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1 Introduction and main result

Holonomy groups were introduced by Élie Cartan in the twenties [15, 16] for
the study of Riemannian symmetric spaces and since then the classification
of holonomy groups has remained one of the classical problems in differential
geometry.

Definition 1. Let M be a smooth manifold endowed with an affine symmetric
connection ∇. The holonomy group of ∇ is a subgroup Hol(∇) ⊂ GL(TxM)
that consists of the linear operators A : TxM → TxM being “parallel transport
transformations” along closed loops γ with γ(0) = γ(1) = x.

Problem. Given a subgroup H ⊂ GL(n,R), can it be realised as the holonomy
group for an appropriate symmetric connection on Mn?

The fundamental results in this direction are due to Marcel Berger [6] who
initiated the programme of classification of Riemannian and irreducible holon-
omy groups which was completed by D. V. Alekseevskii [1], R. Bryant [12, 13],
D. Joice [22, 23, 24], L. Schwahhöfer, S. Merkulov [34]. Very good historical
surveys can be found in [14], [37].

In the pseudo-Riemannian case the complete description of holonomy groups
is a very difficult problem which still remains open and even particular examples
are of interest (see [18, 19, 7, 10, 21, 28, 29, 30]). We refer to [20] for more
information on recent development in this field.

In our paper, we deal with Levi-Civita connections only. In algebraic terms
this means that we consider only subgroups of the (pseudo-)orthogonal group
SO(g):

H ⊂ SO(g) = {A ∈ GL(V ) | g(Au,Av) = g(u, v), u, v ∈ V },

where g is a non-degenerate bilinear form on V .
The main result of our paper is as follows.
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Theorem 1. For every g-symmetric operator L : V → V , the identity connected
component of its centraliser in SO(g)

GL = {X ∈ SO(g) | XL = LX}

is a holonomy group for a certain (pseudo)-Riemannian metric g.

Notice that in the Riemannian case this theorem becomes trivial: L is diag-
onalisable and its centraliser GL is isomorphic to the standard direct product
SO(k1) ⊕ · · · ⊕ SO(km) ⊂ SO(n),

∑
ki ≤ n, which is, of course, a holonomy

group. In the pseudo-Riemannian case, L may have non-trivial Jordan blocks
and the structure of GL becomes more complicated.

The structure of the paper is as follows. First we recall in Section 2 the
classical approach by Berger to studying holonomy groups which we, like many
other authors, are going to use in our paper. However, in our opinion, the most
interesting part of the present paper consists in two explicit matrix formulas
(5) and (12) that, in essence, almost immediately lead to the solution1. These
formulas came to “holonomy groups” from “integrable systems on Lie algebras”
via “projectively equivalent metrics” and we explain this way in Sections 3
and 4. The proof itself is given in Sections 5 (Berger test) and 6 (geometric
realisation). The last section (Appendix) contains some details of the proof
which, we believe, are more or less standard for experts on pseudo-Riemannian
geometry.

2 Some basic facts about holonomy groups:
Ambrose-Singer theorem and Berger test

The famous Ambrose-Singer theorem [2] gives the following description of the
Lie algebra hol (∇) of the holonomy group Hol (∇) in terms of the curvature
tensor of the connection:

hol (∇) is generated (as a vector space) by the operators of the form R(u ∧ v)
where R is the curvature tensor taken, perhaps, at different points x ∈M .

This motivates the following construction.

Definition 2. A map R : Λ2V → gl(V ) is called a formal curvature tensor if it
satisfies the Bianchi identity

R(u ∧ v)w +R(v ∧ w)u +R(w ∧ u)v = 0 for all u, v, w ∈ V. (1)

This definition simply means that R as a tensor of type (1, 3) satisfies all
usual algebraic properties of curvature tensors:

Rm
k ij = Rm

k ji and Rm
k ij +Rm

i jk +Rm
j ki = 0.

1We think that this kind of formulas did not appear in the context of holonomy groups

before. However, we are not experts in this area and we would really appreciate any comments

on this matter.
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Definition 3. Let h ⊂ gl(V ) be a Lie subalgebra. Consider the set of all formal
curvature tensors R : Λ2V → gl(V ) such that ImR ⊂ h:

R(h) = {R : Λ2V → h | R(u ∧ v)w +R(v ∧w)u+R(w ∧ u)v = 0, u, v, w ∈ V }.

We say that h is a Berger algebra if it is generated as a vector space by the
images of the formal curvature tensors R ∈ R(h), i.e.,

h = span{R(u ∧ v) | R ∈ R(h), u, v ∈ V }.

Berger’s test (which is sometimes referred to as Berger’s criterion) is the
following result which can, in fact, be viewed as a version of the Ambrose–
Singer theorem:

Let ∇ be a symmetric affine connection on TM . Then the Lie algebra hol (∇)
of its holonomy group Hol (∇) is Berger.

