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Convergence in law for

the branching random walk seen from its tip

by
Thomas Madaule
Université Paris XII1

Abstract. Considering a critical branching random walk on the real line.
In a recent paper, Aidekon [3] developed a powerful method to obtain the
convergence in law of its minimum after a log-factor normalization. By
an adaptation of this method, we show that the point process formed by
the branching random walk and its minimum converge in law to a Poisson
point process colored by a certain point process. This result, confirming a
conjecture of Brunet and Derrida [10], can be viewed as a discrete analog
of the corresponding results for the branching brownian motion, previously
established by Arguin et al. [5] [6] and Aidekon et al. [2].

1 Introduction

We consider a branching random walk on the real line R. Initially, a single particle sits at
the origin. Its children together with their displacements, form a point process L on R and
the first generation of the branching random walk. These children have children of their own
which form the second generation, and behave —relative to their respective birth positions—
like independent copies of the same point process L. And so on.

Denote by T the genealogical tree of the particles in the branching random walk, then T
is a Galton-Watson tree. We write |z| = n if a particle z is in the n-th generation, and denote
its position by V'(z). The collection of positions (V(z), z € T) is our branching random walk.

The study of the minimal position M, := min|;—, V(2) has attracted many recent in-
terests. The law of large numbers for the speed of the minimum goes back to the works of
Hammersly [14], Kingman [I8] and Biggins [7]. The second order was recently found sepa-
rately by Hu and Shi [I5], and Addario-Berry and Reed [1]. In [I], the authors computed the
expectation of M,, up to O(1), and showed, under suitable assumptions, that the sequence of

1


http://arxiv.org/abs/1107.2543v1

the minimum is tight around its mean. Through recursive equations, Bramson and Zeitouni
[9] obtained the tightness of M,, around its median, assuming some hypotheses on the decay
of the tail distribution. A definite response was recently given by Aidékon [3], where he
proved the convergence of the minimum M,, centered around %logn for the general class of
critical branching random walks.

One problem of great interest in the study of branching random walk is to characterize
its behaviour seen from the minimal position, namely, the asymptotic of the point process
formed by {V(z2) — M,,,|z| = n} as n — oo. The corresponding problem for the branching
Brownian motion (the continuous analogue of branching random walk) was solved very
recently by Arguin, Bovier, Kistler [5], [6] and paralleling by Aidékon, Beresticky, Brunet,
Shi [2].

The aim of this paper is to establish analogue results for branching random walk. Our
main result, resumed by Theorem 1.1, will give the existence of the limiting point process
together with a partial description, which also confirms the prediction in Brunet and Derrida
[11]. Our method, largely inspired from Aidékon [3], consists of an analysis of the Laplace
transform of the point process.

Following [3], we assume

(1.1) E>1>1, E|> e'@l=1 E|Y V(e"® =0

|z[=1 |2=1 |z[=1

Every branching random walk satisfying mild assumptions can be reduced to this case by
some renormalization. We refer to Appendix A in [16] for a precise discussion. Notice that

we allow E

> 1] = oo, and even P (Z 1= oo). The couple (M,, W, 3) is the most
|z|=1 |z|=1
often encountered random variables in our work, with

M, :=min{V(z), || =n}, W= e g>1
|z|=n

We also need the derivative martingale

(1.2) Zy=> V(z)eV®,  Z,=lm2Z,
n—oo
|z|=n

By [8] and [3] we know that Z., exists almost surely and is strictly positive on the set of non
extinction of T. As in the continuous case [2], we introduce the point process formed by the
particles of the rescaled branching random walk:

|z|=
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We will show the existence of a limiting point process as n — oo, then we deduce results on
p, = > Ov(z)-M,}, > 1. Writing for y € RU {oo}, y; := max(y,0), we introduce the

|z]=n
random variables

(1.3) Xi=Y eV X:=> V(z)e "

|z]=1 |z|=1

We finally assume that the distribution of L is non-lattice and

(1.4) E|) V()% "?| <co.  E|X(log, (X + X))} <o

|z|=1
The main result of this paper is the following theorem:

Theorem 1.1 Asn — oo, on the set of non-extinction, the pair (p,, Z,) converges jointly
in distribution to (Jeo, Zeo) Where o and Zy, are independent and pio, is obtained as follows.

(i) Define P a Poisson process on R, with intensity measure \e*dx for some (implicit)
positive real constant \.

(ii)For each atom x of P, we attach a point process x + D) where D& are independent
copies of a certain point process D.

(ii1) o is the superposition of all the point processes x + D@, d.e, piog :={x+y : 2 €
P,y € D@},

Corollary 1.2 Seen from the leftmost particle, the point process ., formed by the particles
{V(u) = My, |u| = n} converges in distribution to the point process pl, obtained by replacing
the Poisson point process P in step (i) above by P’ described in step (i)’ below:

(i)’Let e be a standard exponential random variable. Conditionally on e, Define P to be
a Poisson point process on R, with intensity measure ee*lr, dx to which we add an atom
mn 0.

The decoration point process D remains the same.

These two results imitate the corresponding results for the branching Brownian motion,
in particular Theorem 2.1 and Corollary 2.2 of Aidékon, Beresticky, Brunet and Shi [2] (and
also that of [5] and [6]). However, we do not adopt the same method as in [2] because, firstly
the spine decomposition for the branching random walk leads to an use of Palm measures,
which is much complicated than the case of branching brownian motion, and secondly, the
path decomposition for a random walk is also less comfortable than the Brownian case.
Instead, we shall imitate the fine analysis of Aidékon [3] to analyse the Laplace transform of
in. More precisely, the main step in the proof of Theorem [L.T]is to establish the convergence
in law of (n2%1W, g, ...,n2""W, 5 ) for any k > 1 and any B > ... > f > 1. A crucial
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observation, inspired by [3], is that this convergence in law can be reduced to the study of its
tail behaviour. From this analysis, we can prove the convergence in law stated in Theorem
.1, and as a by-product, we also get some expression for the Laplace transform of the
limiting point process. The later might have some independent interest for further analysis
of fieo-

The paper is organized as follows. The Section 2 contains the main estimates on the tail
of distribution of (n2%W, 4, ...,n2%W, 5 ) for any any k > 1 and any § > ... > 8 > 1,
from which we establish the convergence of some Laplace transforms of p,, (Theorem [24] )
and give the proof of Theorem [L.I The Section 3 is devoted to the proof Theorem 2.4] by
admitting two preliminary estimates Proposition 2.1 and Finally, we prove in Section 4
and 5 contain respectively Proposition 2.1l and 2.2

2 Main steps of the proof of theorem 2.1

For shorten the statements we introduce some notations:

W, = n2PW, 4, fin(B) = nib Z oAV (2)Hog Zox)

ﬁn( ) _ ’/LZB Z e~ a+V(z -HogZoo)
|z|=n
with @ € R,n > 1,3 > 1. Remark that fi,(8) is also equal to [, e P*du,(z). In a
general context many quantities with tilde are associated with the natural normalization
n3b except for some obvious abuse of notation: For example in the sequel we Wlll denote by
s1mphﬁcat10n W |u‘ g = n2BW —ju,8- In a similar spirit we write M, = M, — 3 logn and
M, ey = Mp_jy — 3logn for some vertex |u| < n (we shall recall these notatlons to avoid
any confusion). At last we often encounter notations 8, 8 and y for respectively (41, ..., Ix),
(B1, .., Br) and (y1, ..., yx). The lengths of the vectors will be clear in the context.

2.1 Main preliminary results

In this section we state some technical results (deferring their proofs to the next sections)
which will lead to the proof of Theorem [Tl

Proposition 2.1 There exists c; > 0, a« > 0 and N > 0 such that for anyn > N, 7 >0
and z € [1,loglogn|

(2.1) PW,s>e" Myelj—z—1,j—x]) < crae e .

In particular we see that P(/an,g > %) < cywe™ for any n > N (This Proposition, purely
technical requires a proof very similar to the following. For this reason it will be found in
the appendix.)



Proposition 2.2 There exists ¢o € Ry (see ({{.9) for a precision) such that for any k > 0
there exists a function

(1,00)% x R¥ — R
(8.6) — x(8.9)

which satisfies, VK, € > 0 there exists A(K,€) > 0 such that ¥(y, ..., 0;) € [-K, K]* 3N (e, )
such that ¥n > N, x € [A, A + loglogn|

(2.2) X

<e

“p (ﬂ{m > eﬁjw—é»}) — a(.5)

T
J<k

Moreover function x satisfies

(i) The restriction & — x(3,9) is continuous,

(ii)For any v € R, § € R¥, B € (1,00)%, x(B,8 + ) = e“x(B,8) with § + = =
(51 +x, .., 5k + ZL’),

(iii)For any B € (0,1)* there exists c3 > 0 such that x(3,6) < c3 ':ghir;}e‘;i, Vé € R,

The Proposition yields an important consequence:

Corollary 2.3 If WS; and Wf:é are the normalized partition functions of two independent
branching random walks starting respectively from a and b real then, VK, e > 0 there exists
A(K,€) > 0 such that V(A,dy,...,0¢) € [—K,K]F*1 IN(e, A, 8) such that Vn > N,z €
[A, A+ loglogn]

<e

e’ Irsa fps oy a
;P (ﬂ{Wn:é + WTI:Z > eﬁj( 53)}) _ C()(e + eb)X(,B, 5)

J<k

The key step in the proof of Theorem [I.1lis the following result:

Theorem 2.4 (i)VI € N,a € R, there exists a function F : (B34, ..., 81,01, ...,0) € (1,00) x
Ry — Ry (see (3.2) for an explicit formula) such that éiI%F(ﬁ, 0) =0, and
_>

1
. =22 0:1n(B:)
(2.3) lim E (e =1 e_az“’]l{zoo>o}> = e FPOE (e_azm]l{zooo}) :

n—oo

In particular, (Li,(B1), ..., @n(B1)) converge in law, when n — oo to some random variable
(Jtoo(B1), -y Hoo (1)) independent of Z., conditionally on {Z., > 0}.

(ii) If (a,b) € R? respect e* +e* = 1. Let T*" the genealogical tree formed by two
independents branching random walks starting respectively from a and b. Recalling that on



the set of non-extinction Zs, = lim Y.  V(uw)e V™ exists and is a.s positive. Let
n—oo
|u|=n,ueTa:b

psl the point process formed by the particles {V(u) —log Zoo, u € T, |u| = n}. Define
He0(8) = [, e Peduet(z). Then,

n—oo

6:fi” (B
(24) lim E ( Z it )]]'{Zoo>0}) = e_F(ﬁ,e)P(ZOO > O)

As a consequence, (H%°(B1), ..., i%%(B;)) converges in law to (Tiso(B1), -, fiso(B1)) when n —
0.

We are now in possession of sufficient tools to demonstrate the main theorem.

2.2 Proof of the main theorem

The main theorem follows from the subsequent lemma which is an easy consequence of
Lemma 5.1 in [I7].

Lemma 2.5 Let (,)nen @ Sequence of point pmcess on R. Suppose that

(i) For any polynomial function Q such that Q(0) =0, [; Q(e™)du,(z) 9 some random
variable

(it) For any € > 0 there exists A > 0 such that P ([, e *du,(z) > A) <€ for alln > 0.
(i1i) For any € > 0 there exists b > 0 such that P (u,([—o0, —b] > 0) <
Then i, converge in law to some point process.

See appendix for the proof of Lemmal2.4.

To obtain the part of the existence of limit in theorem [}, it’s enough to check that u,
satisfies (i), (ii), (iii):

!
(1) is exactly (2.3)), recalling that if Q(X) = 29 X', then [; Q(e™*)dun(x) = > 0;1a(5:).
i=1
(ii) follows from Proposition 2.1l Indeed

— A
—2x . _ .
P </Re dpin () > A; Zo > 0) = P <Wn,2 > gz Do > 0)

~ A
p (wn,g > eBM) P (Ze = M),

IN

which go to 0 when A then M go to oco.

(iii) is a consequence of Theorem 1.1 [3].

The independence between pi, and Z,, conditionally on {Z., > 0} follows from (2.3),
see theorem 2.4l It remains to describe jio.. To this end, we firstly recall some results on
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the superposable measures. Let N be the space of bounded finite counting measures on
R. If a random measure £ takes values in N, we call £ a point process. For every x € R
define the translation operator T, : N' — N, by (Tu)(A) = u(A — z) for every Borel set

A C R. Denote equality in law by @ Let £’ be an independent copy on £. We say that £
is superposable, if

T.L+TL @ L, for every a, 3 € R such that e® +¢e° =

According to [23], £ is a superposable process if and only £ can be obtained as follows:

(a) Define P a Poisson process on R, with intensity measure Ae*dz

(b) For each atom z of P, we attach a point process z + D where D are independent
copies of a certain point process D which respect

/oo P(D(A —12) > 0)e"dz < .

(¢) L is the superposition of all the point processes =+ D@ ie, L:={x+y:2 € P,y €
D@},

In view of (a),(b), (c), the superposability of p is a consequence of (2.4]) in theorem 2.3
Theorem [L1] follows. O

3 Proof of theorem 2.4] by admitting Proposition 2.2

For z € T we call trajectory of z all the positions of ancestor of z, i.e the vector (V(z1), ..., V(z,) =
V(2)). Let I € N. We fix vectors 3 := (1, ..., ;) and 0 := (64, ..., 0;). To simplify notations
we denote I := {1,...,t} and for [, C I, B™ := [] 8, and © := []6;. For A € N, let

JEIk S
Z[A] denote the set of particles absorbed at level A, i.e.

ZIA ={ueT:V(u) > A V() < AVE <|ul},
and Z, = Y. V(u)e”V®™. By Proposition A.1 [3] we know that

u€Z[A]
(3.1) lim Z,4 = Zo a.s.
A—o0
Fix x € R and let € > 0. For any A > 0, we have for n large enough

1
P (Elu € Z[A] : [u| > (logn)™ or V(u) > 3 loglogn) <€,

Take A, L > 0. Let Z4(n, L) = Z4 := { max |u| < (logn)'®, max V(u) < A+ loglogn, log Z4 €
ueZ[A] ueZ[Al

[—L, L]} we observe that probability of =, increase to 1 when n then L go to infinity. On
=4 note that



= Y O, with W= Y e PV,

u€eZ[A] z>u,|z|=n

Recall that Wfiﬁ means nEBW;j,B. Write E(Y; Z) := E(Y1z) for any nonnegtaive r.v. Y and
event =. By Markov property, we have

—leeio*/”i logZA’an 5 5 _Zgi Z e ﬂZ(V(u)JrlogZA)Wuﬁ
i= ’ -« L= _ i=1 wcZ[A —aZ
Ele = e A]l{ZA>0}, Za|l=E|e” €zl4] e A]l{ZA>0},~A

=E H E( Zele HEOTE A Wt
ueZ[A]

u € Z[A], Z[A]) e_aZA]l{ZA>0}; =A

=E | [[ ®n.V(u) +1log Z[A], [u])e*# 1 7,50;Ea
ueZ[A]

with
Z@o BitWy, Wh—p.5;
®(n,t,p) :=E , neN, teR, pel0n]

We firstly establish a Proposition to estimate the amount under the product.

