
A FOURIER-MUKAI APPROACH TO THE ENUMERATIVE
GEOMETRY OF PRINCIPALLY POLARIZED ABELIAN SURFACES

ANTONY MACIOCIA

Abstract. We study twisted ideal sheaves of small length on an irreducible principally
polarized abelian surface (T, `). Using Fourier-Mukai techniques we associate certain
jumping schemes to such sheaves and completely classify such loci. We give examples of
applications to the enumerative geometry of T and show that no smooth genus 5 curve
on such a surface can contain a g13 . We also describe explicitly the singular divisors in the
linear system |2`|.

Introduction

It is an old problem of algebraic geometry to describe the family of curves in a given linear
system which go through a certain number of points. For projective spaces, this problem
is essentially solved. The answer is given by the Plücker formulae and the reciprocity
formulae (see [4, §2.4 and §5.4]). Our aim, in this paper, is to extend some of these results
to a principally polarized Abelian surface (T, `) over the complex numbers. We shall find
that, for a generic set of points, the family of curves has the dimension we would expect
from a näıve dimension count. We aim to solve the problem of determining these families
explicitly for divisors in translates of |2`|, this includes the non-generic cases. This will
entail studying the case |`| as well. The unique divisor D in |`| and its translates will be
viewed as “lines” on the abelian surface. There is a duality for these divisors in that any
two intersect in two points (with multiplicity) while any two distinct points lie on exactly
two of these “lines”. We use the term “collinear” to mean that a 0-scheme lies on a “line”.

Our main tools are sheaf theory and the Fourier-Mukai transform which provides exactly
enough information to determine the incidence of points on divisors. We proceed in an
inductive way: we relate the properties of the twisted ideal sheaf L2⊗IX to those of L2⊗IX′
for X ′ ⊂ X. We then give an exhaustive treatment of L2 ⊗ IX for each small value of |X|
in turn.

The paper is organized as follows. Section one sets up some convenient notation for
zero-dimensional subschemes. The second section describes some of the basic properties of
the linear systems |`| and |2`| including a description of the reducible divisors in |2`|. These
are just the Θ and 2Θ linear systems and the reducible divisors are very well understood;
forming the cornerstone of the theory of principally polarized abelian surfaces. But we
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recall some of the key facts translated into the language of sheaves. Section three is a brief
overview of the Fourier-Mukai transform. In section four we shall define the basic objects
of study: the cohomology jumping schemes associated to a zero-dimensional subscheme of
T. These describe the translates of |2`| which contain extra divisors which go through X.

In sections five to nine we study the cases of length 1, 2, 3, 4 and 5 subschemes in
detail. Each of these requires special treatment and a full analysis of each is required
before proceeding to the next. In section 10 we can treat the general case. The conclusions
are summarized in the two tables of the appendix to the paper. In section 11 we look briefly
at stability questions for the Fourier transforms of the twisted ideal sheaves and in section
12 we look at two applications, one to answer the question of whether smooth divisors in
|2`| have a g1

3 or not (they don not, as we shall see) and to answer a classical question to
compute the locus of singular divisors in |2`|. The idea is to use the information about
how non-reduced 0-schemes lie on divisors to detect singularities in the divisors of |2`|.

Our motivation for studying these questions come from the need to compute moduli
spaces of stable and semistable sheaves over these tori. These moduli spaces provide an
endless source of (relatively) easy to compute hyper-Kähler manifolds which lie in a good
deformation family parametrized by the moduli space of flat hyper-Kähler tori. Some of
these moduli spaces can be related to the space of 0-dimensional subschemes of the torus
and the stability and local-freeness properties of the associated sheaves is determined by the
incidence of the 0-subscheme on divisors from |Ln|. As an example of this, one can apply
the results of sections eight, nine and ten to determine the moduli space of stable sheaves
with Chern characters (2, 0,−2) and (2, 0,−3). It turns out that the standard algebraic
compactification of the latter moduli space is isomorphic to Hilb6 T × T. The former
is isomorphic to another compactification of the bundle of Jacobians over the space of
effective divisors in all translates of |2`| (see [8]). It also provides us with a new irreducible
hyperKähler manifold (see [12]). This paper forms the basis for a research programme
which aims to give complete descriptions of a variety of moduli spaces of sheaves and
more generally Bridgeland stable objects on a principally polarized abelian surface. The
importance of moduli spaces arising from Hilbert schemes of points can be seen in [13]
where it is shown that each fine moduli spaces of stable sheaves are birational to some
Hilbn T× T̂.

The results we find in this paper are also useful to study moduli of Bridgeland stable
objects with the same Chern character and in a subsequent work we compute the explicit
wall crossing behaviour of such moduli spaces. In this paper, we operate at a more ele-
mentary level and avoid the use of Bridgeland stability but note that in section 11 a fuller
treatment is best completed using the derived category. This has been done in [9] where
the Bridgeland stable moduli spaces for Chern character (1, 2`, n) are computed. It is also
possible to give an account of n very ampleness for powers of L using these techniques.
This will be the subject of a future article.
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1. The Hilbert scheme of 0-subschemes

Let S be a smooth complex surface and let Hilbn S denote the Hilbert scheme of length
n 0-dimensional subschemes of S.

It is useful to introduce the following notation. A general 0-dimensional scheme will be
denoted by X. Its length will be denoted |X|.

P = {p} a single point,

Q = {p, q} a length 2 0-scheme,

if p = q then write {p, t}, where t ∈ PTpS
Y = {p, q, y} a length 3 0-scheme,

Z = {p, q, y, z} a length 4 0-scheme,

W = {p, q, y, z, w} a length 5 0-scheme

The ideal sheaf associated to X ⊂ S will be denoted IX = ker(OS → OX). The notation
P,Q, Y, Z,W is used to avoid double subscripts. It also reflects the fact that the properties
of 0-schemes of different small lengths vary widely with respect to a given linear system
whereas large length 0-schemes all behave similarly. As a mnemonic for remembering which
are which note that the drawn letters have their length number of “points” on them (at
the ends of lines or at acute angles).

Suppose that D ⊂ S is a curve on a variety then we shall be concerned with questions
of the following type: given a 0-dimensional subscheme X ⊂ S, which curves in a given
linear system or systems containing D contain X? In other words, we want to understand
H0(O(D)⊗ IX).

Suppose X is non-reduced and contains precisely one closed point so that it is of the
form specA for some Artin local ring A. These will take the form A = C[ε, η]/I for some
ideal I.

Notation 1.1. We will have need to distinguish the three possibilities for the isomorphism
class of Y (as a scheme) when supp(Y ) = {p}. We shall denote these as follows:

Yc = spec
C[ε]

(ε3)
, Yd = spec

C[ε, η]

(ε− η2, εη)
and Ye = spec

C[ε, η]

(ε2, η2, εη)

Note that the ideal giving rise to the first of these is regular while the ideals of the other
two are not. This means, in particular, that the dimension of the fibre of IY at its support
is 2 for Yc and 3 for Yd and Ye.

Recall that a node is a transverse intersection, a cusp is a locally irreducible double
point of the curve and a tacnode is a double point which is not transverse. In terms of
the classification of surface singularities given in [1, §II.8]: a node has type A1, cusps have
types A2n and tacnodes have types A2n+1. By a simple tacnode we mean an A3 singularity.
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2. The linear systems |`| and |2`|

We shall now suppose that (T, `) is a principally polarized Abelian surface and (T̂, ˆ̀) is
the dual torus. We let T2 denote the set of points of order 2 in T. We choose a symmetric
line bundle L in the class `. From now on, we will use the notation Ln to denote the nth
tensor product of L with itself (rather than L⊗n). Note that h0(L) = 1 and we write DL

for the zero set of the unique non-zero holomorphic section of L. In this and subsequent
sections we adopt the following convention: Du will denote the translation of DL by u ∈ T.
This makes the notation more concise and also allows us to write TrDu to mean the tangent
space at r of the translate of DL by u. Observe the irritating anomaly that Du ∈ |τ ∗−uL|,
where τx : T→ T denotes translation by x.