Usually the solution of the classification problem for holonomy groups con-
sists of two parts. First, one tries to describe all Lie subalgebras h ⊂ gl(n,R)
of a certain type satisfying Berger’s test (i.e., Berger algebras). This part is
purely algebraic. The second (geometric) part is to find a suitable connection
∇ for a given Berger algebra h which realises h as the holonomy Lie algebra,
i.e., h = hol (∇).

We follow the same scheme but will use, in addition, some ideas from two
other areas of mathematics: projectively equivalent metrics and integrable sys-
tems on Lie algebras. These ideas are explained in the two next sections. The
reader who is interested only in the proof itself may skip them and proceed
directly to Sections 5 and 6 which are formally independent of the preliminary
discussion below.

3 Motivation

The problem we are dealing with is closely related to the theory of projectively
equivalent (pseudo)-Riemannian metrics [3, 4, 31, 33, 39, 35].

Definition 4. Two metrics g and ḡ on the same manifold M are called projec-
tively equivalent, if they have the same geodesics considered as unparametrized
curves.

In the Riemannian case the local classification of projectively equivalent
pairs g and ḡ was obtained by Levi-Civita in 1896 [31]. For pseudo-Riemannian
metrics, a complete description in reasonable terms of all possible projectively
equivalent pairs is still an open problem although it has been intensively studied
(see [3, 5, 8, 25, 26, 40]) and many particular examples and results in this
direction have been obtained.

As a particular case of projectively equivalent metrics g and ḡ one can dis-
tinguish the following.
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Definition 5. Two metrics g and ḡ are said to be affinely equivalent if their
geodesics coincide as parametrized curves.

It is not hard to see that this condition simply means that the Levi-Chivita
connections ∇ and ∇̄ related to g and ḡ are the same, i.e., ∇ = ∇̄ or, equiva-
lently,

∇ḡ = 0.

If instead of ḡ we introduce a linear operator L (i.e. tensor field of type
(1, 1)) using the standard one-to-one correspondence ḡ ↔ L between symmetric
bilinear forms and g-symmetric operators:

ḡ(ξ, η) = g(Lξ, η),

then the classification of affinely equivalent pairs g and ḡ is equivalent to the clas-
sification of pairs g and L, where L is covariantly constant w.r.t. the Levi-Civita
connection ∇ related to g. This problem was partially solved by G. I. Kručkovič
and A. S. Solodovnikov in [40] and this paper turned out to be extremely useful
for us.

On the other hand, the existence of a covariantly constant (1, 1)-tensor field
L can be interpreted in terms of the holonomy group Hol(∇):

The connection ∇ admits a covariantly constant (1, 1)-tensor field if and
only if Hol(∇) is a subgroup of the centralizer of L in SO(g):

Hol(∇) ⊂ GL = {X ∈ SO(g) | XLX−1 = L}.

In this formula, by L we understand the value of the desired (1, 1)-tensor
field at any fixed point x0 ∈M . Since L is supposed to be covariantly constant,
the choice of x0 ∈M does not play any role.

It is natural to conjecture that for a generic metric g satisfying ∇L = 0,
its holonomy group coincides with GL exactly. Thus, we come to the following
natural question:

Let g be a non-degenerate bilinear form on a vector space V , and L : V → V

be a g-symmetric linear operator. Can the (identity connected component of
the) centralizer of L in SO(g), i.e.

GL = {X ∈ SO(g) | XLX−1 = L}

be realised as the holonomy group of a suitable pseudo-Riemannian metric?
The relationship between this problem and the theory of projectively equiv-

alent metrics, in fact, gives us not only the motivation, but also an approach to
its solution: our proof is based on one unexpected and remarkable observation
[9] concerning the algebraic structure of the curvature tensor of projectively
equivalent metrics. This observation, in turn, opens possibility to use some
technology and formulas from the theory of integrable Hamiltonian systems on
Lie algebras. We briefly discuss these links in the next section.
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4 Curvature tensor as a sectional operator

Our proof uses two “magic formulas” (5) and (12) which are closely related
to the theory of integrable systems on Lie algebras. This section explains this
relationship.

Definition 6. We say that a linear map

R : so(n)→ so(n)

is a sectional operator, if R is self-adjoint w.r.t. the Killing form and satisfies
the algebraic identity:

[R(X), L] = [X,M ] for all X ∈ so(n), (2)

where L and M are some fixed symmetric matrices.

These operators first appeared in the famous paper by S. Manakov [32] and
then were studied by A. Mischenko and A. Fomenko in the framework of the
argument shift method [36]. The role of such operators is explained by the
following

Theorem 2 (Manakov, Mischenko, Fomenko). Let R : so(n) → so(n) be a
sectional operator. Then the Euler equations on so(n) with the Hamiltonian
H = 1

2
(R(X), X):

dX

dt
= [R(X), X ] (3)

admit the following Lax representation with a spectral parameter

d

dt
(X + λL) = [R(X) + λM,X + λL]

and, therefore, possess first integrals of the form Tr (X + λL)k. These integrals
commute and, if L is regular, form a complete family in involution so that the
Euler equations (3) are completely integrable.