Proposition 3.1 Ve > 0,L > 0 there exists N(€), A(e) > 0 such that for any n > N(e),
t € [A, $loglogn], s € [-L, L], p < (logn)*

lim ‘<I> n,t+s,p) — (1 - F(ﬁ,H)te_(Hs))} < ete™",

n—oo

with

l

(3.2) Z 1)510,(8, 8),

k=1

Bi Vi

z 01" 1By,
(3.3) = Y 0. / "eox(B, —y)dy

11 <...<ig
The functions g are continuous at (.
Before the proof of Proposition B.1 we begin with a technical Lemma:
Lemma 3.2 The functions g are well defined, function F' is non negative. There exists a

constants ¢y such that for all x> 1, k<1, gp(3,0) <cqs > n1<1]£1 01/
11 <...<ig JI>



Proof of Lemma[3.3. The first assertion is an easy consequence of Proposition (iii) and
the inequality

Bi i

k
I
g 0;,...0;, ei=1 min e i dy < 400.
k €1,k
i1<... <ik R JE[LK]

The second is also simple because F'is a sum of decreasing alternating terms with the first
which is non negative. It remains to show the continuity at 0. Observe that

f—eije" 57 4By f—eijoﬁ 55 4By, o
0;,...0;, / e/=1 cox(B,—y)dy < 6;,..0; / e/=1 c3mine Yidy
RF Rk JE[L,k]
< 0;...0;, min ei=t 7 " eseVidy
JEL,K] Rk
. 1/Bi.
= ¢y min Gi_/ 7,
jELK]

which goes to 0 as 8 — 0. U

Proof of Proposition[3.1. The function F' appears immediately with:

l —~ l
= 2 0ie Pl IW, 5, -’
E (e =1 =E H 1 - ei/o e Zyﬂ{’anip’ﬁiZCBi(tJrs)y}dy

1=1
! 00

—0; k 1,

B [1=300 [T sy (1Y O
i=1 IpCI
—0;. Y5, ty! —0;y; _
X He " ]l{ern,p’gi_Zcﬁij (t+s)y}dy ot (_1) @ /He ! ]]-{anpﬁizeﬁi(t+s)y}dy
Rk i€l J Rk jel
+ +

Then, Fubini’s Theorem and the simple change of variable y;, = PisVis provide that

l — l
— Y 0 FilTOW, 5 2 :
E (e 7,; s ) = E (1 — (—1)k+1h2(,6, 07I)> 3

k=1
with

Bi Y.
n L § I, I | | —0;.e "7 4By
(34) h’k‘ (07 x) D B k@ k /]R;k € 7 777 ]]-{Wn,pygij ZCB’LJ (t+s+yij)}dy.

I,CI i€l



To conclude it remains to prove that for any € > 0 there exist A(e) such that for any
t € [A(e), s loglogn], s € [-L, L] and p < (logn )™, lim,_o [E(h}|Fa) — te” T g, | < ete™.

By Proposition 2.2 (iii), it is possible to define

k s
(3 5) Zl—Gijeﬁlj yzj +Bijyij (ﬁ )d
. Cy .= CpoImaxmax er= — < X0
5 0 ot et Ja X\P, —y)ay )

and K > 0 sufficiently large such that for all (iy, ..., ),

k Bi Yi.
> —b0i.e T 4By ) €
(3.6) / o=t " [exmin max(1,e7"5) + cox(8, —y — s)|dy < ——
(K K]F) i<k ce2'e
with ¢g := max O*B* = max 0B < occ.
1. CI, k<t I, CI, k<t

Now we can use Proposition The idea is to cut the integral into two parts, one on
the hypercube and the other on its complement:

won =Yoo [[ of ]
H0:2) Z (KK ([-K,K]F)e

I.CI
There exists A = A(K,m) > 0 such that for any ¢t € [A,%loglogn], s € [—L, L]
LI k<l (yi.y;,) € [—K, K], IN (43797a» ) such that Vn > N

e —~ st
Tr (ﬂ{Wn—p,ﬁij > et +z“J')}> — cox(B,—y — s)

Jj<k

€

050621 .

el —~ (st s
Tr (ﬂ{Wn—p,ﬁij > et +z“J')}> —coe*X(B, —y)| <

i<k

Thus,

k Bi Y.
S —0i.e TPy
lim sup / kef:1 ! Y [P <ﬂ) —te_(Hs)CoX(ﬁ, —y)] dy
[_KvK}

k Bi Vi
€ 2 —0i;e T By
S 05062l /k et te tCOX(/Ba _y)dy
R
k Bi Y.
€ _ Zeije 7T +Bi i
= et [ on -
RE
< € te
- QlCG
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It remains to bound the integral on [—K, K|, i.e to control the following lim sup:

Bi Yi
Z —0; C J J+Bz yz
(3.7)  limsup /([ . o= [P (ﬂ) +te” e x (B, —y)] dy| .
-K,K

n—00 i<k

According to Proposition 222] for n large enough, we have

; W Bi. (t+s+yi.)
P(m) < I]IISII?P (Wn_pﬁij > el i )
J<k
. cpte—(t+s) if . >0
< ) ’ .
- Igngll?{ min(cyte” T 1) if y;, <0

As a consequence,

B.1)

IN

Bi Vi

Z —0; ;€ A +Bz Yij

/ e’ {clmln max(1, e ¥5) + cox (B, —y)| dy | te~ ¢
([=K,K]k)e j<k

e e

—te L.
eleg2!

Finally we have demonstrated that:

(3.8) limsup |E(h}(0, z)) — te” ) g, (0, 2)| < %te_t,
n—oo
then
I
E (30000 - (-0 Y o.0) <
k=1
and the Proposition is proved. O

We are now able to obtain

Proposition 3.3 For all (61, ...,0;, B1, ..., B;) € RL x (1,00)* and o € Ry

(3.9) lim lim E

A—oon—o00

Y e PO ZAT, .
( h B ]1{ZA>o}e_aZA) = e HPOP(e™ % 7, > 0).
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Proof of proposition[3.3. Let e > 0, for L large enough such that P (log Z4 ¢ [-L, L], VA > 0) <

€, we have

lim sup lim supE
A—o0 n—00

! —~
~S e Filo8 ZaT, 5.
4 ’ —aZ
(ez_l e A]l{ZA>0} S

_ Xl:Giofﬁi(V(u)JrlogZA)Wni‘u‘ 5,
lim sup lim supE H Efe = '

A—o0 n—00 weZ[A]

UGZ[A],ZA> e_aZA]l{ZA>0}, Za | e
By the dominated convergence theorem, we deduce from Proposition Bl that

1 —
. . _Zeieiﬁi log Z4 Wa.s, _
lim sup lim supE (e i=T e M 7,500

A—oo n—00

<B | Jim ] (1= F(8O)V (e ¥ 9520 — (e )e o %y, | +e
u€Z[A]

By 1)),

lim 37 log (1= F(B,0)V (w)e™ V) — e (w)e™ ) 1z,

u€Z[A]
S VeV
UEZ[A} —Viu
- ,}1—{20 —F(B.9) 7 Liza>0p +€ Z V(u)e 4 )]l{ZA>0}
A weZ[A]
= (—F(B,0) + eZ)liz, >0,
which is equivalent to say that
Jim [ (1= F(B,0)V (u)emVITEL) — v (u)e V)T 14,1
u€Z[A]

It follows that

! —~
=3 0ie"Pilos ZAW, g,
lim sup lim sup E <e i=1 ’ e_aZA]]'{ZA>O}> <e "PYE (e(e—a)zw]l{zoo>0}) Te

A—o00 n—oo

Letting € — 0 gives the upper bound. The lower bound follows from the same way. U
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Proof of Theorem [2.4 For (i) it suffices to show

290 *BZIOgZAW,m f Zez n(ﬁz)
lim lim E ( i=1 ’ e_aZA]l{zA>0}> = hmE ( g e_azc"’]l{zww}) )

A—oon—00 00

Let € > 0. For any A > 0 and m > 0 sufficiently large

1 1
(Zoo)P N (Z4)5

1<i<l

Zee BLlOgZAW _Zebﬂn Bz
E <e i=1 e 1 oo >0

<P (max

l

!
—~ Z Wn ,B4 Ze Wn, B
+P(Wos>m)+E|[ |e & @)% o &7 @0 | 1 -
{Z2>0, m Joax, —(Zoo)gz Za)Pi <E, Wy g<m}

< (1 +2)e,

by the Proposition 21l It remains to show(ii). With the notations Z% := lim Y. V(u)e”"®
n—oo
|ul,ueT®
and Z% := lim 37 V(u)e™™, it’s clear that
n—)oo‘u| 2eTb

Lizw>op = Lizg>01 Lz =0y + Lizg =0y Lizz 501 + Lyza 031z 503
On the two first events there is nothing to prove. On the third we can repeat exactly the

same proof as (2.3)) by keeping in mind Corollary 223l The proof of Theorem 24 is complete.
[

4 Results for the killed Branching Random walk

4.1 The many-to-one formula and Lyons’ change of measure

Under (ILT), there exists a centered random walk (S,,n > 0) such that for any n > 1 and
any measurable function g :€ R" — [0, 00),

(4.1) Zg V(z)) p =E{e¥g(Si,...., Sn)} .

In particular, under (L3), S; has a finite variance o? := E[S?] = E
|z|=1

can see the so-called many-to-one formula (4] as a consequence of Proposition A1l below.
We introduce the additive martingale

(4.2) W= eV,
|z|=n

13
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and define a probability measure Q such that for any n > 0,
(4.3) Q| =W,eP|,,

where F,, denotes the sigma-algebra generated by the positions (V' (z),|z| < n) up to time
n. To give the description of the branching random walk under Q, we introduce the point
process L with Radon-Nykodim derivative [ e *L(dx) with respect to the law of L, and
we define the following process. At time 0, the population is composed of one particle wy
located at V' (wy) = 0. Then, at each step n, particles of generation n die and give birth to
independent point processes distributed as L except for the particle w, which generates a
point process distributed as L. The particle w1 is chosen among the children z of w,, with
probability proportional to eV *). We denote by B := (V/(z)) the family of the positions of
this system. We still call T the genealogical tree of the process, so that (w,),>o is a ray of
T, which we will call the spine. This change of probability was used in [21], see also [15]. We
refer to [22] for the case of the Galton-Watson tree, to [12] for the analog for the branching
Brownian motion, and to [8] for the spine decomposition in various types of branching.

Proposition 4.1 (i)Under Q, the branching random walk has the distribution of B.
(ii)For any |z| = n, we have
e_v(z)

W,

(4.4) Q {uwn, = 2|7} =
(iii) The spine process (V(wy),n > 0) has distribution of the centered random walk
(Sp,n > 0) under Q satisfying ({4.1)).

Before closing this subsection, we collect some elementary facts about the centered ran-
dom walks with finite variance:

Lemma 4.2 (i) There exists a constant oy > 0 such that for any x > 0 and n > 1,

(4.5) P, (minSj > O) <oay(1+z)n2.

Ji<n
(i) There ezists a constant ay > 0 such that for any b > a,z >0 andn > 1,

(4.6) P, (Sn € [a, b],r]n<iyr115j > 0) <as(l+x)(1+b—a)(l+b)n 2.

(NI

(1ii) Let 0 < A < 1. There exists a constant az = az(A) > 0 such that for any b > a,z >
0,y eR

(47) P:c (Sn € [y +a,y+ b],rjﬂglyrllsj > 0, min Sj > y)

- An<j<n

<as(14+2z2)(1+b—a)(l+bn 2.

Njw
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See [19] for (£5]). The estimates (£.6]) and (A7) are for example Lemmas A.1 and A.3 in [4].
In our case (S,) is the centered random walk under P, with finite variance E[S?] = o which
appears in the many-to-one Lemma. We introduce its renewal function R(x) which is zero
ifr<0,1ifz=0,and z >0

(4.8) R(z):=>» P (sk > —x, S), < min sj) .

0<j<k—1
k>0

It is known that there exists cq > 0 (the constant of Proposition 2.2]) such that

(4.9) lim %)

r—00 I

= Cp.
4.2 Definition of M*! and WH

Following Aidékon [3], to determinate the tail of distribution of the partition function of the
branching random walk, we study the same amount for the killed branching random walk:

kil . __ —BV(z
Wn,ﬁ = Ze g ()]l{gggV(Zk)ZO}‘
|z|=n -

Let us adopt some notation of [3]. We denote the minimum of the killed branching random

walk
M = inf{V(2), |2] = n,V(z) > 0, %0 < k < n}.

kill,(n) & vertex chosen uniformly in the set

and m
{V(2),]z] =n,V(2) = MM Y0 <k <n}.
For |z| = n, we say that z € Z%L if

V(z) € I,(z), rggnV(zk) >0, min V(z) > a,(x + L).

n

As the typical order of M is %log n, it will be convenient to use the following notation,
for x > 0:

(4.10) an(x) = glogn -,
(4.11) I(x) == [a,(x) — 1, a,(x)].

The choice of an interval of length 1 is arbitrary and could be change. Our goal is the
following result:

15



Proposition 4.3 For any k > 0 there exists

(1, +00)* R¥! 5 R,

(4.12) “(B,8,A) (8,6, A)

which satisfies
(i) For any K > 0 there exists cx,ax > 0 such that for any j >0 6 € [-K, K]*

(4.13) c(B,68,—7) < cxe K c(B,6,7) < cxe K,

(ii) The restriction (8,A) — ¢(3,68,A)) is continuous for any 3.

(iii)VB3, 8 and A, c(B,5,A) = e?c(B,8 — A, 0).