If DL is irreducible then T = Jac(DL) and L corresponds to the θ polarization and then
DL must be smooth (see e.g. [3, Cor 11.8.2]).

We shall introduce the following terminology.

Definition 2.1. If we have X ∈ Hilbn T and X ⊂ Du for some u ∈ T then we say that X
is collinear.

This slightly unorthodox use of ‘collinear’ makes some sense because the divisors Du play
a similar role to lines on CP 2. In fact, we shall see that any two “lines” intersect in exactly
two points (up to multiplicity) and dually, that any two distinct points are contained in
exactly two “lines”.

Turning now to |2`|, observe that h0(L2) = 4 and recall that L2 is base-point free and
so, by Bertini, the generic element D ∈ |2`| is smooth. The reducible divisors in |2`| are
given by the following.

Lemma 2.2. If D ∈ |2`| is reducible then D = Dx +D−x.

The proof is a straightforward exercise (see [3, Chapter 10]).
We use the notation Ks(T) = T/± to denote the singular Kummer variety. This has

sixteen singular points and they all have type A2 (in terms of the classification of surface

singularities given in [1, III.3]). There is a canonical family of divisors in |L̂2 ⊗ Pγ| given

by Du + Dy, where u + y = γ. This family is parametrized by Ksγ(T̂). We shall call the

divisors Kummer divisors. The map Ksγ(T̂) → |L̂2 ⊗ Pγ| is given by [α] 7→ Dα + Dγ−α,

where α ∼ α′ if and only if α = γ − α, so that Ksγ(T̂) = T̂/∼ ∼= Ks(T̂) isomorphic to the
image of the above map.

Notation 2.3. We denote the Chern characters of sheaves on T by (r, c1, χ), where χ(E) =
1
2
c1(E)2 − c2(E) and r = rk(E).

The following lemma (which works over any smooth surface) will be used several times.
We let L(D) denote the line bundle associated to a divisor.

Lemma 2.4. Suppose X ⊂ D is a 0-subscheme of an effective divisor D on a surface S.
Let R be a line bundle over S and A = RIX/RL(D)∗. Then A contains no subscheme
supported in codimension 2.
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Proof. If T ⊂ A is supported in codimension 2 then ch2(A/T ) 6 ch2(A) and so ch2(K) >
ch2(RL(D)∗), where K = ker(RIX → A/T ). But K = RL(D)∗IX′ for some 0-scheme X ′

and so ch2(K) = ch2(RL(D)∗)− |X ′|. Hence |X ′| = 0 and T = 0. �

Finally, we will need to describe torsion-free sheaves of rank 1 over reducible curves
D1 + D2 ⊂ T. If T is such a sheaf then we can consider its restrictions Ti = T |Di

. Define
the degree of T via the Riemann-Roch formula for embedded curves (see [1, II.3]) to be

deg(T ) = χ(T )− χ(L(D1 +D2)).

Define the restriction type or degree of T to be (deg(T1), deg(T2)). If the restriction type
of T is (n1, n2) and the singularity scheme X of T has length r then it is easy to see that
n1 + n2 = deg(T )− r. Note that X ⊂ D1 ∩D2 and so r 6 |D1 ∩D2| if D1 and D2 have no
common components. This generalizes in the obvious way to more than two components
and to multiple curves.

3. The Fourier-Mukai Transform

One of the most useful tools in studying sheaves and bundles over tori is the Fourier-
Mukai transform (see e.g. [10] or [11] for the original treatment and [6] or [2] for more up to

date treatments). This takes the form of a functor Φ : D(T)→ D(T̂) between the derived
categories of complexes of coherent sheaves. It is defined by E 7→ Rπ̂∗(π

∗E ⊗ P), where

P denotes the Poincaré line bundle over T× T̂ and π and π̂ are the projection maps to T
and T̂ respectively. We denote the fibres of P over T × {x̂} by Px̂ which gives rise to the

isomorphism T̂ ∼= Pic0 T. A particularly important result concerning the Mukai transform
is the fact that if Φj(E) = 0 for all j > m then the fibres of Φm(E) are given (canonically)
by Hm(E ⊗ Px̂).

Definition 3.1. Following Mukai, we say that a sheaf E over T satisfies WITi if Φj(E) = 0

for all j 6= i and write Ê for ΦiE. We also say that E satisfies ITi if Hj(E ⊗ Px̂) = 0 for

all x̂ ∈ T̂ and j 6= i.

Note that ample line bundles satisfy IT0. There is an unavoidable conflict of notation
with L̂. This will always denote the dual polarization which equals (Φ0L)−1. Notice that

the fibres of the projective bundle PL̂2 are given canonically by the linear systems |L2⊗Px̂|
as x̂ varies over T̂.

The inverse of Φ is (−1)∗Φ̂[2] where Φ̂(E) = Rπ∗(π̂
∗E ⊗ P). For practical purposes the

fact that (−1)∗Φ̂[2] is the quasi-inverse of Φ can be viewed as the following first-quadrant
spectral sequence

Ep,q
2 ⇒

{
(−1T)∗E for p+ q = 2,
0 otherwise,

with Ep,q
2 = Φ̂

p
(Φq E). But Φ2(E) is IT0 while Φ0(E) is WIT2. Hence, the entire informa-

tion content of this spectral sequence is contained in the exact sequences

0 −→ D −→ (−1T)∗E −→ Φ̂
0
(Φ2(E))

d2−→ Φ̂
2
(Φ1(E)) −→ 0
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and
0 −→ Φ̂

0
(Φ1(E))

d2−→ Φ̂
2

Φ0(E)) −→ D −→ Φ̂
1
(Φ1(E)) −→ 0,

where D is an unknown. Moreover, if any one of Φ̂
2
(Φ0(E)), Φ̂

1
(Φ1(E)), Φ̂

0
(Φ2(E)) is zero

then we can eliminate D.
We list some useful properties of Φ.

Proposition 3.2. (see [10])

(1) OX satisfies IT0 and Φ0(OX) = HX , a homogeneous bundle
and Φ0(Ox) = Px.

(2) Px̂ satisfies WIT2 and Φ2(Px̂) = O−x̂
(3) If E satisfies WIT then so does τ ∗xE with transform Ê ⊗ P−x.
(4) If ch(E) = (r, c, χ) then ch(Φ(E)) = (χ,−ĉ, r).

Remark 3.3. Observe that P(L̂i) is flat as a projective bundle. Hence, L̂i admits an irre-

ducible projectively flat connection and so L̂i is µ-stable. This is proved in a different way
by Kempf (see [7]Thm 3). By µ-stable we mean the stability of Mumford-Takemoto: E is
µ-stable if E is torsion-free and for all subsheaves F ⊂ E with E/F torsion-free we have
d(F )/r(F ) < d(E)/r(E). We obtain µ-semistability by replacing < by 6. Homogeneous
bundles can be characterized as µ-semistable sheaves with c1 = 0 and c2 = 0.

Notation 3.4. As a useful shorthand, we shall drop the tensor product sign when no con-
fusion will arise. We shall also write Lx̂ = LPx̂ = L⊗ Px̂.

We will be interested in LiIX for i > 0. Since Φ is right exact we can apply it to short
exact sequences to obtain a long exact sequence. For example,

Φ(0 −→ LiIX −→ Li −→ OX −→ 0)

gives rise to

(3.1) 0→ Φ0(LiIX)→ L̂i → HX → Φ1(LiIX)→ 0.

From this sequence we can immediately deduce:

Proposition 3.5. For all i > 0 and 0-schemes X, Φ2(LiIX) = 0 and hence H2(LiIXPx̂) =
0 for all x̂.

In particular, Φ0(LiIX) is locally-free and, since L̂i is stable we have µ(Φ0(LiIX)) < −1.
Observe that χ(LiIX) = i2 − |X|.

