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Abstract

For the diffraction of an incident plane electromagnetic wave by a slotted metallic film, the

previous analytical calculation for a single slot [Technical Phys. 50, 1076 (2005)] is generalized

into a model for an arbitrary linear array of slots with variable slot width, slot separation and slot

dielectric material. The advantage as well as the effectiveness of the generalized model presented

in this paper are best described by enabling calculation of a continuous spatial distribution of

an electromagnetic field by inverting a small discrete coefficient matrix spanned by both the slot

index and the slot-eigenmode index for a set of linear equations. In comparisons with well-known

plane-wave and finite-difference time-domain methods, inverting a large matrix, in wave number

space for the former case and in real space at each time step for the latter case, can be avoided

to greatly speed up numerical calculations. In addition, based on a partial-domain method, the

formalism presented here can be employed to treat a composite surface (e.g., a slotted metal film

with different dielectric materials in the slots), while the analytical Green’s function approach [J.

Opt. A: Pure Appl. Opt. 8, S191 (2006)] becomes intractable in this case. Some numerical results

are presented as a demonstration of this new analytical model.
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I. INTRODUCTION

For a periodically-patterned surface on a metal film, the Maxwell equations can be

solved by using a plane-wave (PW) method, 1–3 or a finite-difference time-domain (FDTD)

method, 4–6 or a Green’s function (GF) method. 7,8 For the PW method, a large matrix in

wave number space with respect to different reciprocal lattice vectors needs to be inverted

in order to obtain the spatial distribution of the total electromagnetic (EM) field. For the

FDTD method, the time evolution into a steady state EM field is obtained through in-

verting a large matrix in real space at each time step with respect to all grid points in a

region containing a unit-cell and a surrounding space not far from the surface. For the GF

method, all the values of the EM field on a smooth surface must be calculated by inverting

a large matrix in real space with respect to all grid points on the boundaries to get the

spatial distribution of the total EM field. Both the PW and GF methods have an advantage

for calculating a far-field distribution, while the FDTD method is usually limited to the

calculation of the near-field distribution. Moreover, the GF method can also be used for a

non-periodic smooth surface profile function. 7

For a non-smooth surface, on the other hand, such as a one-dimensional periodic slot

array, the GF method cannot be used. In this case, however, the partial-domain method 7,9

used in the GF theory can still be employed in combination with the slot-eigenmode ex-

pansion 1 as well as with the Fourier expansion 2,3 methods. Based on this technique, an

analytic solution for the diffraction of a plane EM wave by a single slot has been obtained. 10

This analytical single-slot approach has been generalized in this paper to deal with an arbi-

trary slot array. If a single slot is replaced by double slots, each surface-plasmon-polariton

branch 11–13 will be split into two with a minigap controlled by an EM coupling between the

two slots. 14 In the case of double slots with different widths and filled with different dielec-

tric materials, the circulation and weaving of light was found as a result of the excitation of

a phase resonance. 15

In this paper, a two-dimensional (2D) theoretical model for the diffraction of a plane EM

wave by a perfectly electrically conducting (PEC) slotted film is derived with variable slot

width, slot separation and slot dielectric material. The solutions of the 2D Helmholtz equa-

tion in different partial domains are matched to each other by proper boundary conditions

for both PEC and slot dielectric medium. This method has applications in modeling surface
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plasmon polaritrons or surface waves, 16 optical beam steering, 17 and metamaterial design. 18

The use of a PEC material precludes modeling of dissipation but allows for simple modal

expressions for the slot fields. 1,10 When the optical depth of a metallic film is small and

energy dissipation is not a consideration (off-resonance), the use of a PEC partial domain

model is expected to be a good approximation.

This paper is organized as follows. In Sec. II, we generalize the single-slot model into

one for an arbitrary array of slots with both p and s polarizations. In Sec. III, numerical

results as a demonstration are presented and compared for the transmitted EM wave with

p polarization through a slot array with different slot numbers and incident angles. A brief

summary of the generalized model is given in Sec. IV.

