

]

= 1 .

Clearly, (2.4) cannot hold for this Y , although the tail of Y is regularly
varying with index −α.

Next, we point out that the assumption (2.4) is automatically satisfied if
the tail of Y is “normalized slowly varying”, that is, there exist c, T ∈ (0,∞)
and a function ε from [0,∞) to R such that

lim
x→∞

ε(x) = −α ,
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and

P (Y > x) = c

∫ x

T

ε(t)

t
dt, for all x > T .

The class of normalized slowly varying functions is known to coincide with
the Zygmund class of slowly varying functions; see Chapter 1.5.3 of Bingham et al.
(1987) for a definition of the latter and a proof of this fact. For example, if
Y is a random variable with c.d.f.

F (x) :=

{

max
{

1/2, 1 − x−α(log x)−2
}

, x ≥ 0 ,
min

{

1/2, |x|−α(log |x|)−2
}

, x < 0 ,

then Y satisfies the hypotheses of theorems 2.1 and 3.1, when α ≥ k and
α < k/(k + 2) respectively.
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