(iv)For all K, e > 0, there exists A(K, €) > 0 such that for any (61, ..., 0%, A) € [-K, K]*!,
AN (e, 68, A) such that ¥Yn > N,x € [A, A+ % logn)]

(4.14) <e

e*P (ﬂ{’wvf,%ﬂ > fi@=0). Akl e T (2 — A)) — (8,8, A7)

J<k

(v) We deduce immediately that on the same conditions

(4.15) <e

e'P (ﬂ{Wﬁ%ﬂ e e A)) ~x(8,6.4)

Jj<k

with (8,8, 8) := Y eA~1c(8,8,A — ).
Jj=0

Remark: Obviously the reader expects x (3,8, —o0) = x(3, d), and will see that it’s true.

(i) (ii) and (iii) are necessary for prove (iv) which is the heart of the Proposition. Reader
will note the great similarity between this result and the Proposition 3.1 [3]. It is not
surprising, indeed first we note that {W}4 > e} = {—log W}l < a,(z)} and two, the
most important term of Wfflél is one provided by M¥!. Our prove consist then to verify that
the method of [3] run in our case.

Finally we mention here a very useful Lemma stated in [3].
Lemma 3.5, Aidékon There exists c,iq > 0 such that for anyn >1 and x > 0

, 3
P (Mf?” < g logn — x) < Caid

4.3 First result about Wff”

Two subsequent Lemma show that on the set {W,’f’él > ¢/7} | the non-negligible contribution

to /V[\?n75 are provided by the particles z whose
(i)the path satisfies some conditions,
(ii)the final position V(z) isn’t to large.

16



Lemma 4.4 There exists c7,cg > 0 such thatVxr e R,y >0, n > 1,

Bx

_ p € —c -y .~

(4.16) P, E e PO finv ()20, min V) <an(@tD)} 5 | <crl(l+y)e she™¥e™®,
k>n G <k>n n2

|z|=n

Remark: The conditions on the paths are those proposed by Aidékon [3], moreover the
proof requires Lemma 3.3 of [3].

Proof of lemma[{.4. We denote P g71g)(y) the probability of (.10) and by P g7 (y) the
probability

(4.17) P, (E||z| =n;V(z) < a,(z), ke%l’i“r.l’n}\/(zk) >0, ke{g/l%gﬁ}V(%) < a,(z+ L))

which appears in Lemma 3.3 [3]. Lemma 3.3 says that Pg17(y) < co(1+y)e 0e™7". We

need some surgery on the path. For [2| =n, j >0, § <k <nand L' > L we define the
event

(4.18) E{C (2) = {rlriinV(zl) >0, V(z) = mllg V(z) € L(x+ L), V(z,) € L(x) + 5}
’ <n F<Ii<n
For any a > 0 define also
(4.19) Fouz)= | UELLGk), F@e= | UE.L>.
kely,n—a] j=0 ke€[n—a,n] j>0

and similarly (for the centered random walk (.S;,),>0)

(4.20) El(S) = {rlriinSl >0, S = min S el (x+ L), S, €lL(x)+j},
’ <n F<I<n

(4.21) Fou(S) = |J UELL®S)., FuS= |J UELLWO.

ke[g,n—alj=0 k€[n—a,n]j>0
We need to estimate P, (E}(S)) for 5 <k <n—a. By the Markov property at time k,
P,(E} ,.(S)) <P, (minSl >0, min S; > a,(z+ L"), S, € L,(x + I/)) X
’ 1>k nli<k

P (Sn_k el —1+4L +1 +j],kr<nink5z > 0) -

17



We know from (4.06]) that there exists a constant c¢1o such that

P <Sn_k€ L' =144, L +1+j], mmSl >O) gclo(n—k+1)_%(1+L'—|—j).

For the first term, we have to discuss on the value of k. Suppose that %n < k < n, then by

(E%)

14y

3
2

P, (minSl >0, min S; > a,(x+ L), Sk € L,(x + L')) < e
1>k nlI<k n

If %n <k< %n we simply write

P, (minSl >0, min S; > a,(x+ L"), S, € I,(x + L')) < P (Sk € I,(x + L"), minS; > O)
1>k n 1<k 1<k

]
< ep(l+ y)n_% log n.

To resume we have obtained

4.22 P.(E (S CB%(HL/H) if 2<k<3n
' ’ < nzn— . ' '
( ) y( k7L( )) = 013#(1 —G—L/—i—]) o %n ch<n—a

n2 (n—k-‘,—l)%

|3

Now we can tackle the proof, observe that

3
58
n2
Paas () <Py | D™ O en + L, en) 2 o Mu 2 an(2) | + Py (y).
|2|=n
By Lyons’ change of measure,
3
n2’ _ _
(4.23) | 2o ey | = e Ry [(1 ﬁ)s”]l{Fa,L,(a}]
|2|=n
35 n—a
nz — (an(z j
(124 < T 3 Yl (15 ()
k=n/2j=>0
(4.25) < cu(l+y) 1+ L)e ™" vaz,

for any a > 1. We also get
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Z]I{FZ/(Z)} >1] < Z ZP Z]I{Ek e Z

|z|=n k€n—a,n]j=>0 |u|=n

< Z P, <E|\z| =k: Ilr;il?V(zl) >0, nniling(zl) > an(x+ L), V(z) € L(x + L’)) ,
k€[n—a,n] - 2=

which is again by an application of Lyons’ change of measure smaller than

(4.26) Y as(l4y)e ™V = o1+ a)(l+y)e ™V

k€[n—a,n]

Now let a(L + p)yso0 = e*L+P) in combining ([Z25) and ([26) we obtain

Pu1s)(y) < Pa1p(y) +

—B(V(2)+
ZZG (V(2) y)ﬂ{Fa(p)7L+p(Z)} el n%ﬁ +P ZZ]I{FZE:J;

p>0|z|=n p>0|z|=n

efr

The two last terms are smaller than

3
ﬁ
nz2
BV (z)
< DB T ey | P 2o

Ltp(
p>0 |2l=n |2l=n

<> <Cl5(1 +a(L+p)(1+y)e™ P 4 e(1+y)(1+ L+ ple ™ a(L +p)_%>

p>0
< (1 +y)e” Loy==

The Lemma is proved. 0
We have shown that the main contributions to the partition function, are given by the
particles whose paths stay above a,(x 4+ L), after the generation Z. The following natural

2
Lemma says that for A and L large enough

AL
(4.27) %% oy (I = nﬁ = Ze ]l{mln‘/(zk)-‘,-y>0 ?}1@2 V(zg)+y>an(z+L), V(z)+y<an(z)+A}-

|2|=n

and Wff%l are almost equal. Hence only particles whose the positions at generation n are
less than a,(x) + A give a non-negligible contribution.
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Lemma 4.5 There exists c17 > 0 such that for alln > 0:

Bx
§ : z e —z—
€ —AVI )]]-{mmV(zk)>0 LJmin Vi(zg)2an (z+L), V(z)2an (z)+A} > —5= nzﬁ < 017(1+y> YLe” Als- 1)

| | <k:<n

Proof of Lemma[4.3. The trivial inequality P(X > 1) < E(X), for X positive gives:

Bz
V(z €
Ze AV )]l{mm\/(zk)>0 Iiliran(zk)>an(x+L) ,V(z)>an(z)+A} > n%g <
|z|=n
ngﬁ
BV (z
eﬁ Ze ( )]l{mmV(zk)>0 T}irénv(zk)>a"(x+ll) ,Vi(z)>an(x)+A}

By the Lyons’ change of measure this is equal to

_ — B)Sn
= egxe yE E, ( ]l{mmsk>0 rg}tri Sp>an(x+L), Sn€ln(z—A— k)})
keN

IN

e e AB-D Ze (1=A)k n?P (mlnSk > 0, min Sk >ay(x+ L), S, € I(x—A-— k:))
keN <k=
S 017(1 + y)e T yLe_A(B_l)

by E.7).
O
The following Lemma shows the tension exponential for the partition function of the
killed branching random walk. This is the analogue of Lemma 3.3 in [3].

Lemma 4.6 There exists c1g > 0, c19, o0 > 0 such thatVe e R,y >0, n>1, j € Z

(4.28) e"VP, (Wf%l > e MM e [ (v — j)) < eig(1 +y)je .
(4.29) P, (W:g > eﬁx) < (1+y)ezo.
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Proof of Lemma[{.6. We note that for any L > 0

P, (Wmu > eﬁij:jill e In(x —j))

—y—x ,—csL eﬁx
< oLty e 1Py | Y e ]1{mmV(zk> 0, min V(z)2an(z+L).V(:)2an(e—5)} = 35

3
j€[n/2,n] ’)’LEB
|z|=n

< er(L4y)e ¥ e sl e (1 + y)e > VLe A1),

by Lemma L4 and [0l Set L = j and ¢19 = min(5 — 1, o) /2 to obtain (L.28)). (4.29) follows
easily from

P, <szll > m) P, <szll > P MFl < g (z )) +P, <szll > ofe kil > an(x)>,
(4.28) and Lemma 3.5 of [3] O

4.4 Proof of Proposition 4.3

The proof is divided in three parts. First we suppose that the subsequent Lemma below holds
and we demonstrate the point (iv) of the Proposition, two we prove the Lemma and three we
collect all our work to show that we get also the other points. Recall that W;f bL .= n3b Wf bL.

Lemma 4.7 VK, n > 0, 3Ao(n), Lo(n) such that for all (6, ..., 0, A) € [-K, K[t L > Ly,
A > Ag there exists D(A,L,n, K) > 0 and N(A,L,D,n,8,A) > 0 such that Vn > N and
Vx € [D,logn]

(4.30)
e'P (ﬂ{’WVA;i(x —6;) = MDY MEY € I (), mb ) € zm—“) —(B,8,1) <

n?
J<k

4.4.1 Part 1, Proof of Proposition 4.3l (iv) in admitting Lemma [4.30

: : mu WAL
Observe that the only difference betweeg ([A.30) and ([{.14) is that W' is replaced by W ;"
An easy consequence of Lemma 3.3 [3] is that for any € > 0 there ex1sts Ly > 0 such that

forany L > Ly, © > 0,n € N,

(4.31) <ee™”

<H]].{W;ﬂ” >C[5’J(ac 8 )}(]I{Mkzlle] (Z‘)} - ]l{MkllleIn(Z') kill, (n)ezz L}))

i<k
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On other hand, for A > Ay, L > Lo, x,n > 0, we set

<H]l Whll 5o~} ~ H]l{WAL (v—3; >06j<x6j>}) :

i<k i<k

erar(d,z,n)

It is not difficult to check that for any a € [0, 1]:

B1(
i<k ©

o~ SIAL ngL( 5)’)
erar(d,z,n) < ZP <Wf%lj — W (@=106;) 21— oz)eﬁ(w_éj)) +Pla< ]—) <1].

We will bound the terms both. Suppose the following assertion.

For any € > 0, there exists ag , near enough to 1 such that for any o < «q there exists
Ay (e€), Lo(€) such that for any A > Ao, L > Ly there exists D and N large enough such that
for anyn > N, xz € [D,logn| and j € [0, k],

Wk (x — §;)
n,B J —z.
P<QSW§1 See )

true. Then for a < ayp,

n

P (WAl ~ W = (1= )b ) < (4) + (1),

with

1—a)efi=
- P BJ ]l mm F1 min z an(x— > (—
;e { nV(zk)20, 2<k<nV( 1) <an(z—d+L)} 91,355 )
: (1—a)ei=®
- P iV ]l mm F1 min z an(T— z)Zan(x—0; 2
> e {inV (2)20,  min V() Zan (@654 L), V(2)Zan(a=8;)+4} 535,

|2|=n

Both terms (A) and (B) are small. Indeed we recognize the terms of the Lemmas 4] and
4.5 with v =z + B%_log(l_To‘) and L = L — log( ¢),and A=A+ 5 = log( 2). Thus we
can fix A, L, N and D large enough to conclude erar(d,z,n) < 2ee” “’U In combmmg with
(4.30)) we obtain (iv). It remains thus to show our assertion in italic. We need a Lemma,

Lemma 4.8 For all € > 0 there exists L.(e) and A.(€) such that YA > A,, L > L, there
exists D > 0 and N large enough such that for any n > N and x € [D,logn],

(=) (000

j>1

(4.32)

with Cy the constant which appear in Proposition 1.2 [3].
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Proof of Lemma[].8 Let € > 0. For j, large enough, > clgje_Cj < € (with cg) the
J>Jo
constant which appears in Lemma [.6]) and it implies that
S eie(8,0,—j) + Y P (’W;};} > ofe Ml ¢ [ (x — j)) <% VA L n,
Jj=jo J=2Jjo
Now we fix L,(¢€), A.(¢) > 0 such that:
by Lemma [£.7 (in an uni-dimensional case) there exists D(A., L., D, <, jo) such that for
all A > Ag and L > Lo, j < jo, IN(A, L, D, £, jo), such that Vn > N, « E [D,log n|

(4.33)

P (W = o, M € I (@ = j)) = e(B,0,—j)| < .
’ Jo

by Lemma [6.1] (see appendix) VL > L,, A,x > 1, n € N*,

(4.34) )P( Wk > o9, ME < a,(2)) = G| < e,

Hence, with
P <WAL > eﬁgc) —P (Wnﬁ > eﬁm Mkzll < an >+ZP < AL > eﬁw Mklll [n(x _ ])) ,
j>0

forall A> Ag et L > Lo, n> N and x € [D,logn]

e"P (WA L eﬁx> (Cr + Zeﬂ

j>1

< 6+6+2ch2je ’+Z—

Jj2jo J <JO

IN

4e.

by ([@33) and ([A34]). The Lemma is proved. O
Proof of the assertion in italics.It’s still rigorous to suppose 6 = 0. Let € > 0. We choose «
near enough to one such that

(ol + Y ee(B,0, —j))

j=1

a
—1—1 SE
B

Let Ai(e) = A.(e) — %loga and Li(e) = L.(¢) (As, L. are the constants defined by the
previous Lemma). With

WAL WAL WA,L:E
P(aﬁ#ﬁl)zP(%()Za —P %()21 and
err err er®

AL —~ A+Llog(a),L—Llog(c)
. <Wn,ﬁ @ a) W T 0 togla)

>1

=P
R Bt Flog(a) - )
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we may affirm that VA > Ay, L > L;, there exists D, N such that for any n > N and
x € [D,logn].