Definition 3.6. Let Rj
i (X) = Φj(LiIX) for i > 0 and j = 0, 1.

We can apply the Mukai spectral sequence to LiIX to obtain a long exact sequence

(3.2) 0→ Φ̂0(R1
i (X))→ Φ̂2(R0

i (X))→ LiI−X → Φ̂1(R1
i (X))→ 0.

Observe that it is impossible for the middle map to be zero unless LiIX satisfies WIT1.
If X ′ ⊂ X with X \X ′ = X ′′ then the sequence

0 −→ LiIX −→ LiIX′ −→ OX′′ −→ 0
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gives rise to

(3.3) 0→ R0
i (X)→ R0

i (X
′)→ HX′′ → R1

i (X)→ R1
i (X

′)→ 0.

This is particularly useful if |X ′′| = 1.

4. Cohomology Jumping Schemes

Let p : U → S be a flat morphism of projective varieties. Let F be a sheaf on U and let
Fr denote its fibre over r ∈ S. Suppose that, for some sheaf F , Rip∗F = 0 for i > 1. Then
the fibres of R1p∗F over r ∈ S are canonically isomorphic to H1(Fr) since H i(Fr) = 0
for all i > 1. We want to consider the points of S where the dimension of H1(Fr) jumps
(up, by semicontinuity). We will consider the situation where F = p∗1(LiIX) ⊗ P over

T × T̂ and S = T̂. Since χ(Fr) does not depend on r we see that dim(H0(LiIXPx̂)) =
dim(H1(LiIXPx̂)) = dim(Φ1(LiIX)⊗ Ox̂). From sequence 3.1 we know that

Φ1(LiIX) = coker(Φ0(Li → OX) : L̂i → HX).

We can therefore make the following definition.

Definition 4.1. The cohomology jumping scheme Si(X) associated to LiIX is defined to
be the determinantal locus of Φ0(Li → OX).

More often than not, we shall only be interested in the support of Si(X).

Definition 4.2. Define Φi(X) ⊂ PL̂i to be {D | X ⊂ D}. Note that PL̂i is a projective
bundle over T and we denote the intersection of Φ(X) with the fibre over x̂ by Φi(X)x̂.

Observe that
Φi(X)x̂ ∼= PH0(LiPx̂IX).

By semicontinuity of cohomology, for generic x̂, Φi(X)x̂ ∼= CP r for some r. Then, for such
x̂,

h1(LiIXPx̂) = |X| − i2 + r.

In any case, r 6 dim Φi(X)x̂ 6 i2. It also follows that the support of Si(X) is just

{x̂ ∈ T̂ | dim Φi(X)x̂ > r + 1}.
Our aim will be to compute Φ1(X) and Φ2(X) for any X. We do this by considering

separately the cases |X| = 1, 2, 3, 4 and then extrapolating to the general case.

5. |X| = 1

Consider S1(P ) first. From sequence 3.1 we see that LIP satisfies WIT1 and its transform

is given by Pp/L̂
−1 = OD−pPp. Hence, S1(P ) = D−p. In fact, any degree 0 line bundle over

Du satisfies WIT1 with transform LβI−u.
Turning now to S2(P ), observe that χ(L2IP ) = 3 and hence dimH0(L2IP ) > 3. Thus

the fibres of Φ2(P ) contain CP 2. But |L2Px̂| are all base-point free and hence the fibres of
Φ2(P ) must all equal CP 2. In other words, S2(P ) = ∅ and L2IP satisfies IT0.

Proposition 5.1. For all P , R0
2(P ) = Φ0(L2Ip) are µ-stable.
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Proof. This follows because Φ0(L2) is µ-stable and R0
1(P ) is a sub-bundle of Φ0(L2) of slope

−4/3. Then there are no integers a and b such that −4/3 6 2a/b < −1 with 0 < b < 3. �

6. |X| = 2

Part of the following is well known (see [3]).

Proposition 6.1. For all Q ∈ Hilb2 T, LIQ satisfies WIT1 and R1
1(Q) = L̂p+qIS1(Q), where

S1(Q) ∈ Hilb2 T̂.

Proof. Use sequence 3.1 with i = 1 and X = Q. Then R0
1(Q) = 0 or the sequence splits.

But HQ satisfies WIT2 whereas Φ̂2(R1
1(Q)) = 0 from the Mukai spectral sequence. Hence,

LIQ satisfies WIT1.
Now sequence 3.3 with {p} ⊂ Q gives

(6.1) 0 −→ Pq −→ R1
1(Q) −→ OD−pPp −→ 0.

This cannot split as Φ̂2(R1
1(Q)) = 0. Hence, R1

1(Q) is torsion-free and so takes the form

L̂xIQ′ with Q′ ∈ Hilb2 T̂. From 6.1, we see that x = p+ q. �

As an easy corollary of this and sequence 3.3 to give the answer for S1(X) for any X.

Corollary 6.2. If X is a 0-scheme and length at least 2 then LIX satisfies WIT1 and
R1

1(X) is torsion-free.

We can view Proposition 6.1 more explicitly as follows. Using the fact that S1(P ) = D−p
we see that S1(Q) = D−p∩D−q. If Q is reduced we can deduce that S1(Q) = {l−p,−l′−p},
where p−q = l− l′ for l, l′ ∈ DL. Furthermore, S1(Q) is reduced if and only if p−q 6∈ 2DL.

Suppose Q is not reduced and given by t ∈ PTpT. We have a degree 2 map Dp
φ−→CP 1

given by u 7→ P(TpDu). This is just the Gauss map. Then S1(Q) = φ−1[t]. So, if
−p + l ∈ φ−1[t] then S1(Q) = {−p + l,−p − l}. By Hurwitz ([5, Cor. IV.2.4]) φ has a
ramification divisor R of degree 6. In particular, as DL is irreducible, the reducible divisors
in |2`| which have a tacnode are precisely D−l+Dl, where l ∈ DL \T2. A similar argument
can be found in [11, Lemma 5.1].

Let us turn now to S2(Q).

Proposition 6.3. For all Q ∈ Hilb2 T, with Q = {p, q} (possibly p = q), R0
2(Q) is a rank 2

vector bundle and R1
2(Q) is a torsion sheaf. Then R1

2(Q) = O−p−q and R0
2(Q) = HS1(Q)L̂

−1.
In particular, R0

2(Q) is µ-semistable.

Proof. Consider {p} ⊂ Q and use sequence 3.3 with i = 2. In this case, R1
2(P ) = 0 and

so if R1
2(Q) had non-zero rank it would be isomorphic to Pq which is impossible. Hence

R1
2(Q) has rank 0 and R0

2(Q) has rank 2 since χ(L2IQ) = 2. This proves the first statement
of the proposition.

Let c1(R1
2(Q)) = b and factor the middle map of sequence 3.3 via BIX , where X is

a 0-scheme and B is a line bundle with c1(B) = −b. Then c1(R0
2(Q)) = −2` + b. But
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Proposition 3.5 implies that

µ(R0
2(Q)) = −2 + b · `/2 < −1.

In other words, b · ` < 2. On the other hand, b · ` > 0 from the definition of b. Notice also
that BIX ⊂ Pq so that

Φ̂2(B) ∼= Φ̂2(BIX) 6= 0.

This implies that b2 > 0. Then there are two cases to consider:

(1) b · ` = 1. Then the Hodge Index Theorem implies that b2 < 1/2 and so b2 = 0. Hence,

B∗ = L̂kPx, say and the torus is a product which we do not allow.

(2) b · ` = 0. Since b2 > 0 we must have b2 = 0. Hence, B is flat. So R1
2(Q) = OX . Since

H0(L2IQ) 6= 0 we can pick L ↪→ L2IQ. Let the quotient be A. Then A is supported on DL

and

R1
2(Q) ∼= Φ1(A) and Φ0(A) = R0

2(Q)/L̂∗.