II. THEORY

In this paper, the incident EM field is assumed to be a plane wave with a simple time

dependence proportional to e−iωt, where ω is the angular frequency of the incident field.

For the s-polarized case, we write E = (0, Ey, 0) ≡ (0, u, 0) for the transverse electric

field and H = [−i/(ωµ0)]
−→
∇ × E. For the p-polarized case, on the other hand, we write

H = (0, Hy, 0) ≡ (0, u, 0) and E = [i/(ωε0ε)]
−→
∇ × H. Here, ε0 and µ0 are the vacuum

permittivity and permeability, c = 1/
√
ε0 µ0 is the speed of light in vacuum, and ε is the

relative dielectric constant of a non-magnetic dielectric medium.

The master equation for determining the scalar function u introduced above is the two-

dimensional Helmholtz equation in the dielectric medium in the xz−plane:

∂2u

∂x2
+
∂2u

∂z2
+ k2 u = 0 , (1)

where k = (ω/c)
√
ε is the wave number of the field. For a perfect electric conductor (PEC)

with an extremely-large conductivity, the boundary condition for s polarization associated

with Eq. (1) is just u = 0 along all PEC boundaries. In addition, for p polarization, the

boundary condition of Eq. (1) is ∂u/∂n = 0 along all PEC boundaries where n is in the

surface normal direction.
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A. s−Polarization

For the system shown in Fig. 1, Region I, below the slotted layer (x < −d), has the

boundary condition

u|x=−d−0 =


0 , for upper PEC zj + `j < z < zj+1 − `j+1

u|x=−d+0 , for middle slot |z − zj| < `j

0 , for lower PEC zj−1 + `j−1 < z < zj − `j

, (2)

where j = 1, 2, · · · , N is the slot index, zj is the coordinate of the jth slot center, 2`j is the

width of the jth slot, and 2d is the depth of all slots or screen thickness. For j = N , we take

zN+1 = ∞ and `N+1 = 0 in Eq. (2). Similarly, z0 = −∞ and `0 = 0 in Eq. (2) when j = 1.

Moreover, from the continuity of the derivative of u, we have another boundary condition

∂u

∂x

∣∣∣∣
x=−d−0

=
∂u

∂x

∣∣∣∣
x=−d+0

, for all middle slots |z − zj| < `j . (3)

In a similar way, we are able to get the boundary conditions for Region III above the slotted

layer (x > d) from Eqs. (2) and (3) by setting x = d ± 0. Finally, the field must be zero

along the interior slot walls in Region II (|x| ≤ d), that is,

u(x, z = zj ± `j) = 0 , at all slot walls |x| ≤ d . (4)

In Region I (below the slot layer), the solution of the Helmholtz equation in Eq. (1),

including the incident field (incident from below), can be written as

u(I)(x, z) = eik0(x+d) eiβ0z − e−ik0(x+d) eiβ0z

+

∞∫
0

dβ [As(β) cos(βz) + iAa(β) sin(βz)] e−ik1(β)(x+d) , (5)

where the subscripts s and a represent the symmetric and antisymmetric contributions,

separately, k0 = (ωnL/c) cos θ0, β0 = (ωnL/c) sin θ0, β is real, k1(β) =
√

(ωnL/c)2 − β2

can be either real or complex with Im[k1(β)] ≥ 0, nL =
√
εL is the refractive index for the

dielectric medium below the slot layer, and θ0 is the incident angle. In Region III (above

the slot layer), on the other hand, the solution of the Helmholtz equation takes the form of
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u(III)(x, z) =

∞∫
0

dβ [Bs(β) cos(βz) + iBa(β) sin(βz)] eik2(β)(x−d) , (6)

where nR =
√
εR is the refractive index for the dielectric medium above the slots and

k2(β) =
√

(ωnR/c)2 − β2 can also be real or complex with Im[k2(β)] ≥ 0.