(4.35) "P (’W;};} > eﬁx) - (Cl + Y (8,0, —j)>

j=>1
1
(4.36) e’P <WA L> el ) (C’l + Zeﬂ (3,0 —j)) — | <e
j>1 E
The assertion in italics follows. O

Finally, admitting Lemma [4.30] the Proposition is true.

4.4.2 Part 2, Proof of the Lemma [4.7]

Proof of the Lemma is inspired of [3]. We use the same tools, ideas and several results are
very similar. Thus some lemma will be stated without proof, deferring it to the appendix.

Definition 4.9 For b integer, we define the event &, by

(4.37) En = En(x, 0, A) = {Vk <n—0b,Yv € Qwg), min V(u)>a,(z)+ A},

u>v,|ul=n

where Q(wy,) denotes the set of brothers of wy. On the event &, N {M*! € I,(x)} we are
sure that any particle located at the minimum separated from the spine after the time n-b.

Definition 4.10 Let for xz, L, A > 0 and b € N* we define
(i) the event

OarLs(Bi; 05, y) = ]l{ —8(8;+L) <

B;(V(2)+v) , '
2 B{V(Z)+y<5j+L+Ay]r%u;)V(zk)vLyMj}}

(i1) The function Fa 5 by

(4.38)
i LT
FA,L,b(/Ba 5) Aa y) = EQy 1 ]l{V(wb) E[A+L-1,A+1L)], mmV(wb >A}HOA L b(ﬁj? 6]7 0)
%;b {V(w)=My} o

We stress that M, which appears in the definition of Fa ru(3,68,A,y) is the minimum at
time b of the non killed branching random walk.

(iii) carns(B,8,A) = &= C“/_ fw>0 Fars(B,6,Ay)R_(y)dy, where C_,Cy and R_(z)
are defined in introduction.
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By adding

<ﬂ{WAL < eﬁj x—0;) } Mkzll In(l’),mkill’(n) c Z:L‘—A,L)
i<k
ev(w”)]l{v( n)=Mkill 4, € Zo—A,LY
= E 1,54 Bj(z—65) )
Q Z ]l{v =MEill} g v, B (z—0;)2e"3 7}
lul=n

(which is true by lyons’change of measure) to the three Lemma (see Appendix for the proofs)

Lemma 4.11 VK,n, L, A > 0 3D(A,n) > 0 and B(A,L,K,n) > 1 such that ¥b > B, n >
byx > D and A € [-K, K]

(4.39) Q((&:)° wy € Z2A) <3

Lemma 4.12 y — Farp(B,0,Ay) is Riemann integrable and there exists a non-increasing
function F : Ry — R such that |F(z)| < F(z) for any x>0 and [, xF(x) < co.

Lemma 4.13 Let L,A > 0 and K,n > 0. Let D and B be as in Lemma [{.11] then Vb >
B, (61, ...,0,) € [-K, K] AN(b, L, 61, ..., 6, n) > 0 such that Vn > N and Vz € [D,logn]

(4.40)

V(wn)

" (S {V(wn)= Mkzll wn€ZE—A, L} K+1
e'E 1 si-5:01,En | — canp(B,0,A)[ < (24e™ 7).
? > Ly qwy=npiny g i (w=05) 2100}

|ul=n

we are nearly to the Proposition £3l Indeed by combining the Lemma T3] and .11l we can
drop &, in the expectation of (£40), so we obtain that the probability of Lemma 3] almost
behaves like a constant factor e™ as x — oco. “Almost” because the factor depends to A, L
and b. With the following we will can drop ”almost”.
Lemma 4.14 (i) Forall3 > 1,0 € K, A € R, c41(8,0,A) := blim carp(B,6,A) exists.
—00
(ii)AlLim car(B,0,A) converge in increasing and we denote ¢(3,68,A) the limit.
,L—00

(111)(6,A) = carn(B,0,A) and (8,A) — ¢(B,8,A) are continuous and thus car(B.,.)

converges uniformly on compact subsets to ¢(3,.,.) by Dini Lemma.

Proof of lemma[{.14 Let n > 0. We call Qm the expectation in the left-hand side of
(4.40), we introduce

Ca (8,0, A) == liminf liminf e* Qg (8,6, A),

T—00 n—o0
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CZLJ)(B, d,A) := limsup limsup erm(B, 5, A).

T—00 n—oo

In particular, taking n — oo then z — oo in ([£40), for all A,L € Rt there exists
B(A, L, K,n) such that for any b > B(A, L, K,n), A € [-K, K]

CA,L,b(B> 57 A) -n S CX7L7b(B> 57 A) S CX,L,b(/Ba 5a A) S CA,L,b(B> 57 A) + n.

Notice that &, (hence Qm) is increasing with b. It implies that ¢ ; ,(8,d,A) and
cjg,L,b(ﬁ, d,A) are both increasing in b. Let ¢ ; (3,4, A) and CX’L(ﬁ, d,A) the respectively
limits when b — co. By Lemma both are bounded uniformly in A and L. We have then

lirbn supca,ps(B3,0,A) —n < ¢y (8,8,A) < i (8,6,A) < ligginchL,b(B, 4,A)+n.
300 0o

Letting n go to 0, it yields that c4 1, has a limit as b — oo, that we denote by c4 (3,0, A) =
CX’L(ﬁ, 0,A) =cy 1 (B,8,A). We stress that this equality is valid for all A, L > 0. Similarly
we see that Q(m is increasing with L, thus ca (8,0, A) is increasing with L. Same
carp(B,6,A) is increasing with A and thus ca (8,9, A) is increasing with A. Finally
car(B,6,A) is bounded and increasing with A and L. This prove (i) and (ii), it remains
(iii). Here are two useful lemmas (proved in the appendix):

Lemma 4.15 For all L > 0, there exists C', such that

(4.41) lim lim exP(Msi” c In(x),mki”’(") c Zm,L) — .

T—00N—00

Lemma 4.16 For all A, L >0, (§,A) € R?
(4.42)

lim lim ¢*P (’Wﬁ;}(x —§) > PO Nl ¢ () mFilh) ¢ Z’”‘AvL) — can(8,6,A).

T—00 N—r00

For (A, A’) € R?, (4,48") € K?, by Lyons’ change of measure

" |Qean) (8,0, A) — Quan (8,6, A')| <

V(w”)]l _

E x (S {V (wn)=MEill}
€ EQ 1 Az
i<k HZ_: ]l{V(u):Mfgiu} Wos;

(2—8;)>e% "% wpeze-aL} T ]l{’vvf‘;%. (2—8)2e"1 7D w7001y

xr
< E e’E |:1{W:bi(m_5j)206j(x5j)7mk:ill,(n)€Z:cA,L} ]I{W;:"BL_(x—éé)zeﬁj(x’69)7mkilly(n)ezw*A”L} :
i<k i
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Thus it’s enough to control

. . . z 1 s —1 s kill,(n) Z:c—A,L
(4.43) JLI{:OT}LI{:OG E ( (W (amt) 2500 {WrﬁbLj(x—ég)ZeBl( 5ys M € ;
and

(444) xll_)r{.lonh_)IE.OE (]l{mkill,(n)ezacfA,L} - ]].{mkill,(n)ezx—(A/),L}> .

By (@41 and a change of variable lim lim [@44) < Cre®|e®’ 2 — 1|. Other hand

T—>00N—r00

i .
(m) <e'E ( {WAL(:c 5;)>eP1(@=%5) kil (n) g zo—A LY T ]l{W o Lz 5)> ﬁl(z6;)7mkill,(n)ez(z(5’+6)A,L}7)
+E <]l{mkill,(n)ezx7A,L} — ]]-{mkill,(n)eZﬂc—(A—éJré’),L})

and by (6.3) and again a change of variable
lim lim @) < ca.(8,0, A)|e’ — e%| + Cpe’|e® =% —1|.

T—r0ON—>00

We conclude by

lim lim e* |Qm(5 A) Qm(&A’ﬂ < CZIZ|66j —653| +keA|eA/_A . 1|‘

T—>00N—r00
J<k

for some ¢g; > 0. As it’s a bound uniform in A, L, b, it implies the continuity of (§,A) —
car(B,6,A) and (8,A) — (8,9, A). O
End of proof of Lemma[].7]. Let K > 0,n > 0. Let Ay, Ly > 0 such that for any A > Ay,
L > L there exists D such that for any (8, A) € [—K, K|**! there exists B, large enough
such that for any b > By IN(b, A, L, §, A, n) such that for any n > N and x € [D,logn|,

Viwn) 1

(S {V(wn)=MFill e Zz—A,L}

E 1
Q E ]l{V =Mkill} ]];J];

ul=n

xT

<ne,

. ¢C
(4 (b2 00} S
)

|CA,L,b(Ba 57 A) - C(/Ba 5) A)| S n

and
Viwn)q , -
z (S {V(wn)=MFU o, eZo—AL}
e’k n 1 AL (z— &8 (®—=35) ,fn — CA,L,6(6767A> < 377
° ‘Z| 1{V(u):M;§uz} g W 8;)>eli =070y
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The combination of this three inequalities implies

P <m{W ) > eﬁj(x 55) } Mkzll In(l' . A>’mkill,(n) e Zx—A,L) (,8 5 A) < 57]
i<k
Dependence in b disappears which gives exactly Lemma L7 O

4.4.3 Part 3, The others points

(i) results of Lemma .6l and Lemma 3.5 of [3]. (ii) is stated in Lemma T4l (iii) is simply
a consequence of the change of variable

@P(ﬂ@@%z#ﬂ%nwﬁMe%@—AQ

J<k
— (BerAp (ﬂ{’W,ﬁ% > @AY kil g [ A o>> |
J<k

It remains (v). Let € > 0. By Lemma 3.5 [3], there exists py > 0 such that for any = > 0
and n > 1

NN e

2P <ﬂ{Wff” > A}, M € 1, <x—A+p>) <

P=po J<k
Moreover (iv) says that there exists A = A(py + K, --) such that for all § € [ K, K]* there
exists N such that for any n > N and z € [4, A+ 3logn] p < po

P (ﬂ{ma > MO}, M € L (a — (A —p>>> —eA7e(B,5 — (A —p))| < —.
i<k Po
By combining these inequalities with
&P(ﬂ@@%z@mwnwﬁMS%@—AQ
J<k
=) P (ﬂ{ ol > b)) M € T, <x—A+p>>,
p=>0 J<k
we get also the point (v). O
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5 Proof of the Proposition

This section partially prove the Proposition 2.2 rigorously we will need to Proposition 2.1l

5.1 The branching random walk at the beginning

Following [3] we introduce some notations. To go from the tail distribution of W,’f’él to the
one of W, g, we have to control excursions inside the negative axis that can appear at the
beginning of the branching random walk. This can be seen as the analogue of the ”delay”
mentioned by Lalley and Sellke [20]. For z > A > 0 and n > 1, we define the set

Sp:={ueT: kir‘lilan(uk) >V(u) > A—z and |u| < +/n}.
We notice that S4 depends on n and x, but we omit to write this dependency in the notation
for sake of concision. For x > 0 and u € Sy, we define the indicator B, .(u) equal to 1 if and
only if the branching random walk emanating from u and killed below V'(u) has its minimum
below % logn — x. Equivalently,

Definition 5.1 For u € S4, we call B, .(u) the indicator of the event that there exists
lv| = n,v > wu such that V(v) > V(u),V|u| <1< n and V(v) < 3logn — .

Identically for w € Sa, we call BY, ,(u) the indicator of the event {W} 5, > eﬁ(x:%‘;(u)) .
where
u R —B(V(2)-V(u
n,B,kill = Z e VBV ))]l{kermr‘ln]V(zw—V(u)zO}-
|z|=n,z>u '

Finally, let for |v| > 1,

§0) = Y 1+ (V(w) = V(v)y)e V=V OD,

we(v)

To avoid some extra integrability conditions, we are led to consider vertices u € S4 which
behave "nicely’, meaning that &(uy) is not too big along the path {us, ..., u, = u}.

5.2 Proof of Proposition 2.2]in admitting ”an italic assertion” and
the Proposition [2.7]

The assertion in italics is
VK,e > 03A(K,e) > 0 such that ¥(6y,...,0;,A) € [—K, K|*', IN(e, 8, A) such that
Vn > N, z € [A, A+ loglogn|

e;P (ﬂ{/—anﬁj B eﬁj(w_éj)}a M, < an(z — A)) —cox(B,6,A) <e

Jj<k
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Suppose that it’s true.

Proof of Proposition[2Z.2 in admitting Proposition[2.1. We need to observe that VK, e > 0
there exists A(K,¢) > 0 such that V(i,y,...,6;) € [—K, K]***3N(e, i, ) such that Vn >
N, z € [A, A+ loglogn|

(5.1) <e

e’ . i .
;P (ﬂ]l{egj<xaj)<wnﬁj}; M, € I,(x — Z)) —e'coe(B,0 —1i,0)

J<k

Indeed it’s obvious because i, cr, (@—i)} = L{nn<an(@—i)} — Lir,<an(@—i)—1}, and x(5,8,4) —

X(3,68,i—1)=e'c(B,6 —i,0). So

+P (ﬂ{Wn,ﬁj > eﬁm“”}) ==>p (ﬂ{Wn,ﬁj > M@} M, € I(x — z’)) +

i<k i>io i<k
e’ -~ Y .
—P <j2k{wnﬁj > i@ M, < a,(x — zo)> :

Now when x then n tend to infinity, the question is to know whether the sum is negligible.
The answer is yes, thanks to Proposition 2.1l Recall that this Proposition says exactly there
exists N > 0 such that for any n > N ;5 > 1 and z € [1,loglogn]

P <m{/an5J < eP@=Y M€ I (x — Z)) < crze e,
J<k
So we get the first assertion of Proposition 222 with x(3,d) = x(8,d, —oc). For the asser-
tions (i), (ii), (iii) it’s obvious thanks to Proposition .3l O
So it remains to prove the assertion in italics. We decompose the proof in two steps. As
for the previous section, step 1 is very close to [3] and contains statements without proof.
Step 2, contains some calculus which concern specifically the partition function, their aim is
to ensure that step 1 is relevant for the partition function.

5.3 Step 1

Recall that R is the renewal function associated to (S, )nen and ¢g = lim @. For the step
n—oo

1 we want show

Proposition 5.2 For any K,e > 0 there exists A = A(K,¢€) and X > A such that for any
(61,..., 00, A) € [=K, K|**! there exists N(e,8,A) such that for alln > N, v € [X, X +
Llogn]

2

< e.