If T ⊂ A is the torsion subsheaf of A then T is supported in codimension 0. On the other
hand, Lemma 2.4 implies that T = 0. Hence, A = ODLx̂, for some x̂. The short exact
sequence Px̂ → Lx̂ → A implies that

Φ0(A) = L̂∗P−x̂ and Φ1(A) = O−x̂(= OX).

Now apply det to sequence 3.1 to get Px̂ = detHQ so that x̂ = p+ q. This deals with the
two cases.

Observe that ch
(
R0

2(Q) ⊗ L̂
)

= (2, 0, 0) and since R0
2(Q) is locally-free we must have

R0
2(Q) ⊗ L̂ = HQ̃ for some Q̃ ∈ Hilb2 T̂. The Mukai spectral sequence now gives us a

surjection LH−Q̃ → L2IQ and so we see that Q̃ = S1(Q). �

7. |X| = 3

We have dealt with S1(Y ) in the preceding section. We shall first treat the collinear
case.

Proposition 7.1. If Y ⊂ Dv then S2(Y ) = Dv−
∑
Y , R1

2(Y ) is a degree 1, rank 1 torsion-

free sheaf over S2(Y ) and R0
2(Y ) = L̂∗P−v. Conversely, if R1

2(Y ) is supported on a translate
of DL and torsion-free on its support then Y is collinear.

Proof. If Y ⊂ Dv then we have a short exact sequence Lv → L2IY → A, where A is
supported on Dv. Apply Φ to obtain

0→ L̂∗P−v → R0
2(Y )→ Φ0(A)→ 0 and R1

2(Y ) ∼= Φ1(A).

We know from Lemma 2.4 that the torsion of A is supported in dimension 1 and so A is
torsion-free over Dv. Since χ(A) = 0, Riemann-Roch implies that A has degree 1 over Dv.

Conversely, if R1
2(Y ) is supported on Du then R0

1(Y ) ∼= L̂∗Pa, say and so the degree

of R1
2(Y ) is 1. On the other hand, sequence 3.2 shows that Φ̂0(R1

2(Y )) = 0 and Y is
collinear. �
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Corollary 7.2. If X ∈ Hilbn T with n > 3 then R0
2(X) has rank 1 if and only if X is

collinear. Hence, L2IX satisfies WIT1 if and only if X is not collinear.

Proof. Suppose that X is collinear. We must have rk(R0
2(X)) < 2 by Proposition 6.3. On

the other hand, if X ⊂ Du then X ⊂ Du + Dv for any v and so Φ2(X)x 6= ∅ for all x.
Hence, R0

2(X) is a line bundle. Conversely, if R0
2(X) is a line bundle then we induct on

n. If X ′ ⊂ X has length n − 1 and then sequence 3.3 implies that R0
2(X) ∼= R0

2(X ′) and

Φ̂2(R0
2(X)) → L2I−X implies that X is collinear (by induction). This holds also if n = 4

and so the induction starts. �

Theorem 7.3. Suppose that Y ∈ Hilb3T is not collinear. Then S2(Y ) ∼= Y as schemes

and R0
2(Y ) ∼= L̂−2P−ΣY .

Proof. Let Q ⊂ Y be a length 2 subscheme of Y . Then we can analyze sequence 3.3:

0 −→ R0
2(Y )

φ−→R0
2(Q) −→ Py −→ R1

2(Y )
ψ−→ O−p−q −→ 0.

Let A = coker(φ) and B = ker(ψ). We know from Proposition 3.5 and the sequence 3.3 for
Q ⊂ Y that R0

2(Y ) is a line bundle. Let r = c1(R0
2(Y )). Then ch(A) = (1,−2`−r, 2−r2/2).

Since A is torsion-free it takes the form L−2R−2IX modulo Pic0 T for some 0-scheme X.
Then 2 − r2/2 = 4 + 2r · ` + r2/2 − |X| and so |X| = 2 + 2r · ` + r2 > 0. From the
µ-semistability of R0

2(Q) (see Proposition 6.3) the fact that and µ(R0
2(Q)) = −2 we must

have r · ` < −1. On the other hand, c1(B) · ` > 0. Hence, r · ` > −4. We now treat
the values of r · ` separately. (1) r · ` = −2. The Hodge Index Theorem implies that

r2 6 2 but −2 + r2 = |X| > 0 and so r2 = 2 with |X| = 0. This implies that −r is a
principal polarization and, since −r · ` = 2, r = `. Then B is locally-free over a translate
of DL. But then c1(A) = ` and so c1(R1

2(Y )) = `. But, since r(R1
2(Y )) = 0 we have that

R1
2(Y ) is supported on a translate of DL and so by Theorem 7.1, Y must be collinear, a

contradiction.

(2) r · ` = −4. In this case, r2 > 6 and the Hodge Index Theorem implies that r2 = 6.
Then the degree of A is 0 and so, since A → Py is non-zero, A∗∗ must be flat. Hence,

R = L−2 and X ∈ Hilb2 T̂. Then B = OX and

R1
2(Y ) = OS2(Y ) with S2(Y ) ∈ Hilb3 T̂.

If we apply det to sequence 3.1 then we see that R0
2(Y ) = L−2P−p−q−y. If Y is reduced

then by repeating the argument above with each Q ⊂ Y we obtain

S2(Y ) = {−p− q,−q − y,−y − p}

and so is isomorphic to Y . To discuss the others observe that by applying det to se-
quence 3.1 we see that ∑

S2(Y ) = −2
∑

Y = −2p− 2q − 2y.

This deals with the case where the support of Y contains at least 2 points. Observe that
the argument used to eliminate case (2) also implies that |S2(Y )| ⊂

⋃
Q⊂Y |S2(Q)|. If Y is
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of type c, d or e then the union of the |S2(Q)|’s is a single point and therefore S2(Y ) is of
type c, d or e. Using the continuity of

(p, q, y) 7→ (−p− q,−q − y,−y − p)

and Y → S2(Y ) we see that Y ∼= S2(Y ). In fact, we can use the sequences

{(0, 0), (−xn, 0), (xn, 0)} −→ Yc

{(0, 0), (xn, 0), (xn, x
2
n)} −→ Yd

and {(0, 0), (0, xn), (xn, 0)} −→ Ye

as xn → 0. Since the torus is an abelian Lie group the addition of points corresponds to
addition of these tangent vectors. Then we see that S2(Y ) for each of these is in the same
configuration as xn → 0. �

Notes 7.4.
(1) This theorem is the geometrical reason why there are no rank 2 stable bundles with

Chern character (2, 0,−1). Any such bundle E must fit into a short exact sequence
L−1
x̂ → E → Lx̂+d̂ ⊗ IY for some Y ∈ Hilb3 T. But only collinear Y ’s give rise to

locally-free extensions and for these H0(E ⊗ Pẑ) 6= 0 when Y ⊂ τx̂+d̂+ẑDL. This
contradicts the stability of E.

(2) The case when Y is collinear provides us with a good example of a sheaf where we
know the Fourier transform cohomology sheaves Ri and even the boundary maps in
the Mukai spectral sequence but we cannot reconstruct the original sheaf from this
alone. Whatever Y is, the spectral sequence degenerates at the E2 level. When
Y is not collinear then R1

2(Y ) = OỸ and R0
2(Y ) = L−2P−τ and from τ together

with Ỹ we can easily reconstruct Y . But when Y is collinear R1 is a degree 1 line
bundle over Du and R0

2(Y ) = L−1P−τ−u. Then R1 is determined by its cohomology
jumping divisor in T which must be Dv. But applying H∗ to the long exact sequence

R0
2(Y ) → L̂2 → ĤY → R1

2(Y ) we see that Y ⊂ Dv and so v = τ + u. Hence, we
only have the parameters u and τ free which are not enough to determine Y .

