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Convergence in law for

the branching random walk seen from its tip

by

Thomas Madaule

Université Paris XIII

Abstract. Considering a critical branching random walk on the real line.
In a recent paper, Aidekon [3] developed a powerful method to obtain the
convergence in law of its minimum after a log-factor normalization. By
an adaptation of this method, we show that the point process formed by
the branching random walk and its minimum converge in law to a Poisson
point process colored by a certain point process. This result, confirming a
conjecture of Brunet and Derrida [10], can be viewed as a discrete analog
of the corresponding results for the branching brownian motion, previously
established by Arguin et al. [5] [6] and Aidekon et al. [2].

1 Introduction

We consider a branching random walk on the real line R. Initially, a single particle sits at
the origin. Its children together with their displacements, form a point process L on R and
the first generation of the branching random walk. These children have children of their own
which form the second generation, and behave –relative to their respective birth positions–
like independent copies of the same point process L. And so on.

Denote by T the genealogical tree of the particles in the branching random walk, then T

is a Galton-Watson tree. We write |z| = n if a particle z is in the n-th generation, and denote
its position by V (z). The collection of positions (V (z), z ∈ T) is our branching random walk.

The study of the minimal position Mn := min|z|=n V (z) has attracted many recent in-
terests. The law of large numbers for the speed of the minimum goes back to the works of
Hammersly [14], Kingman [18] and Biggins [7]. The second order was recently found sepa-
rately by Hu and Shi [15], and Addario-Berry and Reed [1]. In [1], the authors computed the
expectation of Mn up to O(1), and showed, under suitable assumptions, that the sequence of
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the minimum is tight around its mean. Through recursive equations, Bramson and Zeitouni
[9] obtained the tightness of Mn around its median, assuming some hypotheses on the decay
of the tail distribution. A definite response was recently given by Äıdékon [3], where he
proved the convergence of the minimum Mn centered around 3

2
log n for the general class of

critical branching random walks.
One problem of great interest in the study of branching random walk is to characterize

its behaviour seen from the minimal position, namely, the asymptotic of the point process
formed by {V (z) −Mn, |z| = n} as n → ∞. The corresponding problem for the branching
Brownian motion (the continuous analogue of branching random walk) was solved very
recently by Arguin, Bovier, Kistler [5], [6] and paralleling by Äıdékon, Beresticky, Brunet,
Shi [2].

The aim of this paper is to establish analogue results for branching random walk. Our
main result, resumed by Theorem 1.1, will give the existence of the limiting point process
together with a partial description, which also confirms the prediction in Brunet and Derrida
[11]. Our method, largely inspired from Äıdékon [3], consists of an analysis of the Laplace
transform of the point process.

Following [3], we assume

(1.1) E


∑

|z|=1

1


 > 1, E


∑

|z|=1

e−V (z)


 = 1, E


∑

|z|=1

V (z)e−V (z)


 = 0

Every branching random walk satisfying mild assumptions can be reduced to this case by
some renormalization. We refer to Appendix A in [16] for a precise discussion. Notice that

we allow E

[
∑
|z|=1

1

]
= ∞, and even P

(
∑
|z|=1

1 = ∞
)
. The couple (Mn,Wn,β) is the most

often encountered random variables in our work, with

Mn := min{V (x), |z| = n}, Wn,β :=
∑

|z|=n

e−βV (z), β > 1.

We also need the derivative martingale

(1.2) Zn :=
∑

|z|=n

V (z)e−V (z), Z∞ = lim
n→∞

Zn.

By [8] and [3] we know that Z∞ exists almost surely and is strictly positive on the set of non
extinction of T. As in the continuous case [2], we introduce the point process formed by the
particles of the rescaled branching random walk:

µn :=
∑

|z|=n

δ{V (z)− 3
2
logn+logZ∞}, n ≥ 1.
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We will show the existence of a limiting point process as n → ∞, then we deduce results on
µ′n :=

∑
|z|=n

δ{V (z)−Mn}, n ≥ 1. Writing for y ∈ R ∪ {∞}, y+ := max(y, 0), we introduce the

random variables

(1.3) X :=
∑

|z|=1

e−V (z), X̃ :=
∑

|z|=1

V (z)+e
−V (z).

We finally assume that the distribution of L is non-lattice and

(1.4) E


∑

|z|=1

V (z)2e−V (z)


 < ∞. E

[
X(log+(X + X̃))3

]
< ∞

The main result of this paper is the following theorem:

Theorem 1.1 As n → ∞, on the set of non-extinction, the pair (µn, Zn) converges jointly
in distribution to (µ∞, Z∞) where µ∞ and Z∞ are independent and µ∞ is obtained as follows.

(i) Define P a Poisson process on R, with intensity measure λexdx for some (implicit)
positive real constant λ.

(ii)For each atom x of P, we attach a point process x+D(x) where D(x) are independent
copies of a certain point process D.

(iii) µ∞ is the superposition of all the point processes x + D(x), i.e, µ∞ := {x + y : x ∈
P, y ∈ D(x)}.