(5.2) ’%P (ﬂ{ > BY o5, ) =1} Y Buaalu) > 1) —cox(B,6,A)

J=1 u€eSa uES A
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We see that it’s identical to the assertion in italic except Wn s, which is replaced by ng/,n,x— 5
uUES 4
The proof requires the following two lemmas that we suppose for the moment (the demon-

stration are deferring to the Appendix).

Lemma 5.3 (i)Recall that R(z) is the renewal function of (Sp)n>o0 previous defined. Let
¢ > 0. There exists A > 0 such that for n large enough and z € [A, (logn)s],

(5.3) <e.

ex
R(x — A)E

Z B”@_A(U)HB‘B/‘;,n,x—éj (u)] - X(ﬁv 57 A)

UES A i<k

(i) For any [u] > 1, let T'(u) := {V1 < k < |u| : £(uy,) < eV (-0F+2=A/2}  We have

P (Z W:,gzi‘l/l(u)]lp(u)c > 1) < ey log, (x)e™",

UES 4

uniformly in A >0, A € [-K, K] andn > 1.
(#i) In particular

P (Z Br‘:"/x]].r‘(u)c > 1) < cgolog, (z)e™™.

uES 4

Next lemma serves to close the expectation in (5.3) with the probability in (5.2). Let 6 > 1
(0 will be better determinate later). For u € S4, we call B)":(u) the indicator of the event

W 8.ki — 9 1og 1
n,B,kill —1 108 log )
{Foivem = e 71 b

Lemma 5.4 Set K,0 > 1. There exists a constant cag > 0 such that for any (61,02, A) €
[-K,K]? x> A>0, and n > 1 we get the following inequalities:

B8O 1 .
(5.4) E( > Bgf’,fw_él(u)B;g}fl,x_(h(v)np(u)ﬂp(v)> < cpg(logz)F1 e %A,

uFv,ES A

80 g
(5.5) E( Z Bg{:i,x_al(U)Bn,x—A(U)]lF(u)ﬂF(v)> < ng(logz)ﬂﬂ"‘le e~ 4

uFv,ES

In particular as Bx[ff < BY it is also true with BY at the place of B,%@.

n,x n,T
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This Lemma implies that for any K > 0 there exists a constant coy > co3 such that for
any (6,A) € [-K,K]F"L 2> A >0, andn > 1

P (ﬂ{ > BY s () =1}, ) Buaa(u) > 1) -P (ZBH,I_A(u)HBgJV_W_% (u) > 1)

j=1 u€eSa u€Sa u€Sa i<k

B0 11 g
< coq(logz)F-1Tle %™

and we are now able to show the
Proof of Proposition[5.2. Let € > 0. Suppose A > 0 large enough to apply Lemma (i)

and such that cose™ < €. Suppose also X > 0 large enough such that for any v > X > A

86
)P

+1
|R(x — A) — x| < ex and (log% < e. Let us look at the upper bound. We have for n
large enough and = € [ X, logn]

k
e
—P (VWD BY s, (@) 2 1}, D Buaalu) > 1) — cox(B,6,4A)
Jj=1 u€eSy UES A
efE
S ;P Z BH,I—A(U)HB[I?/I;,n,m—5j(u) 2 1) - COX(B> 57 A) te
uUES 4 i<k
efE
< ;E Z Bn,w—A(u>HB[I3/‘;,n,m—5j (u) - COX(ﬁv 57 A) te
LuEeS A i<k
e”|R(x — A) — xcy coe” ) W
< E Boa(w)| | Bg po—s. (W) | —cox(B,0,A) +¢€
( Rz — A)z Rz — A) gs% ( )]11 8,ma—s, (W) | = cox( )

< 2x(B,68,A)e+ coe + €.

It’s enough for the upper bound. It remains the lower bound. If we write
U:= > Bn.-a(u)]l Bg‘j/,mm_(;j (u)1p(,) then by the Paley-Zygmund formula, we have P(U >

u€S J<k
1) > EUI Under the conditions in italics, we have that E[U? < (1 + ¢)E[U]. Hence, by

E[U?]
Lemma 5.3 (i) and (i) 7= P(U > 1) > S BU] > XB2222 ¢ vields

R(z—A) (x—A)(1+€)

T
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. (ﬂ{ > BY s, w) =1} Y Biaalu) > 1) — cox(B,0,A)

& Jj=1 u€Sa uES A
> e_P (Z Bn w—A(u)HB[I?/I;,n,m—5](u) > 1) - COX(ﬁv(SvA)

z ueS z 1<k
> < em|m+°_m_x|+ o ) < Bn.a(w)[[BY 1) (8,5,A)
e - n,r— Bj,m,z— 6 — CoX » Uy

R(LL’ - A)SL’ R( ueS A i<k
,O,A) —2
> —oy(B.6,a)c+ DBLB T2 (56
> —¢ <1 *x(B,9,4) +2x(ﬂ,5,A)> .
1+e

Thus the Proposition 5.2 follows.

5.4 Step 2

Recall the notation W# n2ﬁW“ﬁ and W,,_, 5 = n3W,_, 5 for u € Sa, p € [0,v/n] NN.
For the step 2 our goal is:

Proposition 5.5 For any K > 0, n > 0 there exists A > 0 and X > A such that, for any
(8,A) € [-K,K]F*! 3N(¢,8,A) such that for any n > N and x € [X, 3log(n) — 1]

(5.6) —E I ~nﬁ]km>wu)}—Hn{ BW7LM>1}7ZBMA w>1]|<n.

j<k {2 P55 <k u€Sa u€ES,

u€S 4

This Proposition means that only one particle u among those of Sy szn a partition func-
tion e_ﬁv(“)Wﬁ‘,@ki” non negligible. Intuitively, the amounts e~ #V®Wu i are almost”

independent and P(e‘ﬁv(“)ﬁ?ﬁ srin = €77) < este”V0T) - Thus the probability
P (Elu,v € Sa,u # v such that e_ﬁv(“)va#@kill > e e—ﬁV@)’W;ﬁM > eﬁm>
decreases fast.
This Proposition requires the subsequent Lemma. Part (. bis) will be useful only for

the proof of Proposition 2] (see Appendix). For sake of lightness in the notation we denote
Wos o= P WE s
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Lemma 5.6 (i) For any ¢ >0, n > 0 there exists > 0 such that for allz > 1 and n > 5

(5.7) Pl o> Wit (V0 ¢ bk oz 2y =€ snre .
|u|=k,u€S s okl =

(i bis)For the same 0 there exists cqy and oqy (The numbering is different to better remember
this constant) such that for all x > 1 and n j > 5,

(5.8)

N’U,,LB—‘,-V(U) - —OQ(1 j —x
P Z anﬁvkill 1 Wu :v+V(u)< ﬂﬂfl log+ log+x Z 17 MTL Z an(x - j) S C(l)e 1) xTe .
ueS g { n,B,kill = }
-2

(i) There ezists co5 > 0 such that for all x > 1, s <0, and any integer n > 5, p < \/n

(59) Ey < B(z+s Wkllp 6]1{e B(z+S)W’“” <1}> S Cos 10g+ X (1 -+ y)e_ye_(w-l-S).

(7 bis)For all x > 1, s <0, and any integer n,j > 5, p < \/n
(5.10)
Ey < —B(z+s) szlp B]l{e ﬂ(xﬂ)wmll <1}’ Mn—p Z an(x _ ])) S C(l)e—a(l)j 10g+ T (1_|_y)e—ye—(:c+s).

Proof of Proposition in admitting Lemma [5.8. To obtain Proposition we need to
resume all our previous inequalities, observe that for any € > 0

e E H]l Nn \Bjkill

i<k { ﬂ](acf

_H {2 BY us, 210 > Busa(u)>1

= 5]‘/(“)} ueS Y uweS s

u€S y €

<P+ P+ P3+ Py,

with
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€ u,x—0;+V (u) €
P= e (WA 2 5)

i<k uUES 4

€ T ru,r—0+V (u) €
Py =— E P E W5 ) 1 08; > =
27 Bkl a8,V (u) 5 gy tos (=8 4V )y = 2]’

- B
i<k ueS A w, Bj kzll 7

€ u,x—0;+V (u)
P3:;ZP ZW,BJ kzl?_ ( ]lF(U)BgJ/fo 6( )e [1_671]7 ZBTL@—A(U)Zl)v

i<k u€ESA u€Sa

el‘
P, = ;ZP <E|U,U c SA,U 75 v, Bg/ix( )]lF(u)ng/:i’m(U)]lF(v) = 1) .

J<k

Suppose that: for any K > 0,n > 0 there ezists ¢y € [0,1] such that for any 6 > 1
there exists Ay > A > 0 such that for all § € [-K, K], e € [0,¢] there exists N such that
Vn > N, z € [Ay, 3 logn]

(5.11) Py = P (e,0,6) <,

is true, then the Proposition is too. Indeed let > 0 and K > 0. It suffices first
to fix €y for the previous affirmation. We choose € large enough such that for any n > 0
and z € [1,2logn] P, is smaller than 7. Then there exists A; > A > 0 such that for all
6 € [-K, K], e € [0, €] there exists N such that Vn > N, z € [Ay, 2logn] P, Py and Py <17
and we conclude.
It remains to prove this affirmation. Main difficulty holds in the multiplication of variables
and quantifiers, but idea is simply. We stay rigorous if we suppose § = 0. It suffices to see
that

T1u,z+V(u 0
{ > Wn,ﬁ,;gm( )]11“( )Bg/nx( ) >1- a} - {

UES 4

Z ]].{Wu x+V(u)>1_a}]].1"(u) 2 ]_}

uESA n,B,kill
{Elu NS SA;”#U ]ll—‘(u Bg/nex( )B;Vnem( ):1}

and that by Lemma [5.4t for any # > 0 there exists Ag > A such that VA > Ay, 36 €
[—K, K], N > 0 such that ¥n > N,z € [A, % log n] the probability of this event is smaller

than nze™®. Finally this inclusion is also trueon ¢ > By, .-a(u) > 1 }, hence by Proposition

UES 4

under the same quantifiers, probability of the event { >1 s }]lp(u) > 1} N

UGSA n,B,kill
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uES A

{ > Bpa-a(u) > 1} is very close ze "y ([, %log(l — a), A). Identically the probability of

EZ; ﬁ%lp B}?fngw( ) > 1} is very close to ze (3,0, A). We conclude in keeping
uesSA
in mind that x is continuous.
OJ
Proof of Lemmal5.4 (i)
Let € > 0 and L n > 0. Proof consists to seek a good decomposition of [0, e~ A
Let I\r/I@X exP(W’“” > eP%) := 96 < 00, and cyy such that for any A, z > 1 R(z — A) <
k<y{/n,n>5
corx. Let 6 > 0 large enough such that:

log log (E]

(5.12) MZH <n.
€
k>2

We define the sequence fo = +oo and fi(x + V(u)) := gz + V(u) + 0 3 log(142-j) l+2 =9 for
0<5<1

[ € N*. A quickly study show that
\_lOg(erv(u))J-i-l

[O,e‘%l"& log.. @) o= e~ i@tV ) o= frletVin),

=0

Observe by Lyons’ change of measure that

vn
1 ux—l—V(u 1 —zo—0 -V
EE Z W, Bkl e <o Totviw My = EE Z Z e 2 eV
lu|=k,u€S 4 k=0|u|=k,ucS 1
R(x — A)e 227°
<
€
—0
< 0272 —x
o €

Same

1 u +V(u N
€ ; 0:| ‘ % :s n,B,kill {Cff’“(”V(“))ZW:,’ZIX{“)ze*fz(rﬂf(u))}
u ue A
: BZH (evu)= 00< ;lﬂlog(ur/sli;%ij)
< € E E e Js ]l{Wug:xl(u)zeffl(”+v(“))} ,

lu|=k,ueSa
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which is, by Markov property, equal to

1 +V(u))—0 log(I+1+2-5) N
A (e V() 0§J§l+1 - P (Wn +p B,kill — > e_fl(x—‘rS)})

(S %

k=0 |u|=k,u€S o

mlr—l

5=V (u),|u[=p,ucSa

As u € Sy implies |u| < /n

log(14+142—5)
. )  @rv)+e y lstiilizen
P <W;’fj55 il = € fl(ﬁs)) < cpge " %" osjst P
P 5=V (u),p=|ul,u€S

it follows that

1 Tr7uz+V(u
-F Z D Wi L n v v s ae vy
k=0|u|=k,ueS o
vn —0
1 cosR(x — A)(1 + 2
< B[S T eV ) < ( (+2)7 o
€ k=0 |u|=k,u€S 4 €
coCor(l+2)7°
< G 27(1 +2) re=%.