Recall that (3) describe the dynamics of an n-dimensional rigid body. This
construction was generalised by Mischenko and Fomenko [36] to the case of ar-
bitrary semisimple Lie algebras. In particular, it follows from [36] that so(n)
can be replaced by so(p, q) (or by so(g) in our notation) and the construction
remains essentially the same. The terminology “sectional” was suggested by
A. Fomenko and V. Trofimov [17] for a more general class of operators on Lie
algebras with similar properties and originally was in no way related to “sec-
tional curvature”. However, such a relation exists and is, in fact, very close.

To explain this, we first notice that Λ2V can be naturally identified with
so(g). Therefore, in the (pseudo)-Riemannian case, a curvature tensor can be
understood as a linear map

R : so(g)→ so(g).
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In this setting, by the way, the symmetry Rij,kl = Rkl,ij of the curvature tensor
amounts to the fact that R is self-adjoint w.r.t. the Killing form, and “constant
curvature” means that R = a · Id, a = const. So this point of view on curvature
tensors is quite natural.

The following observation was made in [9].

Theorem 3. If g and ḡ are projectively equivalent, then the curvature tensor
of g considered as a linear map

R : so(g)→ so(g)

is a sectional operator, i.e., satisfies the identity

[R(X), L] = [X,M ] for all X ∈ so(g)

with L defined by ḡ−1g = detL · L and M being the Hessian of 2trL, i.e.
M i

j = 2∇i∇jtrL.

This result is, in fact, a reformulation of the so-called second Sinjukov equa-
tion [39] for projectively equivalent metrics.

What is important for us is an explicit formula that representsR(X) in terms
of L and M . To get this formula, one first needs to notice that (2) immediately
implies that M belongs to the center of the centralizer of L and, therefore, can
be presented as M = p(L) where p(t) is a plynomial. Then, we have:

R(X) =
d

dt
|t=0p(L+ tX). (4)

The proof that this R indeed satisfies (2) is obvious. It is sufficient to
differentiate the identity

[p(L+ tX), L+ tX ] = 0

with respect to t to get

[
d

dt
|t=0p(L+ tX), L] + [p(L), X ] = 0

i.e., [R(X), L] + [M,X ] = 0 as needed.
As was already remarked (see Theorem 3), in the theory of projectively

equivalent metrics, M is the Hessian of 2trL. However, if g and ḡ are affinely
equivalent (we are going to deal with this case only!), then L is automatically
covariantly constant andM = 0. Thus, the curvature tensor R satisfies a simpler
equation

[R(X), L] = 0,

which, of course, directly follows from ∇L = 0 and seems to make all the discus-
sion above not relevant to our very particular situation. However, formula (4)
still defines a non-trivial operator, if p(t) is a non-trivial polynomial satisfying
p(L) = M = 0, for example, the minimal polynomial for L.
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We want to “transfer” this algebraic formula (4) from “integrable systems”
to “Riemannian geometry”, but first it would be natural to ask ourselves the
following question:

Let R : so(g)→ so(g) be an abstract sectional operator (i.e., satisfying (2)).
Is R a formal curvature tensor? In other words, does R always satisfy the
Bianchi identity?

Apriori this property does not seem to be obvious at all. But in the generic
situation this is indeed the case. In particular, every operator R defined by
(4) satisfies the Bianchi identity and, therefore, can be considered as a formal
curvature tensor (see Lemma 2 below).

This discussion gives us a very good candidate for the role of a formal cur-
vature tensor in our construction, namely, the operator defined by (4) with p(t)
being the minimal polynomial of L. As we shall show below, this operator sat-
isfies all required conditions and this fact almost immediately leads to the proof
of Theorem 1.

5 Step one. Berger’s test

We consider a non-degenerate bilinear form g on a finite-dimensional real vector
space V , and a g-symmetric linear operator L : V → V , i.e.,

g(Lv, u) = g(v, Lu), for all u, v ∈ V.

By so(g) we denote the Lie algebra of the orthogonal group associated with
g. Recall that this Lie algebra consists of g-skew-symmetric operators:

so(g) = {X : V → V | g(Xv, u) = −g(v,Xu), u, v ∈ V }.

We are going to verify that the centralizer of L in so(g), i.e.,

gL = {X ∈ so(g) | XL− LX = 0}

is a Berger algebra.
It is important to notice from the very beginning that gL is trivial for regular

operators L. Regularity condition in this context is equivalent to one of the
following:

• the centralizer of L in gl(V ) has minimal possible dimension and is gen-
erated by powers of L, i.e., operators Id, L, L2, . . . , Ln−1, n = dim V ;

• the minimal polynomial of L coincides with the characteristic polynomial;

• to each eigenvalue of L corresponds exactly one Jordan block.