In Region II (the slot layer), the solution of the Helmholtz equation along with the

boundary condition in Eq. (4) is found to be

u(II)(x, z) =
∑
j

θ(`j − |z − zj|)
∑
n

{[
ajsn e

iσj
sn(d+x) + bjsn e

iσj
sn(d−x)

]
cos[ξjsn(z − zj)]

+ i
[
ajan e

iσj
an(d+x) + bjan e

iσj
an(d−x)

]
sin[ξjan(z − zj)]

}
, (7)

where θ(z) is the unit step function, n = 1, 2, · · · is an integer for the eigenmode index,

ξjsn = (π/`j) (n − 1/2) and ξjan = (nπ/`j) are for the symmetric and antisymmetric slot

modes, respectively, σjsn, an =
√

(ωnj/c)2 − (ξjsn, an)2 can be either real or complex with

Re[σjsn, an] ≥ 0, and nj =
√
εj is the refractive index for the dielectric medium inside the jth

slot.

By using the boundary conditions in Eq. (2) for u at x = ± d and the orthogonality of the

Fourier expansions in Eqs. (5) and (6), the coefficients for both symmetric and antisymmetric

contributions can be expressed by the slot eigenmodes as follows:

As(β) =
1

π

∞∫
−∞

dz u(II)(x = −d, z) cos(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn + bjsn e

2iσj
snd
)
Qj
sn(β) cos(βzj)

− i
(
ajan + bjan e

2iσj
and
)
Qj
an(β) sin(βzj)

]}
, (8)

iAa(β) =
1

π

∞∫
−∞

dz u(II)(x = −d, z) sin(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn + bjsn e

2iσj
snd
)
Qj
sn(β) sin(βzj)

+ i
(
ajan + bjan e

2iσj
and
)
Qj
an(β) cos(βzj)

]}
, (9)
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Bs(β) =
1

π

∞∫
−∞

dz u(II)(x = d, z) cos(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn e

2iσj
snd + bjsn

)
Qj
sn(β) cos(βzj)

− i
(
ajan e

2iσj
and + bjan

)
Qj
an(β) sin(βzj)

]}
, (10)

iBa(β) =
1

π

∞∫
−∞

dz u(II)(x = d, z) sin(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn e

2iσj
snd + bjsn

)
Qj
sn(β) sin(βzj)

+ i
(
ajan e

2iσj
and + bjan

)
Qj
an(β) cos(βzj)

]}
. (11)

In Eqs. (8)-(11), we have defined the notations

Qj
sn(β) =

1

`j

`j∫
−`j

dz cos(βz) cos(ξjsnz)

= sinc[(β − ξjsn) `j] + sinc[(β + ξjsn) `j] , (12)

Qj
an(β) =

1

`j

`j∫
−`j

dz sin(βz) sin(ξjanz)

= sinc[(β − ξjan) `j]− sinc[(β + ξjan) `j] , (13)

where sinc(x) ≡ sin(x)/x.

The slot eigenmode expansion coefficients ajsn, bjsn, ajan and bjan in Eq. (7) are determined

from the derivative continuities in Eq. (3) for u at x = ± d and for each slot. Therefore, we

get for j = 1, 2, · · · , N
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zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 ∂uI(x, z)

∂x

∣∣∣∣∣∣∣
x=−d−0

=

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 ∂uII(x, z)

∂x

∣∣∣∣∣∣∣
x=−d+0

, (14)

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 ∂uIII(x, z)

∂x

∣∣∣∣∣∣∣
x=d+0

=

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 ∂uII(x, z)

∂x

∣∣∣∣∣∣∣
x=d−0

. (15)

Using the orthogonality of the slot eigenmodes, from Eqs. (14) and (15) we arrive at the

following set of equations:

2k0 e
iβ0zj Qj

sn(β0) −
∞∫
0

dβ [As(β) cos(βzj) + iAa(β) sin(βzj)] Q
j
sn(β) k1(β)

= σjsn (ajsn − bjsn e2iσ
j
snd) , (16)

− 2k0 e
iβ0zj Qj

an(β0) +

∞∫
0

dβ [iAs(β) sin(βzj) + Aa(β) cos(βzj)] Q
j
an(β) k1(β)

= −σjan (ajan − bjan e2iσ
j
and) , (17)

∞∫
0

dβ [Bs(β) cos(βzj) + iBa(β) sin(βzj)] Q
j
sn(β) k2(β) = σjsn (ajsn e

2iσj
snd − bjsn) , (18)

∞∫
0

dβ [iBs(β) sin(βzj) +Ba(β) cos(βzj)] Q
j
an(β) k2(β) = σjan (ajan e

2iσj
and − bjan) , (19)
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where j = 1, 2, · · · , N .