€

So we sum all these inequalities up to co to obtain

u z+V(u —x
Z Z n,B,kill Trusz+V(u) r logy logy z 2 € S ne xX.
{W Bk e }
k=0 |u|=k,u€S 4

Hence we have proved exactly (5.7) with ¢ = 26 . O
Proof of (i bis) Suppose that there exists cog,c29 and czp such that for any n,j € N*, p <
Vn,s<0,z>1

(513> (Ws+zﬁ,kzll {wete <e—c28logy 10g(r+j)}; Mn—p > CLn(SL’ + 55— j)) < Cgoe—(m—l—s)e—cng’

p,B,kill =

then for ©z = x + <2 2 we get trivially

€29
E(Wste log 1 1 ‘[ < cgpe” e H Y,
n—p,@,kill L (e e 28llos s os(ori) B (M San (a-bs—(1— 'za' Y/,

Since log, log(xz + j) — éj < log, log, x when x,j > 1, for some c3; > c3p then for any
n,j €N p<y/n,s<0,x>1
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. _ _c20;
<er+;§ﬁ,kzll (wete <e—casllog log @)y ; My—p 2 an(z + 5 — J)) < czre” e H

[ul,B,kill =

So if the last inequality is true then

True4V
p Z WS,E,mzz(")]l{Wu 4V (u) ¢ —epg logy logy o > 1, M, > a,(x — j)

wes . ,B,kill
s+x —
S E Z E (W Iu‘ B8, klllﬂ{WS+‘u‘ 5ok ”< 7c28[10g+ log:c lu ‘>an(m+V(u) )} u € S N] 5 V(u) — S)
u657%

_ 29 _ 29 K7
< cge e ERA D) Z e VW | < 3% %’QJR(x—l— 7‘7)

ucsS «j
-2
< 0(4)6_%_‘1(4)".
with cuy > 31 and cuy < co9. Thus (i bis) is true if (EI3) is too, but it’s exactly the
1+c
same reasoning. It’s suffices to introduce fi(x + V(u) + j) = (%m)l(x + V(u)+7) +
9 3 Leli2) and keeping in mind

0<s<l (41+c lﬂ; )s

e—@ log(l+1+2)e—m—se—0293 ’

E (ete | |
n—p,,kill {WS*p spi€le fl(””Jrs“),Cff”l(”hwv(“)ﬂ)],Mn,pzan(gc—i-s—j)} >~

thanks to Lemma
Proof of (i1) By Lemma L6, if n > 5, p < y/n and s <0

e—(x-l—s) )

N
VAN

B(x+5) 11/ kill
Ey < W pﬁ]]'{e 5(1+5)szll ﬁ<e (:c+.s)}

E e~ B(z+s szll < ¢ e—(x-l—s) 1 e Y
Y n— p,ﬁ {2¢ 52 (ac+s)> ,B(z+s)wkzll zef%(”w“))} = 26 ( + y)
117 kill (wts) .
E B(Z‘-ﬁ-s W L < oo . N .
! P {20 o @V, —Blata) RN >e ﬁtﬂ(zW(u))} =~ C26 ( Y)

1
We continue until 2¢ 7 > 1 e > @(log(z + s) — loglog2). We get at most
clog(x + s) term which explain that:

(er—i_gﬁ,kzll (Wets <1}> < cyslog, (w4 5)(1 4 y)e Ve ),

n,B,kill

Remark: Proof of (ii bis) run like proof of (i bis) knowing (i). O
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5.5 End of proof of assertion in italic

Now we can affirm that:

For any K,e > 0 there exists A = A(K,¢) and X > A (which depend only of R)
such that for any (1, ..., 0, A) € [—K, K|F*L there exists N(e,A) such that for allm > N,
z € [X,X + 3logn]

(5.14)

<m{ Z eﬁ?(f] I;zll > ijV(u)}’ Z Bn,x—A(u) > 1) — cox(6’ 0, A) <e

J<k ueSa ueSy

It remains to make disappear S4 to obtain our result. Let e > 0. We see that for any r > 0,

p <3\U\ > /n:V(u) € [-r,0], mmV(uj) > —7”) < DY E|D e ro JminV (u;)> —r}

>Jul
K>y | Jul=k

— Z E [esk,Sk €[-r0, S > —r}
i<k,

k> ="
< ZP(SkG[TO]mmS >—r)
k>v/n

jzk

We notice that P (Sk € [-r0],S; > —7") < ¢(1 +r)%k~2. Therefore

P <El|u| > /n:V(u) € [-r, O],;(Izli‘ﬁ‘/(uj) > —7“) <c(1+7)2(v/n)>.

We also observe that:

P(FueT:Vu <-r) < ZE Z Liv (u)<—r,V (ug)>—r Vk<n}

n>0 lul=n

= SE[e%, 8, < =18 > —r Vk <1
n>0

< e

Ontheevent{‘v’|u|2\/ﬁ:V()>0}ﬂ{‘v’u€TV()>A—:E} >
andM, < 3(logn) — (z — A) if and only if > ﬁ(zfv’c(ﬁjﬁ) >land ) Bp.-a>1. Moreover

u€ES 4 uUES 4
with the two previous Propositions there exists X > A > 0 such that for n large enough and

x> X.
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<

“p <m{Wnﬁj > Pi@=0 M, < apn(z — A)) —cox(B,6,A)

x .
i<k

< 032(1 +x— A)2

eZC
> (\/H)S _'_eA—m + ;E (ﬂ{z ng/,n,x—éj > 1}7 ZBn,m—A(u) > 1) - COX(ﬁv(SvA)
J<k u€eSy ueSa
032(1 +x— A)2 Az
< +e +n.
(vn)?
The assertion follows easily, if x € [X, X + loglogn]. O

6 Appendix

6.1 Proofs for the killed branching random walk

We state and prove 6 Lemmas. Their proofs require continual references to [3]. We re-
call that &, = {Vk < n —b,Vv € Q(wy), >II1‘i1|l V(u) > an(z) + A} and Oars(6),905,y) ==
. Remenber also that Wf;(x) = n%BWf’BL(z)

{oﬂj(6j+L)§ ZbeBj(V(Z)+y)ﬂ{v(z)+y<5j+L+A,]rg)<i[l])V(zk)+y>(5j}} ’ )

Lemma 6.1 For any € > 0 there exists Ly > 0 such that VL > Ly, A,z > 1, n € N

‘P (Wf;(x) > 7 M < an(z)> —P (M" < a,(z))| < e

Proof of lemmal6. It’s a consequence of Lemma 3.3 [3], indeed keeping in mind that there
exists Lo such that VL > Ly, z > 1,n € N we have

ZP (M,lji” S [n(l’ —|—j)7 mki”’(n) ¢ Zm—l—j,L) < ZEe_je_m
Jj=0 o

ee ",

IN

we notice that

ZE ((]I{W;%LZCW} - 1)]1{Mf§i”eln(x+j)}>

>0

= ZE ((]l{’WV:;BLZCW} — 1)(]].{Mﬁilleln(m_i_j)’mkill,(n)EZz+j,L} + ]].{Mﬁilleln(m+j)’mkill,(n)¢Z1+j,L})> ‘
J=0

= D_E <(]l{'wv,ﬁbLzeﬂw} - 1)(]1{M,';i“efn(:cﬂ),m“”wsézwL})) ‘
j=0

—x

IA

€e
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Last equality follows from MU € I, (z + j), m*™ ¢ Zz+iL = WA L> e, O
Lemma AITIVK,n, L,A > 0 3D(A,n) > 0 and B(A L,K,n) > 1 such that Vb > B, n >
b, x> D and A € [-K, K]

3
2

(6.1) Q((&)"wn € Z2~™) <pn~

Proof of lemmal[{.11 Let K,L, A,;n >0, and A € [-K, K|. We take numbers (ex,0 < k < n)
such that

o [ KV if 2<k<3n
(6.2) €k = Ck _{(n—k)1/2 if Sn<k<n-—a’
and denote
B o0 if OSI{ZZ%
(6.3) dk—dk(”>x_A’L)‘_{max(%logn—x+A—L—1,0) if §<k=n

We say that |u| = n is a good vertex if u € Z*~*% and

Z e VO=d) ] L (V(v) —d}) 4} < Be V1<Ek<n.

weN(uy)

According to Lemma C.1 [3], there exists B(= B(L)) such that, forn > 1 and x — A >0

(6.4) Q(w, € Z*™F w, is not a good vertex ) <

el

For &, to happen, every brother of the spine at generation less than n — b must have its
descendants at time n greater than a,(z) + A. In others words,

(6.5) Q((&,)¢, wy is a good vertex) 1-— H H p(u ), wy is a good vertex | ,

k=1ueQ(wy)

where p(u,z — A) = Py (M}™, > a,(x — A)) is the probability that the killed branching

random walk rooted at u has its minimum greater a,(z) + A at time n — |u|. From Lemma
3.5 [3], we see that

—logp(u,z —A) <1 —pu,z — A) < eg5(1 + V(u)y)e @AV,
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Since w, is a good vertex, we have for k < n/2 (hence d, = 0), > (1+V(u)p)e V™ <
u€Q(wy)

1
Be % = Be "™ Tt implies that for large enough and 1 < k < n/2,

1
[ plu.z— A) > exp(—czaBe = De ),

u€Q(wr)
It yields that
[n/2] n/2 N
H H plu,z— A) > eXp(—C34B€_(x_A)Ze_km) > exp(—c35Be_(m_A))_
k=1 ueQ(wg) 1

Therefore, there exists Dy(A) > 0 such that for any x > D

[n/2]
(6.6) IT II rtwz—24)<@-n'
k=1 ueQ(wg)

If k > n/2, we simply observe that if M} < x, a fortiori M; < x. Since W, (defined in (Z.2)
is a martingale, we have 1 = E[W,] > E[fe ] > e™*P(M; < z) for any [ > 1 and = € R.
We get that

L= pluz — A) P (M < a,(2) + A~ V(u)) < eV,

We rewrite it (we have 2 — A > 0), 1 — p(u,z — A) < n2e"VWe 24 = o= (V(u)=di)A-A+L
A—A+L

for n/2 < k < n. Since w, is a good vertex, we get that [ p(u,x— A) > e~ 36%e =
ueQ(wg)

_ _\1/12,A—A+L
e—cas(n—k)/ e . Consequently,

n—>b L
_CS6C+A+K+L Z e—(n—k)12

b
i_[ H p(u,x - A) >e Ln/2]+1

k=|n/2|+1ue(wy)

It yields that there exists B(A,n, K, L) > 1 large enough such that Vb > B, n > b, we have,

(6.7) H H plu,x — A (1—77)%.

=n/2|+1ue(wy)

n—b
In view of ([6.6) and (671), we have for b > B, x > Dy and n > b, [[ [] plu,z—A) >
k=1ueQ(wy)

(1 —n). Plugging into (6.5]) yields that
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Q((£,)¢, wy, is a good vertex) < nQ(w, is a a good vertex) < nQ(w, € Z*~%).

It follows from (6.4]) that

Q((&) wy € ZI_A’L) <n(Q(wn € Zx_A’L) + n_%)
Remember that the spine behaves as a centred random walk. Then apply (471) to see that
Q(w, € Z* L) < cyyn~2with ¢37 which run for any A € [—K, K]), which completes the
proof of the Lemma. 0
Lemma B.12ly — Fa1,(8,9,A,y) is Riemann integrable and there exists a non-increasing
function F : R — R such that |F(z)] < F(z) for any x >0 and [ . 2F(z) < cc.
Proof of Lemma [{.13 We recall that by Proposition 1] the spine has the law of (.S,,),>0-

1 — .
We see that % is smaller than 1, and e @)=L < e, Hence, |Fa 14(3,8,A,y)| <
|u|=b

P(S, < L —x) =: F(xz) which is non-increasing in z, and foO F(z)xdr = ;E[(L —

1
2
Sp)?1is,<1}] < 0o. Moreover, observe that

eV(wb)+y—L]l{v

wyp )=M,
Farp(B,6,A,y) :=Eq o) b}]1{V(wb)+ye[L+A—1,L+A},lglgrév(wk)ﬂzA}HQA,L,b(ﬁgw5;'72/)

> Lva=mn} =

The fraction in the expectation is smaller than e®. Using the identity |1z —alp| <1 —a+
|1 — 1p| for a € (0,1), it yields that for yo > 0,e > 0 and any y; € [ya, y2 + €,

S | Fars(B:8,8,31) — Farp(B,8, A1) <1—e“+ > Eql[0ars(B,0;,11) — Oars(B;, 5, v2)|] +
J€l0,k]

Eq 1Ly ) +ueln-tlminy )+ 200 — Ly (w) +oelL.L—1miny (@) +220}] |

We easily deduce that y — F4 1(8,d,A,y) is Riemann integrable. O

Remark: The interest of this Lemma is to allow the application of the Lemma 2.2 [3] to
the function Fa rp.

Lemma 4.13] Let L, A > 0 and K,n > 0. Let D and B be as in Lemma [{.11] then Vb >
B,(6,A) € [-K,K**!' 3N(b,L,8,A,n) > 0 such that Vn > N and Vz € [D,logn)]

(6.8)
Viwn)q , -
x e {V(wn)=MFll o, cZz=AL} .
e EQ Z 1{V(u):MM”} H]I{Wf”;j(m—5j)205j(z*5j)}7fn - CA,L,b(B, d, A) < (2_|_e +1>77’
|u|=n " i<k
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Proof of lemma [{.13 Let A,L,A,n,D,B be as in the Lemma 11l Let n > b > B and
x > D. We denote by Qm the expectation in (6.8). By the Markov property at time n —b
(for n > 2b), we have

Qm = EQ [ka(V(wn_b)), V(wk) Z dk Vk Z n — b, fn} s

where we recall that

B (o0 if Oﬁk‘zg
dy = dp(n,x — A, L) .—{ max(%logn_x+A—L—1,0) if g<k§n

and F*(y) is defined by

(6.9)

ey gy

Eq Oa,np(B5,05,0 = an(® + L)Ly (wy)eln(a—a)minV (wp)>an(@—A+L)} |
’ ‘%;b]l{V(U)=M,§””} <k " ’ S
e¥tViwn) ] kil
{V(wp)=My*"}
= EQ - ’ H<>A7L7b(ﬁja 5j> Yy — a’n(x + L))]l{y+V(wb)€In(:(:—A),y—i—rgligV(wb)Zan(:(:—A—i—L)}

Mzzb]l{Wu):Mfi”} P

Notice that F*l(y) < nfe~e2Q, (kr%g]v<wk> > au(e+ L), V(wr) € Lia - A)). Hence
S )

Qi — Ea [ (V (@), Vien) > di Yk > n - b]|
= Eq [F"(V(was)),V(we) > di, Yk > n — b, (&,)°]

3
n2 .
< e_xeAEQ {QV(wnw (kgl[g})]v(wk) > ap(z — A+ L),V(wp) € In(z — A)) L v (@) > di vk <n—bi(n)°)

By Markov property, the last term is equal to

3
nz
e_xeAEQ (wn c Z(E—A,L; (gn)c> S ne—xeK-l-l

Y

by our choice of D and B. Therefore

(6.10) QiR — Eq [PV (was), V(w) = diy VI <n—1] ‘ < ne®.
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We would like to replace F¥(y) by n2e *Fu 1 (8,8, A,y — an(z + L)). We notice that

3

n2
e_xFA,L,b(/Ba 5) A? Yy — an(x + L))

eV (wn)

]l{V (wp)=My}
Q Oa,L6(Bj, 05, —an(x + L)Ly (wy)eln(@—a),minV (wy)>an (z—A+L
NS T Jll i 0 (Vi) €la(z=A)minV (wn) 2an (@-A+ L))

|u|=b
We observe that the only difference with (6.9) is that the branching random walk is not killed

1 .
. Tiv(w,)= V (wp) =Ml . .
any more. Since Z{\;l( =My} Z{ 11( Gl S N always smaller than 1 and is equal to
e T eV =agthy

zero if no particle touched the barrier 0, we have that, for any H > 0 such that H < a,,(x+L)

Lven-m) - Iven=my | L i5jul <bev (w)<an (a+ L+ H))
- u|<0:V(u)<an(r+L+ .
sz]l{v(u):Mb} I‘Zb]]-{v(u):Mécill}

Consequently,

‘Fki”(:c) e Fu (8,8, Az — an(z + L))

< Eq, |:ev(wb)]l{3u|<b:\/( )San (@ LA H), min V(wy)Zan (= At L), V(w) el (=)}
nzed
< ot :EQz ]]-{El\u|§b:\/( )<an(z+L+H), m[ln V(wg)>an(@—A+L),V(wp)Eln(z—A)}

= n2e® 7 Gy(r — an(z + L)),
with

Gu(y) = Q, ({El|u| <b:V(u)<—-H}N {Jélél},]v(w’“) > A V(w) € [A+ L — 1,A—|—L]}) :

It shows that, for any H € [0, a,(x + L)]

Q Hszll wn b ) — n%e—xFALb (6, (5, A, V(wn_b) — an(:z + L))} ]l{V(wl)zdl,Vlgn—b}]
3
nze

< Eq [Gu (V(wn—p) — an(x + L)) Ly (w)>d vi<n-b}] »

we choose H such that C*fjiﬁ Jy20 Gu(y)R-(y)dy < 5. The function Gy satisfies the
conditions of Lemma 2.2 [3] for the same reasons than Fy4 15(8,6,A,.). By Lemma 2.2 [3],
it yields that
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EQ HFkill(V(wn_b)) — n%e_xFAL,b (ﬁ, (S, A, V(wn_b) — an(x + L))‘ ]l{V(wl)Zdl,Vlﬁn—b}] < ne_x’

for n large enough and x € [0,logn]. Combined with (6.I0), we get

(6.11)
QER) — n2e " Eq [Fars (8,8, A, V(w,y) — an(z + L) Livzamzn] | < 207e7°.