Corollary 1.2 Seen from the leftmost particle, the point process µ′n formed by the particles
{V (u)−Mn, |u| = n} converges in distribution to the point process µ′∞ obtained by replacing
the Poisson point process P in step (i) above by P ′ described in step (i)’ below:

(i)’Let e be a standard exponential random variable. Conditionally on e, Define P ′ to be
a Poisson point process on R+, with intensity measure eex1R+dx to which we add an atom
in 0.

The decoration point process D remains the same.

These two results imitate the corresponding results for the branching Brownian motion,
in particular Theorem 2.1 and Corollary 2.2 of Äıdékon, Beresticky, Brunet and Shi [2] (and
also that of [5] and [6]). However, we do not adopt the same method as in [2] because, firstly
the spine decomposition for the branching random walk leads to an use of Palm measures,
which is much complicated than the case of branching brownian motion, and secondly, the
path decomposition for a random walk is also less comfortable than the Brownian case.
Instead, we shall imitate the fine analysis of Äıdékon [3] to analyse the Laplace transform of
µn. More precisely, the main step in the proof of Theorem 1.1 is to establish the convergence
in law of (n

3
2
β1Wn,β1, ..., n

3
2
β1Wn,βk

) for any k ≥ 1 and any βk > ... > β1 > 1. A crucial
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observation, inspired by [3], is that this convergence in law can be reduced to the study of its
tail behaviour. From this analysis, we can prove the convergence in law stated in Theorem
1.1 , and as a by-product, we also get some expression for the Laplace transform of the
limiting point process. The later might have some independent interest for further analysis
of µ∞.

The paper is organized as follows. The Section 2 contains the main estimates on the tail
of distribution of (n

3
2
β1Wn,β1, ..., n

3
2
βkWn,βk

) for any any k ≥ 1 and any βk > ... > β1 > 1,
from which we establish the convergence of some Laplace transforms of µn (Theorem 2.4 )
and give the proof of Theorem 1.1. The Section 3 is devoted to the proof Theorem 2.4 by
admitting two preliminary estimates Proposition 2.1 and 2.2. Finally, we prove in Section 4
and 5 contain respectively Proposition 2.1 and 2.2.

2 Main steps of the proof of theorem 2.1

For shorten the statements we introduce some notations:

W̃n,β := n
3
2
βWn,β, µ̂n(β) = n

3
2
β
∑
|z|=n

e−β(V (z)+logZ∞),

µ̂a
n(β) = n

3
2
β
∑
|z|=n

e−β(a+V (z)+logZ∞).

with a ∈ R, n ≥ 1, β > 1. Remark that µ̂n(β) is also equal to
∫
R
e−βxdµn(x). In a

general context many quantities with tilde are associated with the natural normalization
n

3
2
β except for some obvious abuse of notation: For example in the sequel we will denote by

simplification W̃n−|u|,β := n
3
2
βWn−|u|,β. In a similar spirit we write M̃n := Mn − 3

2
log n and

M̃n−|u| := Mn−|u| − 3
2
log n for some vertex |u| ≤ n (we shall recall these notations to avoid

any confusion). At last we often encounter notations δ, β and y for respectively (δ1, ..., δk),
(β1, ..., βk) and (y1, ..., yk). The lengths of the vectors will be clear in the context.

2.1 Main preliminary results

In this section we state some technical results (deferring their proofs to the next sections)
which will lead to the proof of Theorem 1.1.

Proposition 2.1 There exists c1 > 0, α > 0 and N > 0 such that for any n > N , j ≥ 0
and x ∈ [1, log logn]

(2.1) P(W̃n,β ≥ eβx, M̃n ∈ [j − x− 1, j − x]) ≤ c1xe
−xe−αj .

In particular we see that P(W̃n,β ≥ eβx) ≤ c2xe
−x for any n > N (This Proposition, purely

technical requires a proof very similar to the following. For this reason it will be found in
the appendix.)
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Proposition 2.2 There exists c0 ∈ R+ (see (4.9) for a precision) such that for any k ≥ 0
there exists a function

(2.2)
χ : (1,∞)k × Rk → R∗+

(β, δ) 7→ χ(β, δ)

which satisfies, ∀K, ǫ > 0 there exists A(K, ǫ) > 0 such that ∀(δ1, ..., δk) ∈ [−K,K]k ∃N(ǫ, δ)
such that ∀n > N, x ∈ [A,A + log log n]

∣∣∣∣∣
ex

x
P

(
⋂

j≤k
{W̃n,βj

≥ eβj(x−δj)}
)

− c0χ(β, δ)

∣∣∣∣∣ ≤ ǫ.

Moreover function χ satisfies
(i) The restriction δ 7→ χ(β, δ) is continuous,
(ii)For any x ∈ R, δ ∈ Rk, β ∈ (1,∞)k, χ(β, δ + x) = exχ(β, δ) with δ + x :=

(δ1 + x, ..., δk + x),
(iii)For any β ∈ (0, 1)k there exists c3 > 0 such that χ(β, δ) ≤ c3 min

i∈[1,k]
eδi, ∀δ ∈ Rk.