(3) There are precisely six 0-schemes Y which are fat points of type c (so Y ∼=
specC[ε]/(ε3)) supported at e ∈ T. These points are the ramification divisor of
the Gauss map φ discussed after Corollary 6.2. To see this observe that R1

2(Yc) is
properly torsion-free precisely when LIS1(Q) satisfies the Cayley Bacharach condi-
tion, where Q ⊂ Yc is the unique length 2 subscheme. But this happens precisely
when when S1(Q) is fat. So suppS1(Q) ∈ DL ∩ T2. This tell us that the inflection
points of DL are the points of DL ∩ T2.

8. |X| = 4

From Corollary 7.2 we can deduce the following.

Proposition 8.1. L2IZ satisfies WIT1 if and only if Z is not collinear. If Z is collinear
then the rank of R0

2(Z) is 1.
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Proposition 8.2. If Z ⊂ Dv then R0
2(Z) = L̂−1P−v and R1

2(Z) = L̂Pσ−vI2v−σ, where
σ =

∑
Z.

Proof. Suppose first that Z contains some Y . Then sequence 3.3 implies that R0
2(Z) ∼=

R0
2(Y ) = L̂−1P−v. We also have a sequence 0→ Pz → R1

2(Z)→ ODv−p−q−y(1)→ 0, where
(1) denotes degree 1. This sequence cannot split so any torsion in R1

2(Z) is supported
on a proper dimension 1 subset of Dv−p−q−y. Sequence 3.3 shows that R1

2(Z) satisfies

WIT1. If Y ⊂ Z then R1
2(Z) = L̂PxIa. To compute x we apply det to sequence 3.1. This

gives x = σ − v. To compute a we apply Φ̂ to give L−v → L2I−Z → OD−x−aPa and so
−x− a = −v, so a = 2v − σ.

�

Theorem 8.3. If Z ∈ Hilb4 T is not collinear then T = R1
2(Z) is a degree 3 torsion-free

sheaf of rank 1 of a divisor D′ in |L̂2Pσ|, where σ =
∑
Z. Moreover, D′ is a Kummer

divisor if and only if Z contains a collinear length 3 subscheme. The restriction type of D′

is (2, 1) precisely when there is exactly one such collinear length 3 subscheme and is (1, 1)
if there are two.

Proof. We know that if Z is not collinear then L2IZ satisfies WIT1. T has no torsion
supported in dimension 0 since T satisfies WIT1. If Y ⊂ Z is not collinear then sequence 3.3
gives

0 −→ L̂−2P−τ −→ Pz −→ T −→ OS2(Y ) −→ 0.

The middle map factors through a degree 0 line bundle over a divisor in |L̂2Pσ|.
Suppose that Y ⊂ Z satisfies Y ⊂ Dv. Then sequence 3.3 gives

0 −→ L̂∗P−v −→ Pz −→ T −→ ODv−p−q−y(1) −→ 0.

The middle map factors through OD−v−zPz and so, T is supported on a Kummer divisor in

|L̂2Pv+z−v+p+q+y| = |L̂2Pσ|. Conversely, suppose that T is supported on a Kummer divisor
Dα + Dβ. Notice that it is not possible for T to be reducible since Φ1(T ) = L2I−Z . We
need to understand the possible restriction types of T to Di. Since T does not satisfy
IT1 there must be some X ∈ Hilb5 T̂ and x ∈ T such that T = L2PxIX/O. Let Ti be
the restriction of T to Di with degree ni and let T ′i = ker(T → Ti). Then χ(T ′i ) = −ni.
Since Φ0(T ) = 0 and Φ1(T ) is torsion-free we must have χ(T ′i ) < 0 and so ni > 1. If T is
locally-free over D1 +D2 then n2−i = 3−ni and so ni 6 2. Proposition 7.1 implies that, if
T is not locally-free then the restriction type (n1, n2) = (1, 1). This implies that the only
possible restriction types are (2, 1), (1, 2) and (1, 1). The first two cases correspond to a
single collinear Y ⊂ Z and the latter to two different collinear Y ⊂ Z. �

Remark 8.4. We can also see part of Theorem 8.3 by observing that χ(L2IZ) = 0 and so

S2(Z) is supported on a divisor from L̂2. We can be more precise about this by applying

Φ to the structure sequence of Z. This implies that det Φ(L2IZ)∗ ∼= L̂2Pσ.
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9. |X| = 5

The case |X| = 5 is a curious one because R1
2(X) can have torsion reflecting the structure

of X.

Remark 9.1. Since D ·Dx = 4 for D ∈ |2`| we see that if X is collinear then S(X) = ∅.

Theorem 9.2. Suppose that W ∈ Hilb5 T is not collinear. Let S be the torsion subsheaf
of R1

2(W ) and let F = R1
2(W )/S. Then S satisfies one of the following.

(1) If S = 0 then R1
2(W ) = L̂2PaIW ′ for some W ′ ∈ Hilb5 T̂. If S is not zero then it

must be a torsion-free sheaf of rank 1 supported on a divisor in |L̂Px| for some x.
(2) If S is supported on a translate of DL then it must have degree 0 or −1.
(3) S is a degree 0 line bundle on a translate of DL if and only if W contains a length

4 collinear subscheme.
(4) S is a degree −1 line bundle on a translate of DL if and only if every length 4

subscheme Z ⊂ W contains a unique collinear length three subscheme but is not
itself collinear.

Proof. Recall from Corollary 7.2 that L2IW satisfies WIT1. If R1
2(W ) is torsion-free then

from ch(R1
2(W )) = (1, 2L,−1) we must have R1

2(W ) ∼= L̂2PaIW ′ for some W ′ ∈ Hilb5 T̂.

If Ox ⊂ R1
2(W ) then this contradicts the fact that Φ̂0(R1

2(W )) = 0. This implies that
the torsion of R1

2(W ) is supported on a divisor and is torsion-free over that divisor. This
proves part (1).

If we apply sequence 3.3 to Z ⊂ X then we obtain

0 −→ R0
2(Z) −→ Pw −→ R1

2(W ) −→ R1
2(Z) −→ 0.

If Z is collinear then R0
2(Z) ∼= L̂∗Pv and R1

2(Z) is torsion-free. This implies that S =
Pw/L

∗Pv = ODv−wPw. If Z is not collinear we have a commuting diagram with exact rows
and columns:

(9.1)

0

��

0

��
S

��

S

��

0 // Pw // R1
2(W ) //

��

R1
2(Z) //

��

0

0 // Pw // A //

��

B //

��

0

0 0

The bottom sequence implies that B is torsion-free supported on a divisor. In the case we
are looking at, we have R1

2(Z) = T , a torsion-free sheaf of rank 1 supported on D ∈ |L2Pa|
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for some a. We cannot have S = T since that would imply that A = Pw contradicting the
fact that R1

2(W ) satisfies WIT1. Since B is torsion-free on a divisor we must have that S
is supported on Dx ⊂ D. This implies that D is reducible and so Z contains a collinear
Y . Moreover, the restriction type of T is (2, 1) or (1, 1) and so the degree of S is either 0
or −1. This proves (2) and part of (3).

To complete (3) suppose that S is degree 0 on Dx. Then Ŝ ∼= LPyIc for some x and c

and R1
2(W )/S ∼= L̂PaIb. So if we apply Φ̂ to

0 −→ S −→ R0
2(W ) −→ L̂PaIb −→ 0

we see that LPyIc ⊂ L2I−W . This implies that W \ {p} ∈ Hilb4 T is collinear.
We turn now to (4). If the degree of S is −1 then no Z ⊂ W is collinear and the

restriction type of R1
2(Z) is (2, 1). So each length 4 subscheme Z ⊂ W has a unique

collinear length 3 subscheme by Theorem 8.3. Conversely, suppose L2IW it WIT1 and its
transform R1

2(W ) is contained in a short exact sequence

0 −→ S −→ R1
2(W ) −→ L̂x −→ 0.