Remenber the definition of ¢4 1, 5(8, d, A), we apply again Lemma 2.2 [3] to see that:

CA,L,b(B> 57 A)

n

Eq [Fary (8,0, A,V (wnp) — an(z + L)) Ly w)>dvi<n—b}] ~

Y

Njw

as n — oo uniformly in x € [0,logn]. Consequently, we have for n large enough and
x € [0,logn],

n%e_mEQ [Fars (8,8, A, V(wp) — an( + L) Liv)savi<n—sy] — € “carp(B,8,A) <ne™™.

The Lemma follows from (6.11]). O
Yet two very close Lemma.

Lemma 6.2 For all L >0
(612> lim lim exP(Mrlfill e [n(x)jmkill,(n) c ZI’L) — .

T—>00N—r00
Cy, is defined in |3] p 22.

Lemma 6.3 For all A,L >0, (§,A) € R?
(6.13)

lim lim ¢*P (’Wﬁj(x —0) > P MR e [ (), mP ) ¢ Zf”‘A’L) = car(B,6,A).

T—00 N—00

We give only proof of 6.2 is identical.
Proof of Lemmal6.4. Let n > 0. With Lemma 3.7 and 3.8 of [3] there exists A > 0 such that
there exists By such that for any b > By, n > 1and x > A

A

3
2

Q (&) wn € Z°7) <

n

"y )=ay)

emEQ , Wy € Zw’L,ﬁn — CL,b < n,

> Lwy=nginy

|[ul=n

|ICLs—CL| < n.
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By combining this three inequalities we get: ¥n > 0, 3N, A > 0 such that for any n > N
and = € [A,logn]

e® ‘P(M::i”,mki”’(n) c ZZ,L) . CL‘ < 377

6.2 Proofs for the section 5 and proof of Proposition 2.1]

Careful reader knows that it remains two lemma without proof. We want also prove in
Proposition 2.1l For this purpose it will be convenient to extent the statements of this two
lemma with additional results. Extensions will be recognized as the assertions starting with
(. bis). Recall that the event of particles S4 has been introduced to give a precise estimation
of

k
P (VB s> 1, S 21),

Jj=1 ueSy ueSa

According to proposition 4.3 which treat the tail of distribution of W,f%l, it was necessary
to suppose A large. For Proposition 2.1l we need simply a bound, but it must be uniform in

n € N. This requirement force us to study also

ﬂ{ Z ng/,n,x—éj (u) Z 1}a Z Bn,x—A(u) 2 1 )

]:1 UAES,KJ/Q UAES,J/Q

with j large and k < ¢19 (c19 the constant from Lemma [£.6)). Thus in the following our

statements will include two part, first for the precise estimation second for our uniform

bound. Proof of the second part which are very similar, are not always given with all details.
We recall some notations for u € Su:

=BV (2)—V(u))
Wo g ki = E e ]l{ker[r‘nn V(zk) =V (1)>0} 5
|z|=n,z>u
Ww,0
BY  (u)=1, BV (w)=1
Bjynvx {W# iZeﬂ(“‘"+V(u))}’ Bin,x .3, kill logy logy x)
B kill J {eﬂ(;+V(u))> — 2y log ¢ log i }
wwe = e Papyu for any a € R
n,Bkill — © n,B,kill or any a .

and “tilde“ means always xn 28,
Lemma [5.3] (i)Recall that R(x) is the renewal function of (S,)n>o0 previous defined. Let
€ > 0. There exists A > 0 such that for n large enough and z € [A, (log n)%],

(6.14)

E|> Busalu )HBgf,n,x_(sj(U)] —X(B,6,A)| <e

u€eSa i<k
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(i bis) There exists c(3), oz > 0 such that Vj,n >0
(3):=P Z B> 1, M, > ap(z—j) | < c@e@ize”.
uesS «j
2
(i3) For any |u| > 1, let T'(u) := {V1 < k < |u| : £(uy,) < eV (-0+2=A/2} - We have

P( Z Ws’g:]:i‘l/l(u)]].r‘(u)c > 1) < cexplog, (x)e™,

UES 4
uniformly in A > 0, A € [-K,K] and n > 1. In particular P( Y BY Ipwe > 1) <
uES A
¢ log, (z)e™
(ii bis) There exists c(2), a2) > 0 such that Vj,n >0
W#ﬁ,km : —aa) —x
(2) =P Z mﬂr(u)c > 1, My, > ap(r —j) | < cee “@log, (z)e™.

u€eS K
2

Be careful, here T'(u) := {V1 < k < |u| : &(uy) < e(V(“k—1)+r+%j)/2}_

Proof of lemma[2.3. Start by (i), let k < y/n. By the Markov property at time k, we have

Y Buo-a(@][BY nams, ()= k}]

UES A i<k

(615> Z ]l{\u| k}E <H]l{cﬁj(:c 55 +T)<szzz }’ Mkzlk < an(LU—FT B A))

ueSy J<k r=V(u)

We observe that V(u) € [A — z,0] when u € S4. By Proposition 3] there exists A > 0 and
N > 1 such that for any n > N, k < \/n and z + r € [A,logn],

| E—HE (H]l{eﬁ](r 55 +T)<szzz }7 Mr]fllfk < an(x +r— A)) - X(ﬁ’ 5’ A)| <e

i<k

Plugging it into (6.13]), it implies that, for n > N,k < y/n and z € [A,logn]
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D eV k}]

> Bua-a@] [BY ams, (W) k}] - x(8,6,A)E

ueS 4 i<k ueSa
<eE | e g
UES A

From the definition of S, we observe that by Lyons’ change of measure E | Y e~ )]l{lu\ k}]

UES 4
P(Sy > A—x,5, < S,V0 <l < k—1). Hence, we can rewrite the inequality above as

> Bua-aW)][BY 1as, (W)= k}] —X(B,8,NP(S, > A—12,5, <S,V0<Il<k—1)

uES A 1<k

<P (Sp>A—2,8 <S,V0<l<k—1)

By definition of the renewal function R(z), we have R(x—A) = > P (Sy > A— 2,5, < S,V0 <l <k —1).
k>0

Therefore, summing over k£ < y/n (and since |u| < /n if u € Sy), we get

S B a@ [ [BY s, <u>] ~X(B,8, M)R(x — A)

u€Sy i<k
<eR(w—A)+x(8,6,0)> PS> A—2,S <SV0<I<k—1).
k>/n

Observe that

P(Ssz—[L’,Sk<Sl,V0§l<k‘—1)

IN

P (Sk €A — x,O],minSl > A— :17)

3

ng(l—l—l’—A) (1‘|—/€) 2
cas(1+logn)?(1+ k)2,

VARVAN

for n > 1 and = € [A,logn]. Therefore, P(S, > A—x,5, < S,V0<Il<k—-1)< 039ﬁ <e€
for n large enough. Since R(z — A) is always bigger than 1, we obtain for n > N, and
x € [A,logn],

S B A [BY o, (0)| = X(8,8, M) R(z — A)| < Rz~ A)(1+ x(B,6,4))

uESA i<k
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This ends the proof of (i). For (i bis),

3) < E Z E(]l{cﬁ(zw)g’v[“/ﬁu Mm” > ap(T+7 =)= V(u)

ucsS «j
-2

cige” YE E e V-

ueS K
2

IN

cige e R(x + %)

IN

IA

c(g)e_o‘@)jxe_:”.

Now we treat (ii) and (ii bis). Similarly, we have by the Markov property, Lemma and
Lemma [5.6!

P 21
UES 4
u x—l—V(u w
S P Z W 76 kill ug:xl(u)gl}]ll"(u)c Z 1/2) + P (Z Bﬁ7n’w]11"(u)c Z 1)
ueES 4 uES A
u x4V (u w
S E Z E ( n,B,kill ]l{Wug:xl(u)Sl} + Bﬁ,n,x) ]ll"(u)c>
uES A
< 10g+ Z e—V ]11"

UES 4

The application of Lemma is justified because u € S implies |u| < y/n. Same, for (ii bis)
note that

P Z W";Z;{l raye > 1, My, > an(z —j) | <e *@Ieylog, (x Z e V) Lr(ue)-

uesS xj ucsS xj
2 2

Conclusion follows from this affirmation: there exists c4o such that for any X € R

Vn
ZE( Z ]lp(u)ce_v(“)) < cyo.

k=0  |u|l=k,u€Sx
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With our integrability condition (4], this assertion is included in a proof of [3] (see page
98,29 and 30). O

Lemma 5.4 (i)Set K,0 > 0. There exists a constant co3 > 0 such that for any (61,2, A) €
[—K,K]? x> A>0, and n > 1 we get the following inequalities:

80 Ly
(6.16) ( > By s (wBh (v )np(um@)) < cpy(log )T e %64,
uF#v,ES 4
B0
(617) E( Z Bgfix 61( )Bn,x—A(U)]lI‘(u)ﬁF(v)> <023(10g:1;') 1+1e—9ﬂe_A.
uF#v,ES 4

(i bis) There exists constant oy, cay > 0 such that for any j,x > 0, and n > 1 we get the
following inequalities:
(6.18)

E( S BY (W) Bua(0) ey Mo >an<x—j>) < cwe @i (logz) T e,

uFv,ES 4

Proof of Lemma[5.4 (616) and (6.I7) have quasi-identical proofs. We will thus treat only
the first, in the particular case 6; = d2 = 0 (case different to 0 is identical). For (i bis) we will
make some checkpoint (signalled by a For (i bis)) at the important moments for explain
the proof, but in a sake of concision we don’t reproduce entirely the proof. First observe
that

(6.19) (Z BY(u) B! (v >ﬂr<u>ﬂr<v>)S2E > B wBY (0)lr

uF#veS uFvES A, |u|<|v|

Then for [u| > |v|, and u # v, notice that B)";’(u) depends on the branching random walk
rooted at u, whereas B} (v)1{ues,} is independent of it (even if v is a (strict) ancestor of
u). Therefore, by the branching property,

( Z B (u) B, (v )]lr(u)]lr(v)> <2E Z O (V(u) + 2,1 — [u) B (0) L upesay Ire)

uFvES A uFv,|u|<|v|

with Ve > 0and I <n

o1



0 Wi’ o 12 tog, 1o,
(6.20) %(r,l) =P —g e PR
e T

By Lemma6, we have ®(V (u)+xz, n—|u|) < ca0e™ V™ (log(z+V (u)))7T < ¢ (1ng)5_ —z—V (u)
for |u| < y/n, which is the case when u € Sy4. It gives that

E Z BK:EQ(U)BK:}?(U)]lF(u)]lr(v)]l{u,uesA}

uFv,|u|>|v]

< ¢9p logz)s ZE Ze ]l{UGSA}]l{F(u Z B ]l{UESA}

k>0 lu|=k v, v| <k

The weight e=V® hints for a change of measure from P to Q. For any k > 0, we have by
proposition AT] (ii)

E Y e lpeonlpwy Y, Bl lpesy | =Ea [Lwesalrw) O, Brd(0)lpesy
|u|l=k v;ﬁu lv|<k vF#wg,|v|<k

We have to discuss on the location of the vertex v with respect to wy. We say that 'u non eq v’
if v is not an ancestor of u, nor u is an ancestor of v. If v # u and |v| < k = |ul, then either
‘v non eq u’, or v = w; for some ! < k. The Lemma will be proved once the following two
estimates are shown:

(6.21) Y Eq

Z B (0)Ljvesay, wi € SA,F(wk)] < c4g(logx)%e_A,

k>0 vV non eq wy
(6.22) ZZEQ ),wi € Sa, D(wy)] < 044(10g:)3)%+1e_‘4.
k>0 1=0

i kill .
For (i bis) ®°(r, 1) := P (Vng > ol losslorsr] kil > g (g g j)) and ®°(V (u), n—

lul) < er1ge™ 9 (log x)%e_m_v(“). We obtain also

02



< cige” (logx ZEQ Lwesay Iren) Z Bv‘:‘,/f(v)]l{veSi%jﬁ M, > an(z — j)

k>0 vt o] <k

So it suffices to prove

Z Bxff(v)l{ves m.},wk c S_%j, F(wk)] S C45(10g :L’)%e%j’
-z

v non eq wy

(6.23) > Eq

k>0

k—1

_Bo_
(624> ZZEQ [BK:’EG(WD,M]@ - S_%j, F((A)k):| S C46(10g ;1;‘) /371+1e

k>0 1=0

ofZ

Since k < c19 we will get well (6.I8) with oy = 2.
Back to (i) Let us prove ([6.22). We have

ZZEQ wk ESA, ( )}

k>0 1=0

= Y Y Eq[B ), Wi € Sa, T(wr)]
1>0 k>1

= ) Eq | B (w)lmesa Y Luesaara)
>0 k>1

Let t; be the first time ¢ after [ such that V(w;) < V(w;). If £ > [ and wy € Sy, then
V(wg) < V(w;), which means that necessarily k > ¢; (and ¢, < y/n). Moreover, we have
I'(w;) C I'(w;) if ¢ < j. Thus,