Inserting Eqs. (8)-(11) into Eqs. (16)-(19) gives rise to a set of 4N linear equations with

respect to ajsn, bjsn, ajan and bjan. That is, for j = 1, 2, · · · , N ,

∑
n′, j ′

(
aj

′

sn′ + bj
′

sn′ e
2iσj ′

sn′d
) `j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

sn′(β) k1(β) cos[β(zj ′ − zj)]


− i

∑
n′, j ′

(
aj

′

an′ + bj
′

an′ e
2iσj ′

an′d
) `j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

an′(β) k1(β) sin[β(zj ′ − zj)]


+
∑
n′, j ′

δj,j′δn,n′σj
′

sn′ (aj
′

sn′ − bj
′

sn′ e
2iσj′

sn′d) = 2k0 e
iβ0zj Qj

sn(β0) , (20)

−i
∑
n′, j ′

(
aj

′

sn′ + bj
′

sn′ e
2iσj ′

sn′d
) `j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

sn′(β) k1(β) sin[β(zj − zj ′)]


+
∑
n′, j ′

(
aj

′

an′ + bj
′

an′ e
2iσj ′

an′d
) `j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

an′(β) k1(β) cos[β(zj − zj ′)]


+
∑
n′, j ′

δj,j′δn,n′σj
′

an′ (aj
′

an′ − bj
′

an′ e
2iσj′

an′d) = 2k0 e
iβ0zj Qj

an(β0) , (21)

∑
n′, j ′

(
aj

′

sn′ e
2iσj ′

sn′d + bj
′

sn′

) `j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

sn′(β) k2(β) cos[β(zj ′ − zj)]


− i

∑
n′, j ′

(
aj

′

an′ e
2iσj ′

an′d + bj
′

an′

) `j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

an′(β) k2(β) sin[β(zj ′ − zj)]


−
∑
n′, j ′

δj,j′δn,n′σj
′

sn′ (aj
′

sn′ e
2iσj′

sn′d − bj
′

sn′) = 0 , (22)

−i
∑
n′, j ′

(
aj

′

sn′ e
2iσj ′

sn′d + bj
′

sn′

) `j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

sn′(β) k2(β) sin[β(zj − zj ′)]


+
∑
n′, j ′

(
aj

′

an′ e
2iσj ′

an′d + bj
′

an′

) `j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

an′(β) k2(β) cos[β(zj − zj ′)]


−
∑
n′, j ′

δj,j′δn,n′σj
′

an′ (aj
′

an′ e
2iσj′

an′d − bj
′

an′) = 0 . (23)
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If we truncate the number of slot eigenmodes in the expansion, i.e., n = 1, 2, · · · , M , this

constitutes a 4NM -order inhomogeneous linear-matrix equation, which can be exactly solved

by inverting its coefficient matrix. Here the symmetric and antisymmetric eigenmodes in

different slots with zj 6= zj ′ are coupled to each other, which is different from the single-slot

result. 10

B. p−Polarization

Following an approach that parallels the approach we performed above to deal with the

boundary conditions for s polarization, we require for p polarization that the derivative

condition is interchanged with the null conditions, i.e., u = 0 becomes ∂u/∂n = 0 along the

PEC surfaces. In addition, the (1/ε) ∂u/∂x continuity condition across the slot interfaces

is used to determine the Fourier coefficients outside Region II instead of the u continuity

condition. For Region I (x < −d), we have the boundary condition

1

εL

∂u

∂x

∣∣∣∣
x=−d−0

=


0 , for upper PEC zj + `j < z < zj+1 − `j+1

1
εj

∂u
∂x

∣∣∣
x=−d+0

, for middle slot |z − zj| < `j

0 , for lower PEC zj−1 + `j−1 < z < zj − `j

. (24)