The Proposition 2.2 yields an important consequence:

Corollary 2.3 If W̃ a,1
n,β and W̃ b,2

n,β are the normalized partition functions of two independent
branching random walks starting respectively from a and b real then, ∀K, ǫ > 0 there exists
A(K, ǫ) > 0 such that ∀(∆, δ1, ..., δk) ∈ [−K,K]k+1 ∃N(ǫ,∆, δ) such that ∀n > N, x ∈
[A,A+ log logn]

∣∣∣∣∣
ex

x
P

(
⋂

j≤k
{W̃ a,1

n,β + W̃ b,2
n,β ≥ eβj(x−δj)}

)
− c0(e

a + eb)χ(β, δ)

∣∣∣∣∣ ≤ ǫ.

The key step in the proof of Theorem 1.1 is the following result:

Theorem 2.4 (i) ∀l ∈ N, α ∈ R+, there exists a function F : (β1, ..., βl, θ1, ..., θl) ∈ (1,∞)l×
R+ → R+ (see (3.2) for an explicit formula) such that lim

θ→0
F (β, θ) = 0, and

(2.3) lim
n→∞

E

(
e
−

l∑
i=1

θiµ̂n(βi)
e−αZ∞1{Z∞>0}

)
= e−F (β,θ)E

(
e−αZ∞1{Z∞>0}

)
.

In particular, (µ̂n(β1), ..., µ̂n(βl)) converge in law, when n → ∞ to some random variable
(µ̂∞(β1), ..., µ̂∞(βl)) independent of Z∞ conditionally on {Z∞ > 0}.

(ii) If (a, b) ∈ R
2 respect ea + eb = 1. Let T

a,b the genealogical tree formed by two
independents branching random walks starting respectively from a and b. Recalling that on
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the set of non-extinction Z∞ := lim
n→∞

∑
|u|=n,u∈Ta,b

V (u)e−V (u) exists and is a.s positive. Let

µa,b
n the point process formed by the particles {V (u) − logZ∞, u ∈ Ta,b, |u| = n}. Define

µa,b
n (β) =

∫
R
e−βxdµa,b

n (x). Then,

(2.4) lim
n→∞

E

(
e
−

l∑
i=1

θiµ̂
a,b
n (βi)

1{Z∞>0}

)
= e−F (β,θ)P(Z∞ > 0)

As a consequence, (µ̂a,b
n (β1), ..., µ̂

a,b
n (βl)) converges in law to (µ̂∞(β1), ..., µ̂∞(βl)) when n →

∞.

We are now in possession of sufficient tools to demonstrate the main theorem.

2.2 Proof of the main theorem

The main theorem follows from the subsequent lemma which is an easy consequence of
Lemma 5.1 in [17].

Lemma 2.5 Let (µn)n∈N a sequence of point process on R. Suppose that

(i) For any polynomial function Q such that Q(0) = 0,
∫
R
Q(e−x)dµn(x)

(d)→ some random
variable

(ii) For any ǫ > 0 there exists A > 0 such that P
(∫

R
e−2xdµn(x) > A

)
≤ ǫ for all n ≥ 0.

(iii) For any ǫ > 0 there exists b > 0 such that P (µn([−∞,−b] > 0) ≤ ǫ.
Then µn converge in law to some point process.

See appendix for the proof of Lemma 2.5.

To obtain the part of the existence of limit in theorem 1.1, it’s enough to check that µn

satisfies (i), (ii), (iii):

(i) is exactly (2.3), recalling that if Q(X) =
l∑

i=1

θiX
i, then

∫
R
Q(e−x)dµn(x) =

l∑
i=1

θiµ̂n(βi).

(ii) follows from Proposition 2.1. Indeed

P

(∫

R

e−2xdµn(x) > A; Z∞ > 0

)
= P

(
W̃n,2 ≥

A

eβ logZ∞
; Z∞ > 0

)

≤ P

(
W̃n,2 ≥

A

eβM

)
+P (Z∞ ≥ M) ,

which go to 0 when A then M go to ∞.
(iii) is a consequence of Theorem 1.1 [3].
The independence between µ∞ and Z∞ conditionally on {Z∞ > 0} follows from (2.3),

see theorem 2.4. It remains to describe µ∞. To this end, we firstly recall some results on
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the superposable measures. Let N be the space of bounded finite counting measures on
R. If a random measure L takes values in N , we call L a point process. For every x ∈ R

define the translation operator Tx : N → N , by (Txµ)(A) = µ(A − x) for every Borel set

A ⊂ R. Denote equality in law by
(d)
=. Let L′ be an independent copy on L. We say that L

is superposable, if

TαL+ TβL
(d)
= L, for every α, β ∈ R such that eα + eβ = 1

According to [23], L is a superposable process if and only L can be obtained as follows:
(a) Define P a Poisson process on R, with intensity measure λexdx
(b) For each atom x of P, we attach a point process x+D(x) where D(x) are independent

copies of a certain point process D which respect

∫ ∞
P(D(A− x) > 0)e−xdx < ∞.