Z]l{wkESA}ﬂF(wk) = ]l{wtleSA7tl<\/ﬁ}Z]l{wk€SA}ﬂF(wk)

k>1 k>t

< ]l{thGSA {1 <v/n}NT(wy,)) Z]l{ m1n V(w])>V(wk)>A x}
k>t

We observe that B,‘fff is a function of the branching random walk killed below V(w;) and
therefore is independant of the subtree rooted at wy,. Therefore, applying the branching
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property, we get

EQ B?‘:[,/L;,‘e(wl)]]'{leSA}Z]l{wkESA}ﬂF(wk)]
k>1

IN
=
o

w,o
Bn,x (wl)]]'{wtl ESA,tl<\/ﬁ}ﬂF(wtl)Z]]-{tlrzlji_rékV(wj)>V(wk)>A—x}]
k>t -

= Eq | B @)Ly esaneymrun R@ = A+ V()|

We have V(wy,) < V(w;). Since R is a non-decreasing function, we obtain

EQ Br‘?,/f (wl)]l{wZGSA}Z]l{kaSA}OF(wk)]
k>1

IN
&=
Qo

_BKf(wl)ﬂ{leSA}]l{wtlESA,tl<\/ﬁ)}ﬁF(wtl)R(x - A+ V(wl))]

:]l{wlegA}R(a: C A V(@)B(V (@), n — 1)}

IN
=
Qo

IA

LucymyEq {]l{IJ¥1<ifllV(wj)>V(wl)ZA—:v}R(x — A+ V() (w),n - z)] ,
where, 75 ;= min{j > 0: V(w;) < 0}, then (when i > n — \/n) and 5(7’, i) is:

kil
Q (To‘ <V, s > Tl s 1 < < g (wy) < el e )2
e xTTr

By Proposition 1] (iii), it implies that

Eq

B, (Wl)]l{wlesA}Z]l{wkesA}mr(wk)]
k>l

(6.25) < ]l{lg\/ﬁ}E {]l{m<irllV(5j)>V(Sl)ZA—$}R(x — A+ V(S[))&D(V(Sl), n — l) .
Let us estimate &D(r, i). We have to decompose along the spine. Notice that

N Ty WV(z),klll 50
O(ri) = Q|1 <V Y — el 2 e TR < < g(wy) <e

j:1 ZGQ(MJ‘)

7“+V(u;j71)+ac7A
2

o4



with by definition: Wy’ljllﬁl = > e_ﬁ(”‘/(z))]l{ min V(z)+y>0}- 1t's smaller than than
lyl=i—j = -

Ty A1 V(z) Kill

S % Wisis —[£2, loglog(a-+1)] (r4V (wj 1)+ —A)/2
2) ki > e 'B- 1 < e j—
Q eﬁ(x-i—r {Wz‘/(] %k u <1} 6( )

Blatr) =

J=1 zeQ(wj)

To A1 V(z) Kill

‘l‘Q Z Z z iy B WV(z) il > e [ loglog(x—i—r] 6( )< e(r—l—V(w] 1)+z—A)/2

B(x-l—r
¢ { lﬁ (Zcfr) 21}

J=1 zeQ(w;)

We treat each term separately. First is smaller than

v [ TV (@) kil w0
Q Z %1 W_\/(_z}},mll ,f(w]') < e(r+v(wj’1)+x_A)/2,j <Ty (log(:)s + T’))ﬁ
=1 | ze00w)) {(—ser<1}
vn [ A7 kill 50
= Q Z EV(z Zx—ij—:; 1{ kzllﬁ 1}), f(w]') S e(r+v(wj71)+m_A)/2,j < 7’0_ (log(x + 7’))57
=1 [ze0w) Bt =

which, according to Lemma [5.6] line (5.9)), is smaller than

N

_Bo_ . . _

025(10g(:c+7’))ﬁ*1+1e_(””+7)ZQ Z (1 + V(Z)+)e—V(z)’£(wj> < e(r+V(w371)+x—A)/27j <7
j=1 ZEQ(LUj)

The second is equal to

o < Vn, Z Z 1 Hve >1,V1 <j<715,&(w;) < oV (wj—1)+o—A)/2

Wi 3.8
J=126Q(w;) VoAt 21

< ZEQ Z 1 TV )kzll ,f(w]') < e(r+v(wj71)+x_A)/2,j <7y
j | 2eQ(w)) {Tﬁ(zm 21}

v kil
VWV ek
= 75 T Wi xr— . _
= ZEQ Z Py, <eﬁ(wir) > 1) LE(wj) < V@i e=)/2 4 o o
J=1 ZEQ(wJ

< 0206—(x+r)ZQ Z (1 + V(z)+)e_v(z),§(wj) < e(r+V(wj71)+:c—A)/2’j <1y

2€Q(wj)

The sum of the two terms is less than:
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S

e~ (@) <(log(m + r))ﬁﬁ Ty MC13> Q Z (1+V(2)4)e™V®, E(wy) < elrtVlimtem 2 j < 7

j=1 2€Q(wjy)
Vo
< cao(log(x —|—7“)) +le (:c—i—r)ZEQ [e—V(wj,l)(l + V(wj_1))e(r+V(wj71)+:c—A)/2’j < 7_0—} ‘
j=1

It follows by Lemma B.2 (ii) of [3] that

&D(r, i) < cyr(log(z + 7’))%He_Ae_(T”_AWZE[e_ 214 85.0),5 < 75]

j=1

< cag(log(x + T))%+1Q—Ae—(r+x—A)/2
Going back to (6.25), we obtain

Eq BX[,/JCG(Wl)]l{wlesA}Z]l{wkesA}mr(wk)

k>l

_Bo_ _ B -
< eig(logz) =1 te ™ E {]l{r}g?SPSﬁA—x}R(SC — A+ e St A)/2} .

We conclude with

D> Eq |B

>0

cas(log )7 e “yE [ﬂ{mlnS ssza-ayR(z — A+ Sp)e” Bt A)/}

>0

?(wi ]l{wIESA}Z]l{wkESA}ﬁF(wk)]
k>

IN

= cus(loga) e Y B, A[]l{mms > 5201 R(Sy)e” 0/ ]

>0
0

= cys(log x)%J’le_A /( . e @A R(2 — A+ y)U(dy)

)59+1 —A

< cu (lOg Z e

where U denote the renewal measure, and the last inequality comes from Section XI.1 of
[13].
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For (i bis) It suffices to replace A by 3 to obtain

ofZ

ZZEQ [ ), wi € S LB I'(wg)| < cap(log 1’)%+1e

k>0 1=0

Back to (i) It remains to treat (6.22). Decomposing the sum > along the spine,

v non eq wg
we see that

Z B, ]l{vesA}—Z Z ZBM V)L pesay

v non eq wy, I=1zeQ(w;)v>w

where Q(w;) is as usual the set of brothers of w;. The branching random walk rooted at x €
Q(w;) has the same law under P and Q. Let as before G := o{w;, Q(w;), V(w;),V(z),z €
Q(wj),j > 0} be the sigma-algebra associated to the spine and its brothers. We have, for
A Q(wl)

> @ (V(v),n — [v])Ljuesy|Goo

v>z

(6.26) Q | BV (0)1es | Goo

v>z

:EQ

with the notation of (6.20), which is

_0
< cp(logz)7Te "Eq

> e es,ylGo

v>z

We observe now that if v > x and v € Sy, then min  V(v;) > V(v) > A — . Therefore

|z|<j< vl -1
—V(v —V(v
EQ Ze ( )]l{veSA}‘GOO < EV(Z) Ze ( )]l{z<r;l<inv1V(vj)>V(v)>A—:c}] ’
v>z veT T

Thanks to (1)), we have

V(v B
Ze {‘ \<J<\ -1 (U])>V(U)>A w}]

veT

EV(z

=V (2) _
E Z]l{zsg_rlslftlsj>5i>fl—m—r}]

>0

r=V(z)
= ¢ VOR@x - A+V(2))

by definition of the renewal function R. Going back to (6.26]), we get that for any z € Q(w;)

6

(6.27) ZBKx(v)]l{vegAﬂGoo < cy(logz)i-te e VER(z — A4+ V(2)).

v>z

57



and For (i bis) it suffices to replace A by £ to obtain

(6.28) Eq ZBn y (W) lpes J}|G < ¢50(log x)%e_:‘”e_v(z)ﬁ’(m + % +V(2)).

v>z

Conclusion follows from this affirmation: there exists cs1 > 0 such that for any X € R

k
(6.29) ZZEQ Z e VEOR@+ X +V(2),wr € S_x,T(wi) | < cse’.

k>0 1=1 2€Q(wy)

This assertion is included in a proof of [3] (see p32, 33). For X = —A and X = % and by
combining (6.29) with(6.27) we get (6.21) and (6.23)) both. O

We can now prove Proposition 2.1 Recall the statement,
There exists ¢y > 0, « > 0 and N > 0 such that for anyn > N, j >0 and z € [1,loglogn]

(6.30) P(W,5 > e M, € L(x—j)) < cywe e

Proof of Proposition[2.1. Let cs5o > 55T B r7- We divide the proof in two case
First case, j > c50logn.

ﬁ
x A7 ) ne
P (eﬁ < Wn,ﬁu M, e [n(x o ])) = eﬁx Ze I{M”EI”(I —}

38
n2 1-8)Sn
eﬁx E (e( B) 1{Sn>an(x_j)_1})

IN

< e—weﬁ—le(ﬁ—l)(g(g—in logn—j) :

but j — sty logn > j = j/2 = /2. Thus P (% < Wiy, My € L(w — j) ) < espe e,
Second case, j < c5;logn.

P (Wn,glngﬁl > eﬁll"Mn € [n(llf —j)) <P (Hu cT: V(u) < —(:l? + %)) T

~J W;’iﬁykillﬂ{Mnfu‘l'V(u)Zan(;p_j)}
i (HM =V Vi) <0 i) 2 ot )) TP AV (W)+2) > 1

u€eS Kj
2

Two first term are similar to those encountered p37 in section ”End of proof of an assertion
in italic“. The same approach lead to

o8



P (Elu el :V(u) <—(z+ 5 ))+P <E|\u\ > n,V(u) < O,‘?%}il“/(u‘j) > —(x + 2—‘7)> < ey e

n§5 w,kill
once Kcsy < i. It remains to bound the third probability. P > O;(VV(V% >1, M, > a,(x —j)
ues K
-2
is smaller than (1)+(2)+(3)+(4) where:
W# kill 1
(1) = P ¢]1Fu]]- 98 o i log. = > = anan('x_]) )
HE;Hj eB(V(U)+x) " {cﬁ(”‘l/(ﬁufﬁslb) <e TA-T 8+ lo8t )} 2
W, 1
o n,B,kill i
(2)= P Z Wﬂr(u) > b% , My, > an(r —j) |,

uesS «j
2

3):=P| Y BY,.>1LM >ax—j)|.

ueS Kj
2

(4):= P (Elu,v,u # v € S_x such that BKf(u)BKf(v)]lp(u)]lp(v) =1,M, > a,(zr — j)) :

2

Back to Lemma [5.0] and [5.4] we have proved that there exists o), a(), a), au) and
C(1), C(2)s C(3)s C(4) such that

(1) < cpye ™ *®ize™, (2) < e *@/pe™

j (/3 )0
(3) S 0(3)6_0(3)]xe_x’ (4) S 0(4) Oc(4)](log .CL’) +1 +le—:c

We have thus all the elements and the Proposition follows. O

6.3 Proof for section 2

Proof of Lemma According to Kallenberg [17] Lemma 5.1, it suffices to show that for
any f € Co(R), ([g f(z)du,(z)) ey converge in law to some random variable u(f). Or
equivalently, for any f € C.(R) there exists Uy : R — C continuous at 0 such that

lim E (ewfR f(x)eimd“”(xg =Ws0) VOeR

n—oo

By property of the Fourrier transform and the fact that {f € C.(R)} = {z — f(z)e > €
C.(R)}. If f € R[X] and £(0)=0, it’s true. Let f € C.(R) and b > 0 such that supp(f) €
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[—bo, bg]. First we will prove that the sequence (E (eiefR f@ydpn(e))) oy admit a limit W z(0)
for any 6. Two we show that ¥ is continuous at 0.

Step1 Let M,e > 0, A associated to (ii) and b > by associated to (i). According to Stone-
Weierstrass theorem there exists a polynomial function ¢ € R[X] such that

M sup  |Q(e™®) — f(x)] = M sup

:L‘E[—b;i—oo] yE[O,eb}

Let |0| < M, V¥n,p € N*

1 €
Q) - fllox )| < 5

‘E (ew Ji f(w)O’“dun(r)) _E (ew fRf(me*ZZdup(m)) ‘ < ‘1 _E (ew fRf(r)—Q(O’z)e’zzdun(w)) ‘

X ‘1 _E (ew In f(w)—Q(c*”)c*Q”dup(x)> ‘ X ’E (eiefR Q(w)o*”d,un(gc)) ) (einRQ(m)e*“dup(gc)) ‘

So there exists N > 0 such that for anyn,p > N ‘E (ew Jr Q(x)e’zzdun(x)> - E (eie Jr Q(x)e”””d#p(x)) ’ <
€. By a trivial inequality, for any n € N*

‘1 —E <ei9 fR f(w)—Q(sz)C*QEdﬂn(w)> ‘ S 2F <]]_{IR e~ 20 dy, (z)>A} —+ ]].{“n([_oo7_b}>(]}>
0 x —Q e * ei2xd n\T
1 E ((e Jelf@)—Qe™) e dpn (z) _ 1) 1 IRefzzdun(x)g,Mn([_m,_b}:m)

€
4 A—

€+ 2
He.

IA A

The sequence E (ew et (m)f%d*‘”(m)) is Cauchy, hence admits a limit that we denote W(6).
Step 2. Let € > 0. Let Q such that M sup [Q(e™)— f(z)] < §. It’s clear by the
]

x€[—b,400
previous inequality that VO € [—M, M], |V () — Wo(6)] < 5e. We can resume by Ve > 0
3Q € R[X] such that V0 € [—M, M]

[T (0) — Tp(0)] < e

Hence Vg, is continuous at 0, we deduce that ¥ is too. O
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