For Region III (x > d), the boundary condition is

1

εR

∂u

∂x

∣∣∣∣
x=d+0

=


0 , for upper PEC zj + `j < z < zj+1 − `j+1

1
εj

∂u
∂x

∣∣∣
x=d−0

, for middle slot |z − zj| < `j

0 , for lower PEC zj−1 + `j−1 < z < zj − `j

. (25)

The continuity of u is required along the interfaces of each slot: u|x=−d−0 = u|x=−d+0 , for all middle slots |z − zj| < `j

u|x=d−0 = u|x=d+0 , for all middle slots |z − zj| < `j
, (26)

where j = 1, 2, · · · , N . Finally, the field normal derivative must be zero in Region II along

the interior slot walls (|x| ≤ d), that is,

∂u(x, z = zj ± `j)
∂z

= 0 , at all slot walls |x| ≤ d . (27)
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In Region I, the solution of the Helmholtz equation in Eq. (1) in this case, including the

incident field, can be written as

u(I)(x, z) = eik0(x+d) eiβ0z + e−ik0(x+d) eiβ0z

− k0 εL

∞∫
0

dβ

k1(β)
[As(β) cos(βz) + iAa(β) sin(βz)] e−ik1(β)(x+d) . (28)

In Region III, the solution of the Helmholtz equation takes the form of

u(III)(x, z) = k0 εR

∞∫
0

dβ

k2(β)
[Bs(β) cos(βz) + iBa(β) sin(βz)] eik2(β)(x−d) . (29)

In Region II, the solution of the Helmholtz equation along with the boundary condition in

Eq. (27) is found to be

u(II)(x, z) = k0
∑
j

θ(`j − |z − zj|)
∑
n

{
εj

σjsn

[
ajsn e

iσj
sn(d+x) − bjsn eiσ

j
sn(d−x)

]
cos[ξjsn(z − zj)]

+ i
εj

σjan

[
ajan e

iσj
an(d+x) − bjan eiσ

j
an(d−x)

]
sin[ξjan(z − zj)]

}
, (30)

where ξjsn = (π/`j) (n− 1) and ξjan = (π/`j) (n− 1/2) are for symmetric and antisymmetric

slot eigenmodes, respectively.

By using the derivative boundary conditions in Eq. (24) and (25) at x = ± d as well as the

orthogonality of the Fourier expansions in Eqs. (28) and (29), the coefficients As(β), Aa(β),

Bs(β) and Ba(β) can be expressed as

As(β) =
1

π

∞∫
−∞

dz
1

εL

∂u(I)

∂x

∣∣∣∣
x=−d

cos(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn + bjsn e

2iσj
snd
)
Qj
sn(β) cos(βzj)

− i
(
ajan + bjan e

2iσj
and
)
Qj
an(β) sin(βzj)

]}
, (31)

10



iAa(β) =
1

π

∞∫
−∞

dz
1

εL

∂u(I)

∂x

∣∣∣∣
x=−d

sin(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn + bjsn e

2iσj
snd
)
Qj
sn(β) sin(βzj)

+ i
(
ajan + bjan e

2iσj
and
)
Qj
an(β) cos(βzj)

]}
, (32)

Bs(β) =
1

π

∞∫
−∞

dz
1

εR

∂u(III)

∂x

∣∣∣∣
x=d

cos(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn e

2iσj
snd + bjsn

)
Qj
sn(β) cos(βzj)

− i
(
ajan e

2iσj
and + bjan

)
Qj
an(β) sin(βzj)

]}
, (33)

iBa(β) =
1

π

∞∫
−∞

dz
1

εR

∂u(III)

∂x

∣∣∣∣
x=d

sin(βz)

=
∑
n

{∑
j

`j
π

[(
ajsn e

2iσj
snd + bjsn

)
Qj
sn(β) sin(βzj)

+ i
(
ajan e

2iσj
and + bjan

)
Qj
an(β) cos(βzj)

]}
. (34)