(c) L is the superposition of all the point processes x+D(x), i.e, L := {x+ y : x ∈ P, y ∈
D(x)}.

In view of (a),(b), (c), the superposability of µ∞ is a consequence of (2.4) in theorem 2.3.
Theorem 1.1 follows. �

3 Proof of theorem 2.4 by admitting Proposition 2.2

For z ∈ T we call trajectory of z all the positions of ancestor of z, i.e the vector (V (z1), ..., V (zn) =
V (z)). Let l ∈ N. We fix vectors β := (β1, ..., βl) and θ := (θ1, ..., θl). To simplify notations
we denote I := {1, ..., t} and for Ik ⊂ I, BIk :=

∏
j∈Ik

βj and ΘIk :=
∏
j∈Ik

θj . For A ∈ N, let

Z[A] denote the set of particles absorbed at level A, i.e.

Z[A] := {u ∈ T : V (u) ≥ A, V (uk) < A ∀k < |u|},
and ZA :=

∑
u∈Z[A]

V (u)e−V (u). By Proposition A.1 [3] we know that

(3.1) lim
A→∞

ZA = Z∞ a.s.

Fix x ∈ R and let ǫ > 0. For any A > 0, we have for n large enough

P

(
∃u ∈ Z[A] : |u| ≥ (log n)10 or V (u) ≥ 1

2
log log n

)
≤ ǫ,

Take A,L > 0. Let ΞA(n, L) = ΞA := { max
u∈Z[A]

|u| ≤ (log n)10, max
u∈Z[A]

V (u) ≤ A+1
2
log logn, logZA ∈

[−L, L]} we observe that probability of ΞA increase to 1 when n then L go to infinity. On
ΞA note that
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W̃n,β :=
∑

u∈Z[A]

e−βV (u)W̃ u
n,β, with W u

n,β :=
∑

z>u,|z|=n

e−β(V (z)−V (u)).

Recall that W̃ u
n,β means n

3
2
βW u

n,β. Write E(Y ; Ξ) := E(Y 1Ξ) for any nonnegtaive r.v. Y and
event Ξ. By Markov property, we have

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

e−αZA1{ZA>0}; ΞA

)
= E


e
−

l∑
i=1

θi
∑

u∈Z[A]

e−βi(V (u)+logZA)W̃u
n,βi

e−αZA1{ZA>0}; ΞA




= E


 ∏

u∈Z[A]

E

(
e
−

l∑
i=1

θie
−βi(V (u)+logZA)W̃n−|u|,βi

∣∣∣u ∈ Z[A], Z[A]

)
e−αZA1{ZA>0}; ΞA




= E


 ∏

u∈Z[A]

Φ(n, V (u) + logZ[A], |u|)e−αZA1{ZA>0}; ΞA


 .

with

Φ(n, t, p) := E

(
e
−

l∑
i=1

θie
−βitW̃n−p,βi

)
, n ∈ N, t ∈ R, p ∈ [0, n].

We firstly establish a Proposition to estimate the amount under the product.

Proposition 3.1 ∀ǫ > 0, L > 0 there exists N(ǫ), A(ǫ) > 0 such that for any n ≥ N(ǫ),
t ∈ [A, 1

2
log log n], s ∈ [−L, L], p ≤ (log n)10,

lim
n→∞

∣∣Φ(n, t + s, p)−
(
1− F (β, θ)te−(t+s)

)∣∣ ≤ ǫte−t,

with

F (β, θ) :=

l∑

k=1

(−1)k+1gk(β, θ),(3.2)

gk(β, θ) :=
∑

i1<...<ik

θi1 ...θik

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
c0χ(β,−y)dy.(3.3)

The functions gk are continuous at 0.

Before the proof of Proposition 3.1, we begin with a technical Lemma:

Lemma 3.2 The functions gk are well defined, function F is non negative. There exists a
constants c4 such that for all x ≥ 1, k ≤ l, gk(β, θ) ≤ c4

∑
i1<...<ik

min
j≤k

θ1/βij .
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Proof of Lemma 3.2. The first assertion is an easy consequence of Proposition 2.2 (iii) and
the inequality

∑

i1<...<ik

θi1 ...θik

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
min
j∈[1,k]

e−yij dy < +∞.