The first of these properties shows that a regular g-symmetric operator L may
commute with g-symmetric operators only. This means, in particular, that our
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Lie algebra gL (which consists of g-skew-symmetric operators!) is trivial. Thus,
we are interested in singular operators L only.

The next remark is that without loss of generality we may assume that
L has a single eigenvalue λ and, moreover, this eigenvalue is zero, so that L

is nilpotent. This follows immediately from the standard procedure, namely,
decomposition of L into λ-blocks (see Appendix for details). The construction
presented below is, however, very general and works for any L.

Following Definition 3, to verify that gL is a Berger algebra we need to
describe formal curvature tensors R : Λ2V → gL and analyse the subspace in
gL spanned by their images. In particular, if we can find just one single formal
curvature tensor R such that ImR = gL, then our problem is solved.

In general, this is a rather difficult problem because the Bianchi identity rep-
resents a highly non-trivial system of linear relations. However, as was explained
in Section 4, in our case we have a very good candidate for this role.

In what follows, we use the following natural identification of Λ2V and so(g):

Λ2V ←→ so(g), v ∧ u = v ⊗ g(u)− u⊗ g(v).

Here the bilinear form g is understood as an isomorphism g : V → V ∗ between
“vectors” and “covectors”. Taking into account this identification, we define a
linear mapping R : so(g) ≃ Λ2V → gl(V ) by:

R(X) =
d

dt

∣∣
t=0

pmin(L+ tX), (5)

where pmin(λ) is the minimal polynomial of L.

Proposition 1. Let L : V → V be a g-symmetric operator. Then (5) defines a
formal curvature tensor R : Λ2V ≃ so(g)→ gL for the Lie algebra gL. In other
words, R satisfies the Bianchi identity and its image is contained in gL.

Proof consists of two lemmas.

Lemma 1. The image of R is contained in gL.

Proof. First we check thatR(X) ∈ so(g), i.e., R(X)∗ = −R(X), where ∗ denotes
“g–adjoint”:

g(A∗u, v) = g(u,Av), u, v ∈ V.

Since L∗ = L, X∗ = −X , (pmin(L + tX))∗ = pmin(L
∗ + tX∗) and ” d

dt
” and

” ∗ ” commute, we have

R(X)∗ =
d

dt

∣∣
t=0

pmin(L+ tX)∗ =
d

dt

∣∣
t=0

pmin(L
∗ + tX∗) =

=
d

dt

∣∣
t=0

pmin(L− tX) = −
d

dt

∣∣
t=0

pmin(L+ tX) = −R(X),

as needed. Thus, R(X) ∈ so(g). Notice that this fact holds true for any poly-
nomial p(λ), not necessarily minimal.
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To prove that R(X) commutes with L, we consider the obvious identity

[pmin(L+ tX), L+ tX ] = 0.

and differentiate it at t = 0:

[
d

dt

∣∣
t=0

pmin(L+ tX), L] + [pmin(L), X ] = 0.

Clearly, pmin(L) = 0 as it is a minimal polynomial, whence [R(X), L] = 0, as
required. Thus, R(X) ∈ gL.

Lemma 2. R satisfies the Bianchi identity, i.e.

R(u ∧ v)w +R(v ∧ w)u +R(w ∧ u)v = 0 for all u, v, w ∈ V.

Proof. It is easy to see that our operator R : Λ2V ≃ so(g) → gl(V ) can be
written as R(X) =

∑
k CkXDk, where Ck and Dk are some g-symmetric oper-

ators (in our case these operators are some powers of L). Thus, it is sufficient
to check the Bianchi identity for operators of the form X 7→ CXD.

For X = u ∧ v we have

C(u ∧ v)Dw = Cu · g(v,Dw) − Cv · g(u,Dw)

Similarly, if we cyclically permute u, v and w:

C(v ∧ w)Du = Cv · g(w,Du)− Cw · g(v,Du)

and
C(w ∧ u)Dw = Cw · g(u,Dv)− Cu · g(w,Dv).

Adding these three expressions and taking into account that C and D are g-
symmetric, we obtain zero, as required.

For given L and g the image of (5) can be described explicitly. In some cases
it coincides with the whole Lie algebra gL which immediately implies that gL
is Berger. In particular, straightforward computation leads to (see details in
Appendix)

Proposition 2. Let L : V → V be a g-symmetric nilpotent operator that
consists of two Jordan blocks. Then the image of the formal curvature ten-
sor R : Λ2V ≃ so(g) → gL defined by (5) coincides with gL. In particular, gL
is Berger.