The slot eigenmode expansion coefficients ajsn, bjsn, ajan and bjan in Eq. (30) are determined

from the continuities of u in Eq. (26) at x = ± d for individual slot. As a result, we get for

j = 1, 2, · · · , N

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 uI(x = −d, z)

=

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 uII(x = −d, z) , (35)
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zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 uIII(x = d, z)

=

zj+`j∫
zj−`j

dz

`j

 cos[ξjsn(z − zj)]

sin[ξjan(z − zj)]

 uII(x = d, z) . (36)

As for the s−polarization case, using the orthogonality of the slot eigenmodes, as well as

using Eqs. (31)-(34), gives rise to the following set of 4N linear equations with respect to

ajsn, bjsn, ajan and bjan

∑
n′, j ′

(
aj

′

sn′ + bj
′

sn′ e
2iσj ′

sn′d
) εL`j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

sn′(β)
1

k1(β)
cos[β(zj ′ − zj)]


− i

∑
n′, j ′

(
aj

′

an′ + bj
′

an′ e
2iσj ′

an′d
) εL`j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

an′(β)
1

k1(β)
sin[β(zj ′ − zj)]


+
∑
n′, j ′

δj,j′δn,n′χn′εj′

σj
′

sn′

(aj
′

sn′ − bj
′

sn′ e
2iσj′

sn′d) =
2

k0
eiβ0zj Qj

sn(β0) , (37)

−i
∑
n′, j ′

(
aj

′

sn′ + bj
′

sn′ e
2iσj ′

sn′d
) εL`j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

sn′(β)
1

k1(β)
sin[β(zj − zj ′)]


+
∑
n′, j ′

(
aj

′

an′ + bj
′

an′ e
2iσj ′

an′d
) εL`j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

an′(β)
1

k1(β)
cos[β(zj − zj ′)]


+
∑
n′, j ′

δj,j′δn,n′εj′

σj
′

an′

(aj
′

an′ − bj
′

an′ e
2iσj′

an′d) =
2

k0
eiβ0zj Qj

an(β0) , (38)

∑
n′, j ′

(
aj

′

sn′ e
2iσj ′

sn′d + bj
′

sn′

) εR`j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

sn′(β)
1

k2(β)
cos[β(zj ′ − zj)]


−i
∑
n′, j ′

(
aj

′

an′ e
2iσj ′

an′d + bj
′

an′

) εR`j ′

π

∞∫
0

dβ Qj
sn(β)Qj ′

an′(β)
1

k2(β)
sin[β(zj ′ − zj)]


−
∑
n′, j ′

δj,j′δn,n′χn′εj′

σj
′

sn′

(aj
′

sn′ e
2iσj′

sn′d − bj
′

sn′) = 0 , (39)
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−i
∑
n′, j ′

(
aj

′

sn′ e
2iσj ′

sn′d + bj
′

sn′

) εR`j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

sn′(β)
1

k2(β)
sin[β(zj − zj ′)]


+
∑
n′, j ′

(
aj

′

an′ e
2iσj ′

an′d + bj
′

an′

) εR`j ′

π

∞∫
0

dβ Qj
an(β)Qj ′

an′(β)
1

k2(β)
cos[β(zj − zj ′)]


−
∑
n′, j ′

δj,j′δn,n′εj

σj
′

an′

(aj
′

an′ e
2iσj′

an′d − bj
′

an′) = 0 . (40)

Here, χn = 2 for n = 1 and χn = 1 for n 6= 1. Similarly, if we limit the number of slot

eigenmodes in the expansion to M , this constitutes a 4NM−order inhomogeneous linear-

matrix equation which can be solved exactly by matrix inversion. Again, the symmetric and

antisymmetric eigenmodes in different slots with zj 6= zj ′ are coupled to each other.

III. NUMERICAL RESULTS

To demonstrate these results, we perform numerical calculations here for the

p−polarization case which allows for the excitation of a surface-plasmon-polariton mode. In

our numerical calculations, we have taken: λ0 = 2πc/ω = 1.0µm (for a large transmission),

`j = λ0/10 = 0.1µm (deep sub-wavelength regime), d = 3.0 `j = 0.3µm, nL = nR = nj = 1,

and the center-to-center slot separation is assumed to be 0.98µm. Other parameters, such

as θ0 and N , will be directly given in the figure captions.