The second is also simple because F is a sum of decreasing alternating terms with the first
which is non negative. It remains to show the continuity at 0. Observe that

θi1 ...θik

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
c0χ(β,−y)dy ≤ θi1 ...θik

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
c3 min

j∈[1,k]
e−yij dy

≤ θi1 ...θik min
j∈[1,k]

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
c3e
−yidy

= c4 min
j∈[1,k]

θ
1/βij

ij
,

which goes to 0 as θ → 0. �

Proof of Proposition 3.1. The function F appears immediately with:

E

(
e
−

l∑
i=1

θie
−βi(t+s)W̃n−p,βi

)
= E

(
l∏

i=1

(
1− θi

∫ ∞

0

e−θiy1{W̃n−p,βi
≥eβi(t+s)y}dy

))

= E

[
1−

l∑

i=1

θi

∫ ∞

0

e−θiy1{W̃n−p,βi
≥eβi(t+s)y}dy + ...+ (−1)k

∑

Ik⊂I
ΘIk

×
∫

Rk
+

∏

ij∈I
e−θij yij1

{W̃n−p,βij
≥eβij (t+s)

y}
dy + ... + (−1)tΘI

∫

Rk
+

∏

j∈I
e−θiyi1{W̃n−p,βi

≥eβi(t+s)y}dy


 .

Then, Fubini’s Theorem and the simple change of variable yij = eβij
yij provide that

E

(
e
−

l∑
i=1

θie
−βi(t+s)W̃n−p,βi

)
= E

(
1−

l∑

k=1

(−1)k+1hn
k(β, θ, x)

)
,

with

(3.4) hn
k(θ, x) :=

∑

Ik⊂I
BIkΘIk

∫

Rk

∏

ij∈Ik

e−θij e
βij

yij +βij
yij1

{W̃n−p,βij
≥eβij (t+s+yij

)}
dy.
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To conclude it remains to prove that for any ǫ > 0 there exist A(ǫ) such that for any
t ∈ [A(ǫ), 1

2
log logn], s ∈ [−L, L] and p ≤ (log n)10, limn→∞ |E(hn

k |FA)− te−(t+s)gk| ≤ ǫte−t.

By Proposition 2.2 (iii), it is possible to define

(3.5) c5 := c0max
k≤t

max
Ik⊂I

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
χ(β,−y)dy < ∞,

and K > 0 sufficiently large such that for all (i1, ..., ik),

(3.6)

∫

([−K,K]k)c
e

k∑
j=1
−θij e

βij
yij +βij

yij
[c1min

j≤k
max(1, e−yij ) + c0χ(β,−y − s)]dy ≤ ǫ

c62teL

with c6 := max
Ik⊂I, k≤t

ΘIkBIk = max
Ik⊂I, k≤t

ΘIkB < ∞.

Now we can use Proposition 2.2. The idea is to cut the integral into two parts, one on
the hypercube and the other on its complement:

hn
k(θ, x) =

∑

Ik⊂I
BIkΘIk

[∫

[−K,K]k
...+

∫

([−K,K]k)c
...

]
.

There exists A = A(K, ǫ
4M12tκ

) > 0 such that for any t ∈ [A, 1
2
log logn], s ∈ [−L, L],

Ik ⊂ I, k ≤ l, (yi1...yik) ∈ [−K,K]k, ∃N( ǫ
4M12tα

,y) such that ∀n > N

∣∣∣∣∣
et

t
P

(
⋂

j≤k
{W̃n−p,βij

≥ eβij
(t+s+yij )}

)
− c0χ(β,−y − s)

∣∣∣∣∣ =
∣∣∣∣∣
et

t
P

(
⋂

j≤k
{W̃n−p,βij

≥ eβij
(t+s+yij )}

)
− c0e

−sχ(β,−y)

∣∣∣∣∣ ≤
ǫ

c5c62l
.

Thus,

lim sup
n→∞

∣∣∣∣∣∣

∫

[−K,K]k
e

k∑
j=1
−θij e

βij
yij +βij

yij

[
P

(
⋂

j≤k
...

)
− te−(t+s)c0χ(β,−y)

]
dy

∣∣∣∣∣∣

≤ ǫ

c5c62l

∫

Rk

e

k∑
j=1
−θij e

βij
yij +βij

yij
te−tc0χ(β,−y)dy

=
ǫ

c5c62l
te−t

∫

Rk

e

k∑
j=1

θij e
βij

yij +βij
yij
c0χ(β,−y)dy

≤ ǫ

2lc6
te−t.

10



It remains to bound the integral on [−K,K]c, i.e to control the following lim sup:

(3.7) lim sup
n→∞

∣∣∣∣∣∣

∫

([−K,K]k)c
e

k∑
j=1
−θij e

βij
yij +βij

yij

[
P

(
⋂

j≤k
...

)
+ te−(t+s)c0χ(β,−y)

]
dy

∣∣∣∣∣∣
.

According to Proposition 2.2, for n large enough, we have

P(
⋂

j≤k
...) ≤ min

j≤k
P
(
W̃n−p,βij

≥ eβij
(t+s+yij )

)

≤ min
j≤k

{
c1te

−(t+s) if yij ≥ 0

min(c1te
−(t+s)−yij , 1) if yij ≤ 0

.