Note that dim Ext1(L̂x, S) = 4 and so there is a 9 dimensional family of such extensions
R. These extensions all satisfy WIT1 and the Fourier transform is generically torsion-free
as both Ŝ and Φ̂0(L̂x) are locally-free, and any torsion in Φ̂(R) must be a quotient Pŷ/L

−1
x

coming from a lift of L−1
x → Ŝ. But the generic such map does not lift. �

Notes 9.3.
(1) It is easy to see that if R1

2(W ) is torsion-free then the factor of Px in it is given by
PΣW .

(2) One might conjecture that S2(W ) ∼= W as schemes when R1
2(W ) is torsion-free. In

fact, this need not be the case. As an example consider a generic divisor D ∈ |2`|
and Dx + D−x ∈ |2`| also generic. Then we can arrange that D intersects Dx

and D−x transversely and that D ∩ Dx ∩ D−x = ∅. Now pick Y ⊂ D ∩ Dx and
Q ⊂ D∩D−x and let W = Y ∪Q. Note that W is not collinear because Y is collinear
and Q 6⊂ Dx. Then the line spanned by D and Dx + D−x in |2`| is contained in

Φ(W )0. Then the dimension of the fibre of R1
2(W ) ∼= L̂PxIW ′ at 0 is 3. This implies

that W ′ is not reduced at 0 and so cannot be isomorphic to W which is simple by
construction.

10. General X

For |X| > 5 we can prove that when X is not collinear then it has a torsion-free Fourier-
Mukai transform if and only if it does not contain a collinear colength 1 subscheme. The
hard work goes into proving the |X| = 6 case and then the general case follows by induction.

Theorem 10.1. Let X ⊂ T be a 0-dimensional subscheme of an irreducible ppas (T, `) of
length |X| > 6. Suppose that X is not collinear. Then R1

2(X) admits torsion S if and only
if X contains X ′, a collinear length |X| − 1 subscheme. Moreover, in that case S must be
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a degree 0 line bundle over some translate of DL. In particular, for a non-collinear length
5 subscheme W ⊂ X we have that the torsion subsheaf of R1

2(W ) has degree 0.

Proof. Observe that L2IX satisfies WIT1 as X is not collinear. This follows from Corol-
lary 7.2. If X contains a collinear colength 1 subscheme X ′ then we have an inclusion
Lx̂Ip ⊂ L2IX . This implies that R1

1({p}) ⊂ R1
2(X) and so R1

2(X) admits torsion.
Conversely, suppose that R1

2(X) contains torsion S. Arguing as in the first paragraph
of the proof of Theorem 9.2, we can deduce that S must be supported on a divisor and
be torsion-free with rank one over that divisor. We now induct on |X|. Consider first the
case |X| = 6. Suppose that we have a non-collinear length 5 subscheme W ⊂ X. Then
from sequence 3.3 we see that S ⊂ R1

2(W ). Then Theorem 9.2 implies that χ(S) 6 −1.
Let F = R1

2(X)/S. Then
R1

2(W )/S = F/Px,

where Px = ker(R1
2(X) → R1

2(W )). Let G be the torsion subsheaf of R1
2(W )/S (regarded

as a sheaf on its support so that G is supported at points). Then G ⊂ F/Px. But
Ext1(G,Px) = 0 and so this map lifts to a map G → F . But F is torsion-free (as an
OT-module) and this implies that G = 0. In other words, S is the torsion subsheaf of
R1

2(W ) as well. Then Theorem 9.2 implies that χ(S) = −1 or −2.
Suppose that χ(S) = −2. Then F is a rank two vector bundle and F/Px = R1

2(W )/S =

L̂y for some y. This implies that Φ̂2(F ) = O−x — apply Φ̂ to the short exact sequence

0 −→ Px −→ F −→ L̂y −→ 0.

But this contradicts the fact that R1
2(W ) satisfies WIT1.

Then χ(S) = −1 and we have a short exact sequence

0 −→ Px −→ F −→ L̂yIp −→ 0.

This implies that Φ̂0(F ) = 0 and so F satisfies WIT1. We then have a short exact sequence

0 −→ Ŝ −→ L2I−X −→ F̂ −→ 0.

But Ŝ ∼= Lx̂Ip for some x̂ and p and so X \ {−p} is collinear. This proves the theorem for
the case |X| = 6.

Now suppose that |X| > 6 and we have proved the theorem for all 0-schemes of length
|X|− 1 > 6. We suppose that R1

2(X) contains torsion S and suppose that a length |X|− 1
subscheme X ′ ⊂ X is not collinear. Then S ⊂ R1

2(X ′) and the induction hypothesis implies
that there is a length |X ′| − 1 subscheme X ′′ ⊂ X ′ which is collinear. Let Q = X \ X ′′.
then we have a short exact sequence

(10.1) 0 −→ Lx̂IQ −→ L2IX −→ A −→ 0

for some x̂ and line bundle A supported on Dx̂. Note that χ(A) = 5− |X|.
Suppose, for a contradiction, that A is locally-free on its support. Then, since deg(A) < 0

we must have that A satisfies IT1. Then applying Φ to 10.1 we have a short exact sequence

0 −→ L̂xIQ′ −→ R1
2(X) −→ Â −→ 0,

for some x. But R1
2(X) admits torsion. This is a contradiction.
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So OX̃ ⊂ A. Let Ã = A/OX̃ be locally-free on its support. Then χ(Ã) < χ(A). But

there is a surjection L2IX → Ã and its kernel is torsion-free of rank 1 with singularity set
strictly contained in Q. This implies that it is the ideal sheaf of a single point {p} and we
have LxIp ⊂ L2IX .

We now see that S is either 0 or has degree 0 over a translate of DL. This means that
if W ⊂ X is non-collinear then S ⊂ R1

2(W ) and so the degree of the torsion subsheaf of
R1

2(W ) must be greater or equal to 0. �

We know that D ·D′ = 8 for D,D′ ∈ |2`|. In particular, this means that there must exist

X ∈ Hilb8 T such that S2(X) ∈ Hilb2 T̂. We know from Theorem 9.2 that when R1
2(W ) is

torsion-free then S2(W ) ∈ Hilb5 T̂. We would now like to compute the length of S2(X) for
|X| > 6. This is answered in the following theorem.

Theorem 10.2. Let X ∈ Hilbn T with n > 6. Suppose that X is not collinear and that
R1

2(X) is torsion-free. Then

length
(
sing(R1

2(X))
)

= length(S2(X)) 6 3.

Furthermore, if |X| > 7 then length(S2(X)) 6 2.

Proof. Observe first that

(10.2) Φ̂2(R1
2(X)∗∗) = 0.

This follows by applying Φ̂ to

0 −→ R1
2(X) −→ R1

2(X)∗∗ −→ OS2(X) −→ 0.

Let |X| = 6. Consider W ⊂ X. By Theorem 10.1, we know that W cannot be collinear.
Suppose first that R1

2(W ) is torsion-free. Without loss of generality, assume that R1
2(W ) =

L̂2IW ′ . Then we have the following 3 by 3 diagram:

(10.3)

0

��

0

��
0 // Pv // R1

2(X) //

��

L2IW ′

��

// 0

0 // Pv // R1
2(X)∗∗

��

// L2IW ′\S2(X)

��

// 0

OS2(X)

��

OS2(X)

��
0 0

The middle horizontal sequence cannot split by 10.2. But

H1(L2IW ′\S2(X)) = 0 if |W \ S2(X)| 6 1.
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So 5− length(S2(X)) > 2.
Now suppose that R1

2(W ) has non-zero torsion subsheaf S. By Theorem 9.2 and the last
part of Theorem 10.1 we have

R1
2(W )/S ∼= L̂xIp,

for some x and p. Then

ker(R1
2(X)→ L̂xIp) = L̂yIQ, Q ∈ Hilb2 T̂

and so we have Q ⊂ S2(X) ⊂ Q ∪ {p} and we conclude that

2 6 length(S2(X)) 6 3.