Figure 2 displays the three-dimensional plot of the transmitted EM wave |u(x, z)|2 =

|Hy(x, z)|2 in Region III for p polarization and normal incidence with N = 2 and θ0 = 0 o.

Here, the strong transmitted near-field close to the exits of the two slots in the z direction

decay very fast as it propagates away from the slot array in the x direction. At the same

time, a local maximum is gradually built up in the center region between the two slots due

to strong interference of these two slot-exit waves and it becomes weaker away the slot layer

in the x direction. When the number of slots is increased from two to five in Fig. 3, the

strong transmitted near-fields close to the five slot exits interfere with each other strongly

in the z direction and constitute a complex pattern as they propagate away from the slot

array in the x direction. There are four local maxima that develop eventually at the four

centers between two adjacent slots as the strong slot-exit near-fields are partially suppressed
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with distance away from the array in the x direction. For normal incidence, although the

symmetric and antisymmetric modes of different slots are coupled to each other, the mirror

symmetry with respect to the center of the system (at z = 0) still remains. However, this

mirror symmetry is broken for a nonzero incident angle, as demonstrated in Fig. 4 by the

two-dimensional contour plot of the transmitted EM wave |u(x, z)|2 = |Hy(x, z)|2 in Region

III for p polarization with θ0 = 60 o. In this case, the transmitted EM wave becomes weaker

in general. At the same time, the field strength increases with z from the lowest slot to the

upper most slot, which is accompanied by an increasingly extended spatial distribution of

the fields between two adjacent slots as one moves up in the z direction.

The advantage of the current approach is in casting a continuous spatial distribution

problem into a small discrete coefficient matrix spanned by the slot index j and the eigen-

mode index n. In this paper, we only display the spatial distribution of a transmitted EM

wave in the deep sub-wavelength regime (`j � λ0). However, the accuracy of our numer-

ical calculations becomes worse as the slot width 2`j becomes comparable to the incident

wavelength λ0. In this case, a very large number of slot eigenmodes are required to achieve

a good accuracy in a numerical calculation.

IV. CONCLUSIONS

In conclusion, the previous analytical calculation for the diffraction of an incident plane

electromagnetic wave by a single slot on a metal film has been generalized to treating an

arbitrary linear array of slots with variable slot width, slot separation and slot dielectric ma-

terial. In comparisons with the plane-wave and finite-difference time-domain methods, the

calculation speed has been increased greatly by transforming the calculation of a continuous

spatial distribution of an electromagnetic field to the inversion of a small discrete coefficient

matrix spanned by the slot and eigenmode indexes. Moreover, based on a similar partial-

domain method, the linearly slotted metal film with different dielectric material in each slot,

which cannot be solved by using the analytical Green’s function approach, has been studied

by our analytical approach. Some numerical results that demonstrate our generalized model

have also been presented.
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FIG. 1: (Color online) Illustration of a one-dimensional slot array in the xz−plane, where j =

1, 2, · · · , N is the slot index, zj is the center of jth slot, 2`j is the jth slot width, the slot depth is

2d, and θ0 is the incident angle. The regions below and above the slot array are defined as Region

I and Region III, respectively. The slot-array region is designated Region II in the text.
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FIG. 2: (Color online) Three-dimensional (3D) plot of transmitted EM wave |u(x, z)|2 =

|Hy(x, z)|2 in Region III for p polarization with N = 2 and θ0 = 0 o for normal incidence.
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FIG. 3: (Color online) 3D plot of transmitted EM wave |u(x, z)|2 = |Hy(x, z)|2 in Region III for

p polarization with N = 5 and θ0 = 0 o for normal incidence.
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FIG. 4: (Color online) Two-dimensional contour plot of transmitted EM wave |u(x, z)|2 =

|Hy(x, z)|2 in Region III for p polarization with N = 5 and θ0 = 60 o for tilted incidence.
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