As a consequence,

(3.7) ≤



∫

([−K,K]k)c
e

k∑
j=1
−θij e

βij
yij +βij

yij
[
c1min

j≤k
max(1, e−yij ) + c0χ(β,−y)

]
dy


 te−(t+s)

≤ e−sǫ

eLc62l
te−t.

Finally we have demonstrated that:

(3.8) lim sup
n→∞

∣∣E(hn
k(θ, x))− te−(t+s)gk(θ, x)

∣∣ ≤ ǫ

l
te−t,

then

∣∣∣∣∣E
(

l∑

k=1

hn
k(θ, x)

)
− (te−(t+s)

l∑

k=1

gk(θ, x))

∣∣∣∣∣ ≤ ǫte−t,

and the Proposition is proved. �

We are now able to obtain

Proposition 3.3 For all (θ1, ..., θt, β1, ..., βt) ∈ R
t
+ × (1,∞)k and α ∈ R+

(3.9) lim
A→∞

lim
n→∞

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

1{ZA>0}e
−αZA

)
= e−F (β,θ)P(e−αZ∞ ; Z∞ > 0).

11



Proof of proposition 3.3. Let ǫ > 0, for L large enough such thatP (logZA /∈ [−L, L], ∀A ≥ 0) ≤
ǫ, we have

lim sup
A→∞

lim sup
n→∞

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

e−αZA1{ZA>0}

)
≤

lim sup
A→∞

lim sup
n→∞

E


 ∏

u∈Z[A]

E

(
e
−

l∑
i=1

θie
−βi(V (u)+logZA)W̃n−|u|,βi

∣∣u ∈ Z[A], ZA

)
e−αZA1{ZA>0}, ΞA


+ ǫ.

By the dominated convergence theorem, we deduce from Proposition 3.1 that

lim sup
A→∞

lim sup
n→∞

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

e−αZA1{ZA>0}

)

≤ E


 lim

A→∞

∏

u∈Z[A]

(1− F (β, θ)V (u)e−(V (u)+logZA) − ǫV (u)e−V (u))e−αZA1{ZA>0}


+ ǫ.

By (3.1),

lim
A→∞

∑

u∈Z[A]

log
(
1− F (β, θ)V (u)e−(V (u)+logZA) − ǫV (u)e−V (u)

)
1{ZA>0}

= lim
A→∞


−F (β, θ)

∑
u∈Z[A]

V (u)e−V (u)

ZA
1{ZA>0} + ǫ

∑

u∈Z[A]

V (u)e−V (u)
1{ZA>0}




= (−F (β, θ) + ǫZ∞)1{Z∞>0},

which is equivalent to say that

lim
A→∞

∏

u∈Z[A]

(1− F (β, θ)V (u)e−(V (u)+logZA) − ǫV (u)e−V (u))e−αZA1{ZA>0}

= e−F (β,θ)+ǫZ∞e−αZ∞1{Z∞>0}.

It follows that

lim sup
A→∞

lim sup
n→∞

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

e−αZA1{ZA>0}

)
≤ e−F (β,θ)E

(
e(ǫ−α)Z∞1{Z∞>0}

)
+ ǫ.

Letting ǫ → 0 gives the upper bound. The lower bound follows from the same way. �
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Proof of Theorem 2.4. For (i) it suffices to show

lim
A→∞

lim
n→∞

E

(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi

e−αZA1{ZA>0}

)
= lim

n→∞
E

(
e
−

l∑
i=1

θiµ̂n(βi)
e−αZ∞1{Z∞>0}

)
.

Let ǫ ≥ 0. For any A > 0 and m > 0 sufficiently large

∣∣∣∣∣E
(
e
−

l∑
i=1

θie
−βi logZAW̃n,βi − e

−
l∑

i=1
θiµ̂n(βi)

;Z∞ > 0

)∣∣∣∣∣ ≤ P

(
max
1≤i≤l

∣∣∣∣
1

(Z∞)βi
− 1

(ZA)βi

∣∣∣∣ ≥
ǫ

m
, Z∞ > 0

)

+P (W̃n,β > m) + E

([
e
−

l∑
i=1

θi
W̃n,βi

(ZA)βi − e
−

l∑
i=1

θi
W̃n,βi

(Z∞)βi

]
1
{Z∞>0, max

1≤i≤l

∣∣∣∣
1

(Z∞)βi
− 1

(ZA)βi

∣∣∣∣≤
ǫ
m
, W̃n,β≤m}

)

≤ (l + 2)ǫ,

by the Proposition 2.1. It remains to show(ii). With the notations Za
∞ := lim

n→∞

∑
|u|,u∈Ta

V (u)e−V (u)

and Zb
∞ := lim

n→∞

∑
|u|,u∈Tb

V (u)e−V (u), it’s clear that

1{Z∞>0} = 1{Za
∞>0}1{Zb

∞=0} + 1{Za
∞=0}1{Zb

∞>0} + 1{Za
∞>0}1{Zb

∞>0}.