In the general case, the proof can be obtained by a kind of “block-wise”
modification of formula (5). Roughly speaking, we decompose L into Jordan
blocks L1, . . . , Lk, then for each pair of blocks Li and Lj we define an operator

R̂ij : so(n)→ gL by means of (5) on the subspace spanned by these blocks and
extending it trivially onto all other blocks, and finally we set:

Rformal =
∑

i,j

R̂ij (6)

This operator solves our problem (see details in Appendix). Namely, we
have

9



Theorem 4. Let L : V → V be a g-symmetric operator. Then Rformal : Λ
2V ≃

so(g) → gL given by (6) is a formal curvature tensor such that ImR = gL. In
particular, gL is a Berger algebra.

6 Step two: Realisation

Now for a given operator L : Tx0
M → Tx0

M , we need to find a (pseudo)-
Riemannian metric g on M and a (1, 1)-tensor field L(x) (with the initial con-
dition L(x0) = L) such that

1. ∇L(x) = 0;

2. hol (∇) = gL.

Notice that the first condition guarantees that hol (∇) ⊂ gL. On the other
hand, ImR(x0) ⊂ hol (∇), where x0 ∈M is a fixed point and R is the curvature
tensor of g. Thus, taking into account Theorem 4, the second condition can be
replaced by

2′. R(x0) coincides with the formal curvature tensor Rformal from Theorem 4.

Thus, our goal in this section is to construct (at least one example of) L(x)
and g(x) satisfying conditions 1 and 2′. Apart formula (5) (whose modification
(12) leads to the desired example), the construction below is based on two well
known geometric facts.

The first one allows us to use a nice coordinate system in which all compu-
tations at a fixed point become much simpler. Roughly speaking, linear terms
of g as a function of x can be ignored.

Proposition 3. For every metric g there exists a local coordinate system such
that

∂gij
∂xα (0) = 0 for all i, j, α. In particular, in this coordinate system we have

Γk
ij(0) = 0 and the components of the curvature tensor at x0 = 0 are defined as

some combinations of the second derivatives of g.

The second result states that covariantly constant (1, 1)-tensor fields L are
actually very simple. To the best of our knowledge, this theorem was first proved
by A.P. Shirokov [38] (see also [11, 27, 41]).

Theorem 5. If L satisfies ∇L = 0 for a symmetric connection ∇, then there
exists a local coordinate system x1, . . . , xn in which L is constant.

In this coordinate system, the equation ∇L = 0 can be rewritten in a very
simple way:

(
∂gip

∂xβ
−

∂giβ

∂xp

)
L
β
k =

(
∂giβ

∂xk
−

∂gik

∂xβ

)
Lβ
p (7)

This equation is linear and if we represent g as a power series in x, then (7)
must hold for each term of this expansion. Moreover, if we consider the constant
and second order terms only, then they give us a particular (local) solution.
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This suggest the idea to set L(x) = const and then to try to find the desired
metric g(x) in the form:

constant + quadratic

i.e.,

gij(x) = g0ij +
∑
Bij,pqx

pxq (8)

where B satisfies obvious symmetry relations, namely, Bij,pq = Bji,pq and Bij,pq =
Bij,qp.

Before discussing an explicit formula for B, we give some general remarks
about “quadratic” metrics (8).

• The condition ∇L = 0 amounts to the following equation for B:

(Bip,βq − Biβ,pq)L
β
k = (Bβi,kq − Bik,βq)L

β
p (9)

• The condition that L is g symmetric reads:

Bij,pqL
i
l = Bil,pqL

i
j (10)

• The curvature tensor of g at the origin x = 0 takes the following form:

Ri
k αβ = gis(Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk), (11)

and, in particular, R (at the origin) depends on B linearly:

Rλ1B1+λ2B2
= λ1RB1

+ λ2RB2

Thus, the realisation problem admits the following purely algebraic version:
find B satisfying (9), (10) and such that (11) coincides with Rformal from The-
orem 4. From the formal viewpoint, this is a system of linear equations on B
which we need to solve or just to guess a particular solution.

Example. Consider the simplest case when

g = g0 + B(x, x), Bij(x, x) =
∑
Bij,pqx

pxq with B = C ⊗ D,

where C and D are the bilinear forms associated with g0-symmetric operators
C and D, i.e., Bij,pq = Cij · Dpq, Cij = (g0)iαC

α
j , Dpq = (g0)pαD

α
q , then the

conditions (9), (10), (11) can respectively be rewritten (in terms of C and D)
as

[CXD,L] + [CXD,L]∗ = 0 for any X ∈ gl(V ), (9′)

CL = LC (10′)

R(X) = −CXD + (CXD)∗, X ∈ so(g0) (11′)

11



Similarly, if B =
∑

α Cα ⊗ Dα, then the corresponding conditions on B are
obtained from (9′), (10′), (11′) by summing over α.