This completes the proof of the first part of the theorem.
Suppose now that |X| = 7. We may assume as before that X contains a non-collinear

length 6 subscheme X ′. By Theorem 10.1 we have two cases to consider: either R1
2(X ′) is

torsion-free or it contains a torsion sheaf S with E = R1
2(X ′)/S a torsion-free sheaf with

Chern character (2, `, 0).
If R1

2(X ′) is torsion-free then we can argue as before. Let F = R1
2(X)∗∗/Px, where

Px = ker
(
R1

2(X) → R1
2(X ′)

)
. Then ch(F ⊗ L∗) = (2, 0, 0). On the other hand, F is

locally-free and so F must be a homogeneous bundle. Therefore, Φ̂2(R1
2(X)∗∗) 6= 0. This

implies that Φ̂2(R1
2(X)) 6= 0; a contradiction.

On the other hand, suppose that R1
2(X ′) admits torsion. We now need a lemma:

Lemma 10.3. If X ′ ∈ Hilb6 T is not-collinear and R1
2(X ′) admits torsion S then E =

R1
2(X ′)/S is locally-free.

Proof. As above, if W ⊂ X ′ is not collinear then R1
2(W )/torsion = L̂xIp and we have a

short exact sequence

(10.4) 0 −→ Px −→ E −→ L̂xIp −→ 0.

Suppose that E is not locally-free then we have the following 3 by 3 diagram:

0

��

0

��

0 // Py // E

��

// L̂xIp //

��

0

0 // Py // E∗∗ //

��

Lx //

��

0

Op

��

Op

��
0 0
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The middle horizontal sequence is split because L̂−1 satisfies IT2 but this implies that
there is a non-zero map E → Px which contradicts the fact that Φ̂2(E) = 0. Alternatively,
sequence 10.4 cannot be split and so {p} satisfied the Cayley-Bacharach condition with

respect to |L̂|.
On the other hand, if all W ⊂ X ′ are collinear then we have E ∼= R1

2(W ) and so E is
locally-free by Corollary 7.2. �

Returning to the proof of the theorem, we now have a short exact sequence

0 −→ L̂zIQ −→ R1
2(X) −→ E −→ 0

for some z and Q ∈ Hilb2 T̂ and locally-free sheaf E. This implies that

length
(
sing(R1

2(X))
)

= 2.

This completes the proof of the theorem. �

Corollary 10.4. If R1
2(X) is not torsion-free for some X ∈ Hilbn T, n > 6, then Φ2(X)x̂ ⊂

Ksx̂(T) for all x̂ ∈ S2(X).

Proof. By Theorem 10.1 we know that X contains a collinear length n − 1 subscheme
X ′ ⊂ Dy. Let X = X ′ ∪ {x}. Then X ⊂ Dy + Dz for z ∈ S1({x}). Let the torsion
subsheaf of R1

2(X) be S as usual. Note that S2(X) equals Dŷ as a scheme for some ŷ. This
is because R1

2(X)/S is locally-free. This means that

Φ2(X) =
{
Dy +D−z | z ∈ S1({x})

}
as required �

11. Stability Properties of R1
i (X)

We now turn to stability properties of R1
i (X) for i = 1 and i = 2. The following has

been proved before (Mukai [11, Thm 0.3] and Yoshioka [13, Prop 3.5]). We give a direct
and brief proof in the spirit of this paper.

Theorem 11.1. If |X| > 2 then R1
1(X) is µ-stable.

Proof. We induct on the length |X|. Observe that the |X| = 2 case is trivial because
R1

1(X) is rank 1 torsion-free and so µ-stable. Now assume that |X| > 2. Pick X ′ ⊂ X of
length |X| − 1 and let X = X ′ ∪ {x} as schemes. Then we have a short exact sequence,

0→ Px → R1
1(X)→ R1

1(X ′)→ 0.

Now that slope of R1
1(X) is 2/(|X| − 1) and µ(R1

1(X ′)) = 2/(|X| − 2). Suppose M is
maximally destabilizing. Then the map M → R1

1(X) cannot lift to Px and so we have a
non-trivial map M → R1

1(X ′). If r(M) < |X|−2 then the induction hypothesis implies that
d(M) < 2 which is impossible. On the other hand, if r(M) = |X|−2, we have that the map
M → R1

1(X ′) must inject and so χ(M) 6 −1. But ch(R1
1(X)/M) = (1, 0,−1−χ(M)) and,

by the maximality of the destabilizing sheaf, R1
1(X)/M is torsion-free and so χ(M) = −1.

But that is a contradiction as M would then split the original short exact sequence. �
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Conversely, given a µ-stable sheaf E of Chern character (r, `,−1) with r > 2 we see that
it cannot be IT1 and it must admit an injection from a homogeneous bundle of rank r− 1.
The quotient must take the form LxIQ and so E must be WIT1 with transform given by
LyIX for some 0-scheme X of length r + 1. So we recover:

Corollary 11.2. [11, (Thm 0.3 and Cor 5.5)] The moduli space M(r, `,−1) of µ-stable

sheaves is compact and is biholomorphic to Hilbr+1 T × T̂ for r > 2. The non-locally free
boundary has transform given by a collinear 0-scheme.

We now turn to the case i = 2. The interesting cases are |X| > 6. Observe first that if
X is collinear then R0

2(X) = L−1Py and R1
2(X) has rank |X| − 3 and degree 2. It is an

easy induction to show that R1
2(X) must always be µ-stable and locally-free.

We now look in detail at |X| = 6. This is also treated, from the point of view of moduli
spaces, in moduli spaces, in [8] (see, in particular, Theorem 4.10).

Theorem 11.3. Let X ∈ Hilb6 T. Suppose that X is not collinear.

(1) If R1
2(X) is locally-free then R1

2(X) is µ-stable.
(2) If R1

2(X) is torsion-free then it is Gieseker stable.
(a) X contains a collinear length 4 subscheme if and only if R1

2(X) is µ-destabilized
by LxIQ for some x and Q. Then sing(R1

2(X)| = 2.
(b) Otherwise R1

2(X) may be destabilized by LxIY , for some x and Y . Then
| sing(R1

2(X)| = 3.
(3) If R1

2(X) admits torsion S then R1
2(X)/S is µ-stable.

Proof. Suppose first that R1
2(X) is torsion-free. Then by Theorem 10.1 we have a non-

collinear length 5 subscheme W ⊂ X and a short exact sequence from sequence 3.3

0 −→ Px −→ R1
2(X) −→ R1

2(W ) −→ 0

Note that µ(R1
2(X)) = 2. Suppose that M ⊂ R1

2(X) is a rank 1 destabilizing subsheaf.
Then M takes the form LnyIX′ for some n > 0 and 0-scheme X ′. Then the composite to

R1
2(W ) = L2

zIW ′ must inject. Hence, Px → R1
2(X)/M also injects and so n 6 2. If n = 2

then R1
2(X)/M ∼= Px and so |X ′| = 3. But W ⊆ X ′ which is a contradiction. So we are

left with the case n = 1. We may assume the quotient R1
2(X)/M is torsion-free and so

takes the form LwIX′′ . The Euler characters now tell us that |X ′| + |X ′′| = 3. If |X ′| = 0
then M is IT0 and this contradicts the fact that R1

2(X) is WIT1. Otherwise, R1
2(X) must

have a non-zero singularity set (containing X ′). This establishes the first part.

If |X ′| = 1 then the transform of M → R1
2(X) gives a non-zero map M̂ → L2IX . But

this is impossible as M̂ is a torsion sheaf. Hence |X ′| > 1 and so R1
2(X) is Gieseker stable

(as χ(M)/1 6 −1 while χ(R1
2(X)) = −1/2).