On the two first events there is nothing to prove. On the third we can repeat exactly the
same proof as (2.3) by keeping in mind Corollary 2.3. The proof of Theorem 2.4 is complete.
�

4 Results for the killed Branching Random walk

4.1 The many-to-one formula and Lyons’ change of measure

Under (1.1), there exists a centered random walk (Sn, n ≥ 0) such that for any n ≥ 1 and
any measurable function g :∈ Rn → [0,∞),

(4.1) E




∑

|z|=n

g(V (z1), ..., V (zn))



 = E

{
eSng(S1, ..., Sn)

}
.

In particular, under (1.3), S1 has a finite variance σ2 := E[S2
1 ] = E

[
∑
|z|=1

V (z)2e−V (z)

]
. We

can see the so-called many-to-one formula (4.1) as a consequence of Proposition 4.1 below.
We introduce the additive martingale

(4.2) Wn :=
∑

|z|=n

e−V (z),
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and define a probability measure Q such that for any n ≥ 0,

(4.3) Q
∣∣
Fn

:= Wn •P
∣∣
Fn
,

where Fn denotes the sigma-algebra generated by the positions (V (z), |z| ≤ n) up to time
n. To give the description of the branching random walk under Q, we introduce the point
process L̂ with Radon-Nykodim derivative

∫
e−xL(dx) with respect to the law of L, and

we define the following process. At time 0, the population is composed of one particle w0

located at V (w0) = 0. Then, at each step n, particles of generation n die and give birth to
independent point processes distributed as L except for the particle wn which generates a
point process distributed as L̂. The particle wn+1 is chosen among the children z of wn with
probability proportional to e−V (z). We denote by B := (V (z)) the family of the positions of
this system. We still call T the genealogical tree of the process, so that (wn)n≥0 is a ray of
T, which we will call the spine. This change of probability was used in [21], see also [15]. We
refer to [22] for the case of the Galton-Watson tree, to [12] for the analog for the branching
Brownian motion, and to [8] for the spine decomposition in various types of branching.

Proposition 4.1 (i)Under Q, the branching random walk has the distribution of B.
(ii)For any |z| = n, we have

(4.4) Q
{
wn = z

∣∣∣Fn

}
=

e−V (z)

Wn

.

(iii) The spine process (V (wn), n ≥ 0) has distribution of the centered random walk
(Sn, n ≥ 0) under Q satisfying (4.1).

Before closing this subsection, we collect some elementary facts about the centered ran-
dom walks with finite variance:

Lemma 4.2 (i) There exists a constant α1 > 0 such that for any x ≥ 0 and n ≥ 1,

(4.5) Px

(
min
j≤n

Sj ≥ 0

)
≤ α1(1 + x)n−

1
2 .

(ii) There exists a constant α2 > 0 such that for any b ≥ a, x ≥ 0 and n ≥ 1 ,

(4.6) Px

(
Sn ∈ [a, b],min

j≤n
Sj ≥ 0

)
≤ α2(1 + x)(1 + b− a)(1 + b)n−

3
2 .

(iii) Let 0 < Λ < 1. There exists a constant α3 = α3(Λ) > 0 such that for any b ≥ a, x ≥
0, y ∈ R

(4.7) Px

(
Sn ∈ [y + a, y + b],min

j≤n
Sj ≥ 0, min

Λn≤j≤n
Sj ≥ y

)

≤ α3(1 + x)(1 + b− a)(1 + b)n−
3
2 .
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See [19] for (4.5). The estimates (4.6) and (4.7) are for example Lemmas A.1 and A.3 in [4].
In our case (Sn) is the centered random walk under P, with finite variance E[S2

1 ] = σ which
appears in the many-to-one Lemma. We introduce its renewal function R(x) which is zero
if x < 0, 1 if x = 0, and x > 0

(4.8) R(x) :=
∑

k≥0
P

(
Sk ≥ −x, Sk < min

0≤j≤k−1
Sj

)
.

It is known that there exists c0 > 0 (the constant of Proposition 2.2) such that

(4.9) lim
x→∞

R(x)

x
= c0.

4.2 Definition of Mkill
n and W kill

n,β

Following Äıdékon [3], to determinate the tail of distribution of the partition function of the
branching random walk, we study the same amount for the killed branching random walk:

W kill
n,β :=

∑

|z|=n

e−βV (z)
1{min

k≤n
V (zk)≥0}.

Let us adopt some notation of [3]. We denote the minimum of the killed branching random
walk

Mkill
n := inf{V (z), |z| = n, V (zk) ≥ 0, ∀0 ≤ k ≤ n}.

and mkill,(n) a vertex chosen uniformly in the set

{V (z), |z| = n, V (z) = Mkill
n , ∀0 ≤ k ≤ n}.

For |z| = n, we say that z ∈ Zx,L if

V (z) ∈ In(x), min
k≤n

V (zk) ≥ 0, min
n
2
<k≤n

V (zk) ≥ an(x+ L).