These simple observations leads us to the following conclusion. Let B =∑
Cα ⊗ Dα where Cα and Dα are g0-symmetric operators. Consider B as a

linear map

B : gl(V )→ gl(V ) defined by B(X) =
∑

CαXDα,

In other words, B(X) is obtained from B by “replacing” ⊗ by X . Then for
the corresponding quadratic metric g = g0 + B(x, x), the conditions (9), (10),
(11) can be rewritten as

[B(X), L] + [B(X), L]∗ = 0 for any X ∈ gl(V ), (9′′)

[Cα, L] = 0 (10′′)

R(X) = −B(X) +B(X)∗, X ∈ so(g0) (11′′)

As the reader may notice, we prefer to work with “operators” rather than
“forms”. We used the same idea before when we replaced Λ2(V ) by so(g). The
reason is easy to explain: operators form an associative algebra, i.e., one can
multiply them, and we use this property throughout the paper.

The last formula (11′′), in fact, shows how to reconstruct B from R: we need
to “replace” X by ⊗, i.e., B = − 1

2
R(⊗).

Thus, consider the following formal expression:

B = −
1

2
·
d

dt

∣∣
t=0

pmin(L+ t · ⊗), (12)

where pmin(λ) is the minimal polynomial of L. This formula looks a bit strange,
but, in fact, it defines a tensor B of type (2, 2) whose meaning is very simple.
If pmin(t) =

∑n

m=0
amtm is the minimal polynomial of L, then

B = −
1

2
·

n∑

m=0

am

m−1∑

j=0

Lm−1−j ⊗ Lj. (13)

This formula is obtained from the right hand side of (5), i.e.,

d

dt

∣∣
t=0

(
n∑

m=0

am(L+ t ·X)m

)
=

n∑

m=0

am

m−1∑

j=0

Lm−1−jXLj,

by substituting ⊗ instead X .
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Proposition 4. Consider the quadratic metric g(x) = g0+B(x, x) with Bij,pq =

giαgpβB
α,β
j,q where where B is defined by (12) (or, equivalently, by (13)). Then

1) L is g-symmetric;

2) ∇L = 0, where ∇ is the Levi-Civita connection for g;

3) The curvature tensor for g at the origin is defined by (5), i.e.,

R(X) =
d

dt

∣∣
t=0

pmin(L+ tX).

Proof. Since B is of the form
∑

α Cα ⊗ Dα, where Cα and Dα are some
powers of L, we can use formulas (9′′), (10′′), (11′′) (see Example above).

Item 1) is equivalent to (10′′) and hence is obvious.
Next, to check 2) it suffices, according to (9′′), to show that

[B(X), L] = 0, where B = −
1

2
·
d

dt

∣∣
t=0

pmin(L+ t ·X)

but this has been done in Lemma 1.
Finally, we compute the curvature tensor R at the origin by using (11′′):

R(X) = −B(X) +B(X)∗ = −2B(X) =
d

dt

∣∣
t=0

pmin(L+ tX).

as stated. Here we again use Lemma 1 which says, in particular, that our B(X)
belongs to so(g0), i.e., B(X) = −B(X)∗.

This proposition together with Proposition 2 solve the realisation problem
in the most important “two Jordan blocks” case. To get the realisation for the
general case, we proceed just in the same way as we did for the algebraic part.
Namely, we split L into Jordan blocks and define for each pair Li, Lj of Jordan

blocks a formal curvature tensor R̂ij (see Appendix for details). Then by using
(12) we can realise this formal curvature tensor by an appropriate quadratic
metric g(x) = g0 + B̂ij(x, x) satisfying ∇L = 0. We omit the details because
this construction is absolutely straightforward and just repeats its algebraic
counterpart. Now if we set

g(x) = g0 + B(x, x), with B =
∑

i,j

B̂ij ,

(or, shortly B = − 1

2
Rformal(⊗) if we accept this “strange” notation) then, by

linearity, this metric still satisfies ∇L = 0 and its curvature tensor coincides
with Rformal from Theorem 4. This completes the realisation part of the proof.

7 Appendix: Details of the proof

7.1 Reduction to the nilpotent case

First of all, we notice that it is sufficient to prove this result for two special
cases only:
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• either L has a single real eigenvalue,

• or L has a pair of complex conjugate eigenvalues.

The reduction from the general case to one of these is more or less stan-
dard. If L has several eigenvalues then V can be decomposed into L-invariant
subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

where Vi is either a generalised eigensubspace corresponding to a real eigenvalue
λ, or a similar subspace corresponding to a pair of complex conjugate eigenvalues
λj , λ̄j .

This decomposition is orthogonal w.r.t. g (due to the fact that L is g-
symmetric) and the algebra gL is compatible with this decomposition in the
sense that gL is the direct sum of Lie algebras gLi

each of which is naturally
associated with Vi and is the centraliser of Li = L|Vi

in so(g|Vi
). In other words,

in the basis adapted to this decomposition, all of our objects, in turn, split into
independent blocks:

g=




g1
g2

. . .

gs


 , L=




L1

L2

. . .