Observe that X has a collinear length 4 subscheme if and only if we have LyIQ′ → L2IX

for some y and Q′. This happens if and only if there is an injection L̂yIQ′ → R1
2(X). But

L̂yIQ′ = LxIQ for some x and Q.
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Now assume R1
2(X) has torsion sheaf T and let E = R1

2(X)/T . We have already seen
that E must be locally-free. Then we have a short exact sequence

0→ Py → E → LxIp → 0

for points x, y and p. But now any µ-destabilising bundle would have to have rank 1 and
slope at least 2. But then it cannot map to either LxIp or to Py. This establishes the final
part. �

12. Applications

We can deduce the following result (which can also be deduced from classical projective
geometry)

Theorem 12.1. Suppose D′ is a genus five curve in an irreducible principally polarized
abelian variety (T, `). If D′ is smooth then D′ has no g1

3. There are (singular) irreducible
divisors D′ ∈ |2`| which admit a 1-dimensional family of g1

3’s.

Proof. Observe first that if T is a degree 3 line bundle over a smooth divisor D′ ∈ |2`| and
if T is the restriction of Lx̂Ip then T has no g1

3. This is because the exact sequence

0 −→ L∗Pŷ −→ Lx̂Ip −→ T −→ 0

shows that H0(T ) ∼= H0(Lx̂Ip) which has dimension 0 or 1. This means that if D′ is not
reducible and admits a g1

3 then that g1
3 must satisfy WIT1 with transform L2Px̂IZ for some

Z ∈ Hilb4 T.
Observe that

dim(H0(T )) = dim
(
(L2Px̂IZ)(0)

)
,

where A(x) denotes the fibre of a sheaf A at x. Then the dimension of H0(T ) is greater than
1 only if (IZ)0 is not a regular ideal. This can only happen if Z contains either Yd or Ye.
But by Theorem 7.3 we see that S2(Y ) has type d or e. On the other hand, S2(Y ) ⊂ S2(Z)
and so S2(Z) must be singular. If we take the example

Z ∼= C[ε, η]/(ε3, η2, εη)

then we see that Z ⊂ S2(Z) by Theorem 7.3. The subset of Hilb4 T × T̂ of such Z is

6-dimensional, whereas the space of singular divisors in PL̂2 is at most 4-dimensional.
This implies that dim(W 1

3 ) > 1 for such S2(Z). On the other hand, such S2(Z) cannot
be generically reducible since then every Yc ⊂ T would be collinear which is impossible
because it would tell us that Yc is, generically, contained in two different translates of DL.
This contradicts Proposition 7.1. �

We can also use our results to understand the set of singular divisors in |2`|. Recall that
T2 denotes the 2-torsion points of T.

Theorem 12.2. Let Σx denote the linear system of divisors in |2`| which pass through x.

(1) If x 6∈ T2 then the only singular divisors in Σx are Kummer divisors.
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(2) If x ∈ T2 then any divisor D in Σx is singular. If D is not a Kummer divisor
then its singularity set consists of at most 3 nodes. There are 120 (skew) lines of
divisors with 2 nodes and each line contains fourteen points whose corresponding
divisors have exactly 3 nodes.

In particular, the locus of singular divisors consists of Ks(T) union all sixteen singular
planes in P3 = |2`|.

Proof. Observe that if Q is a length 2 subscheme supported at x then S2(Q) = {−2x}. (1)
If x 6∈ T2 then h0(L2IQ) = 1. Let Q1 and Q2 be two distinct length 2 subschemes supported
at x and suppose that Φ2(Q1)0∩Φ2(Q2)0 is 1 dimensional. Then this holds for all pairs Q1

and Q2 since each divisor in the intersection has a singularity at x. But then such singular
divisors must also contain Y = Q1 ∪x Q2 for some Q1 6= Q2. But S2(Y ) = {−2x} and so
Φ2(Y )0 consists of a single divisor. This is a contradiction and shows that there is at most
1 singular divisor in Σx with a singularity at x. But for any x we can find y such that
Dy +D−y has a node at x.

(2) If x ∈ T2 then Φ2(Q)0 = Σx and so every divisor in Σx is singular at x. Note that
there is a line of Kummer divisors in Σx which have a tacnode or are multiple. The sets
Σx correspond to singular planes in P3. These intersect along lines and any three of them
intersect in a single point. In fact the non-Kummer points correspond to Göpel tetrahedra
(see [3]). Since there are no degenerate Göpel tetrahedra, we see that these points are all
distinct (so the divisors cannot have more than 4 singular points unless they are multiple
Kummer divisors.

It remains to prove that if a divisor D ∈ Σx is not a Kummer divisor then it has
only nodes for singularities. Observe now that Φ2(Y )0 has dimension 1 for all length 3 Y
supported at x. Pick a regular Y and D ∈ Σx \ Φ2(Y )0. Let Y ′ be a length 3 subscheme
supported at x and contained in D. Then Φ2(Y )0 ∩ Φ2(Y ′)0 = {D}. The space of pairs
of regular length 3 subschemes supported at x is given by S2P1 ∼= P2 and the above
observation furnishes us with a map P2 \ ∆ → Σx

∼= P2, where ∆ denotes the diagonal.
This must be finite since otherwise there would be divisor containing all regular length 3
subschemes supported at x and this is impossible. On the other hand the map has degree
one since it is given by the intersection of hypersurfaces and so it must be the identity. The
extension over the diagonal maps to the Kummers and so we see that the non-Kummer
divisors have a simple node at x. �

Remark 12.3. We can also see directly that there is at most one divisor in |2`| which is
singular at three given distinct points because for a generic choice of length 6 subscheme
X supported at the three points h1(L2IX) 6 1 because X does not contain collinear length
5 subschemes and is not, itself, collinear.

Appendix

We will now summarize the computations of the Fourier-Mukai transforms derived in
section 5–10.
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X S1(X) S2(X) R1
1 R0

2 R1
2 where

P Dp ∅ PpOD−p (Note 1) 0

Q {−p+l,−p−l′} {−p− q} IS1L̂ OS2 p− q = l − l′

Y ∅ ∼= Y L̂−2P−τ OS2 τ =
∑
Y

{v} Du L̂−1
−v (Note 2) u = v − τ

Z ∅ D′ 0 (Note 3) D′ ∈ |L̂2Pσ|
{v} {2v − σ} L̂−1

−v L̂σ−vI2v−σ σ =
∑
Z

(1) R1
2(P ) is a rank 3 µ-stable vector bundle.

(2) R1
2(Y ) is a degree 1 line bundle over Du.

(3) R1
2(Z) is a degree 3 line bundle over D′

X S1(X) S2(X) R0
2 R1

2 where

W ∅ W ′ 0 L̂2PαIW ′ W ′ ∈ Hilb5 T̂
∅ Du 0 T n L̂x̂Iy collinear Z ⊂ W , deg(T ) = 0 on Dû

∅ Du 0 T n L̂x̂ ∃x, ∀Z ⊂ W , ∃Y ⊂ Z, Y ⊂ Dx

deg(T ) = −1 on Dû

{v} ∅ L̂−1
v (Note 1)

X ∅ ∅ 0 (Note 2) |X| > 6

∅ {u} 0 (Note 3) |X| > 6

∅ {u, v} 0 (Note 3) 6 6 |X| 6 8

∅ {u, v, z} 0 (Note 3) |X| = 6

∅ Du 0 T n E |X| > 6, collinear X ′ ⊂ X

colength 1, deg(T ) = 0 on Du

{v} ∅ L̂−1
v (Note 4) |X| > 5

(1) R1
2(W ) is a rank 2 µ-stable vector bundle over T̂ with Chern character (2, `, 0).

(2) R1
2(X) is a vector bundle over T̂ with Chern character (|X| − 4, 2`,−1).

(3) R1
2(X) is a torsion-free sheaf over T̂ with Chern character (|X| − 4, 2`,−1) and

singularity set equal to S2(X). This is µ-semistable when |X| = 6.

(4) R1
2(X) is a vector bundle over T̂ with Chern character (|X| − 3, `, 0).
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