Ls


 , g=




gL1

gL2

. . .

gLs


 ,

where gi = g|Vi
, gLi

= {X ∈ so(gi) | XLi − LiX = 0}.
It is an obvious fact that g is a Berger algebra if and only if so is each of

gLi
. But Li, by construction, has either a single real eigenvalue, or two complex

conjugate eigenvalues.
Below we consider in detail the case when L has a single real eigenvalue

λ ∈ R
2. Moreover, without loss of generality, we shall assume from now on

that this eigenvalue is zero, i.e., L is nilpotent (if not, we simply replace L by
L− λ · Id).

7.2 Explicit matrix description for L, g, so(g) and gL

We shall use the following well known analog of the Jordan normal form theorem
for g-symmetric operators in the case when g is pseudo-Euclidean. We recall
this result for the nilpotent case only.

Proposition 5. Let L : V → V be a g-symmetric nilpotent operator. Then by
an appropriate choice of a basis in V , we can simultaneously reduce L and g to

2A pair of complex eigenvalues does not represent essentially different situation. The point

is that our approach is based on Proposition 2 which still holds true for two complex Jordan

blocks.
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the following block diagonal matrix form:

L =




L1

L2

. . .

Lk


 , g =




g1
g2

. . .

gk


 (14)

where

Li =




0 1
0 1

. . .
. . .

0 1
0




, gi = ±




1
1

. .
.

1
1




are square matrices of the same size ni × ni, and n1 ≤ n2 ≤ · · · ≤ nk. As a
particular case, we admit 1× 1 matrices Li = 0 and gi = ±1.

In this proposition and below, we use the same notation L for the operator
and its matrix. This does not lead to any confusion because from now on we
can choose and fix a canonical basis. The same convention is applied to the
bilinear form g and its matrix.

In what follows, we shall assume that gi has +1 on the antidiagonal. This
assumption is not very important, but allows us to simplify the formulae below.

The next step is the explicit description of the algebra gL which can be easily
obtained by the straightforward computation. We also give the explicit matrix
representation of so(g) in the canonical basis from Proposition 5.

Proposition 6. In the canonical basis from Proposition 5, the orthogonal Lie
algebra so(g) consists of block matrices of the form

X =




X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 · · · · · · Xkk


 (15)

where Xij is an ni×nj block. The diagonal blocks Xii’s are skew-symmetric with
respect to their antidiagonal. The off-diagonal blocks Xij and Xji are related by

Xji = −gjX
⊤

ijgi.

More explicitly:

Xij =




x11 · · · x1nj

...
. . .

...

xni1 · · · xninj


 , Xji =



−xninj

· · · −x1nj

...
. . .

...

−xni1 · · · −x11


 (16)
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The Lie algebra gL consists of block matrices of the form:



0 M12 · · · M1k

M21 0
...

...
. . . Mk−1,k

Mk1 · · · Mk,k−1 0




(17)

where Mij’s for i < j are ni × nj matrices of the form

Mij =




0 · · · 0 µ1 µ2 · · · µni

0 · · · 0 0 µ1

. . .
...

...
. . .

...
...

. . .
. . . µ2

0 · · · 0 0 · · · 0 µ1




, µi ∈ R. (18)

If ni = nj, then Mij is a square matrix and the first zero columns are absent.
The blocks Mij and Mji are related in the same way as Xij and Xji, i.e.,
Mji = −gjM

⊤
ij gi.

The subspace mij ⊂ gL (i < j) that consists of two blocks Mij and Mji is
a commutative subalgebra of dimension ni. As a vector space, gL is the direct
sum

∑
i<j mij. In particular, dim gL =

∑k

i=1
(k − i)ni.

7.3 The special case of two blocks

We consider this special case for two reasons. Firstly, the proof can be viewed
as a handy algorithm for an explicit computation of (5). Secondly, and more
importantly, our main result strongly relies upon it. The following statement
coincides with Proposition 2.

Lemma 3. Let L be nilpotent and consist of two Jordan blocks of sizes m×m

and n × n. Then the image of the formal curvature operator R defined by (5)
coincides with gL and, therefore, gL is a Berger algebra.

Proof. We will get this result by straightforward computation in the canonical

basis described above in Proposition (5). We consider L =

(
L1 0
0 L2

)
, where

L1 and L2 are standard nilpotent Jordan blocks of size m and n respectively,
m ≤ n. The minimal polynomial for L is pmin(t) = tn.

If we represent X ∈ so(g) as a block matrix (the sizes of blocks are naturally
related to m and n, of course)

X =

(
X11 X12

X21 X22

)

then we see immediately that our operator R = d
dt

∣∣
t=0

(L + tX)n = Ln−1X +

Ln−2XL+ · · ·+XLn−1 acts independently of each block of X , i.e.

R(X) =

(
R11(X11) R12(X12)
R21(X21) R22(X22)

)
(19)
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The blocks R11(X11), R12(X12), R21(X21) and R22(X22) can be explicitly
computed, and we shall see that the image of R is exactly our Lie algebra gL.

This computation can, however, be essentially simplified, if we take into
account the inclusion ImR ⊂ gL (Lemma 1) and the fact that gL consists of the

block matrices of the form

(
0 M

M̃ 0

)
, where

M =




0 · · · 0 µ1 µ2 · · · µm

0 · · · 0 0 µ1

. . .
...

...
. . .

...
...

. . .
. . . µ2

0 · · · 0 0 · · · 0 µ1




(20)

is m × n matrix, and M̃ = −g2M
⊤g1, then without any computation we can

conclude that R11(X11) = 0, R22(X22) = 0 and R21(X21) = −g
⊤
2 R12(X12)g1.

Thus, we should only explain how the parameters µ1, . . . , µm of the block
M = R12(X12) depend on the entries of

X12 =




x11 x12 . . . x1n

...
...

. . .
...

xm1 xk2 . . . xmn




We have

R12(X12) = Ln−1
1 X12 + Ln−2

1 X12L2 + · · ·+X12L
n−1
2 (21)

and an easy computation gives

µ1 = xm1,

µ2 = xm−1,1 + xm2,

µ3 = xm−2,1 + xm−1,2 + xm3,

...

µk = x11 + x22 + x33 + · · ·+ xmm.

Thus, there are no relations between µi’s and therefore the image of R

coincides with gL, which completes the proof.

7.4 General case (end of the proof)

Let us now consider the general case, i.e., L and g of the form (14). We start
with the following obvious and well known remark.

Let V ′ ⊂ V be a subspace of V such that g′ = g|V ′ is non-degenerate.
Let h ⊂ so(g′) be a Berger subalgebra. Then h will be a Berger subalgebra of
so(g) too, if we consider the standard embedding so(g′)→ so(g) induced by the
inclusion V ′ → V .
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Moreover, if R′ : so(g′)→ so(g′) is a formal curvature tensor, then its trivial
extension R : so(g)→ so(g) defined by

R

(
X Y

Z W

)
=

(
R′(X) 0

0 0

)

is a formal curvature tensor too.
This remark allows to reformulate Lemma 3 in the following way. Consider

the operator R̂12 : so(g)→ so(g) defined by:

R̂12




X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 Xk2 · · · Xkk


 =




0 R12(X12) · · · 0
R21(X21) 0 · · · 0

...
...

. . .
...

0 0 · · · 0


 (22)

where R12(X12) and R21(X21) are defined as in Lemma 3 and all the other

blocks in the right hand side vanish. Then R̂12 is a formal curvature tensor and
its image coincides with the Abelian subalgebra m12 ⊂ gL (see Lemma 3). In
particular, m12 ⊂ so(g) is a Berger algebra.

To construct the curvature operator R : so(g) → gL in the general case we
need to slightly modify formula (5) taking into account the fact that the blocks
of L and X may have different sizes.

We define R as follows:

R




X11 X12 · · · X1k

X21 X22 · · · X2k

...
...

. . .
...

Xk1 Xk2 · · · Xkk


 =




0 R12(X12) · · · R1k(X1k)
R21(X21) 0 · · · R2k(X2k)

...
...

. . .
...

Rk1(Xk1) Rk2(Xk2) · · · 0


 (23)

In other words, R acts on each block Xij independently (compare with the
proof of Lemma 3). Moreover, each of its components

Rij : Xij 7→ Rij(Xij)

is defined in the exactly same way as in Lemma 3, if we ignore all the blocks of
L except for Li and Lj. More precisely,

Rij(Xij) = L
nij−1

i Xij + L
nij−2

i XijLj + · · ·+XijL
nij−1

j , (24)

where nij = max{ni, nj}, and ni, nj are sizes of the nilpotent Jordan blocks Li

and Lj .

If we introduce the operators R̂ij : so(g) → so(g) by generalising (22) for
arbitrary indices i < j, then we can rewrite (23) and (24) as

R =
∑

i<j

R̂ij .

The following statement completes the proof of Theorem 4.
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Proposition 7. The operator R defined by (23) and (24) is a formal curvature
tensor. Moreover, ImR = gL and, therefore, gL is a Berger algebra.

Proof. Since each R̂ij is a formal curvature tensor, so is R by linearity. The

image of R̂ij is the subalgebra mij . From (23) it is easily seen that each R̂ij

acts only the blocks Xij and Xji and does not interact with other blocks at all.
This (together with Proposition 6) immediately implies that

ImR =
∑

i<j

Im R̂ij =
∑

i<j

mij = gL,

as required.
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48, 1–42 (1926) ou Oeuvres complètes, tome III, vol. 2, 997–1038.
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