As the typical order of Mkill
n is 3

2
logn, it will be convenient to use the following notation,

for x ≥ 0:

an(x) :=
3

2
log n− x,(4.10)

In(x) := [an(x)− 1, an(x)].(4.11)

The choice of an interval of length 1 is arbitrary and could be change. Our goal is the
following result:
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Proposition 4.3 For any k ≥ 0 there exists

(4.12) c :
(1,+∞)k,Rk+1 → R+

(β, δ,∆) 7→ c(β, δ,∆)

which satisfies
(i) For any K > 0 there exists cK , αK > 0 such that for any j ≥ 0 δ ∈ [−K,K]k

(4.13) c(β, δ,−j) ≤ cKe
−αKj , c(β, δ, j) ≤ cKe

−αKj .

(ii)The restriction (δ,∆) 7→ c(β, δ,∆)) is continuous for any β.
(iii)∀β, δ and ∆, c(β, δ,∆) = e∆c(β, δ −∆, 0).
(iv)For allK, ǫ > 0, there exists A(K, ǫ) > 0 such that for any (δ1, ..., δk,∆) ∈ [−K,K]k+1,

∃N(ǫ, δ,∆) such that ∀n > N, x ∈ [A,A+ 1
2
log n)]

(4.14)

∣∣∣∣∣e
xP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}; Mkill

n ∈ In(x−∆)

)
− c(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.

(v) We deduce immediately that on the same conditions

(4.15)

∣∣∣∣∣e
xP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}; Mkill

n ≤ 3

2
logn− (x−∆)

)
− χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ,

with χ(β, δ,∆) :=
∑
j≥0

e∆−jc(β, δ,∆− j).

Remark: Obviously the reader expects χ(β, δ,−∞) = χ(β, δ), and will see that it’s true.
(i) (ii) and (iii) are necessary for prove (iv) which is the heart of the Proposition. Reader

will note the great similarity between this result and the Proposition 3.1 [3]. It is not

surprising, indeed first we note that {W̃ kill
n,β ≥ eβx} = {− logW kill

n,β ≤ an(x)} and two, the

most important term of W̃ kill
n,β is one provided by Mkill

n . Our prove consist then to verify that
the method of [3] run in our case.

Finally we mention here a very useful Lemma stated in [3].
Lemma 3.5, Aı̈dékon There exists caid > 0 such that for any n ≥ 1 and x ≥ 0

exP

(
Mkill

n ≤ 3

2
log n− x

)
≤ caid

4.3 First result about W kill
n,β

Two subsequent Lemma show that on the set {W̃ kill
n,β ≥ eβx}, the non-negligible contribution

to W̃n,β are provided by the particles z whose
(i)the path satisfies some conditions,
(ii)the final position V (z) isn’t to large.
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Lemma 4.4 There exists c7, c8 > 0 such that ∀x ∈ R, y ≥ 0, n ≥ 1,

(4.16) Py


∑

|z|=n

e−βV (z)
1{min

k≥n
V (zk)≥0, min

n
2 <k≥n

V (zk)≤an(x+L)} ≥
eβx

n
3
2
β


 ≤ c7(1 + y)e−c8Le−ye−x.

Remark: The conditions on the paths are those proposed by Äıdékon [3], moreover the
proof requires Lemma 3.3 of [3].
Proof of lemma 4.4. We denote P(4.16)(y) the probability of (4.16) and by P(4.17)(y) the
probability

(4.17) Py

(
∃|z| = n;V (z) ≤ an(x), min

k∈{0,...,n}
V (zk) ≥ 0, min

k∈{n/2,...,n}
V (zk) ≤ an(x+ L)

)

which appears in Lemma 3.3 [3]. Lemma 3.3 says that P(4.17)(y) ≤ c9(1+ y)e−c10e−y−x. We

need some surgery on the path. For |z| = n, j ≥ 0, n
2
< k ≤ n and L′ ≥ L we define the

event

(4.18) Ej
k,L′(z) := {min

l≤n
V (zl) ≥ 0, V (zk) = min

n
2
<l≤n

V (zl) ∈ In(x+ L′), V (zn) ∈ In(x) + j}.

For any a ≥ 0 define also

(4.19) Fa,L′(z) :=
⋃

k∈[n
2
,n−a]

⋃

j≥0
Ej

k,L′(z), F a
L′(z) :=

⋃

k∈[n−a,n]

⋃

j≥0
Ej

k,L′(z),

and similarly (for the centered random walk (Sn)n≥0)

(4.20) Ej
k,L′(S) := {min

l≤n
Sl ≥ 0, Sk = min

n
2
<l≤n

Sl ∈ In(x+ L′), Sn ∈ In(x) + j},

(4.21) Fa,L′(S) :=
⋃

k∈[n
2
,n−a]

⋃

j≥0
Ej

k,L′(S), F a
L′(S) :=

⋃

k∈[n−a,n]

⋃

j≥0
Ej

k,L′(S).

We need to estimate Py(E
j
k(S)) for

n
2
< k ≤ n− a. By the Markov property at time k,

Py(E
j
k,L′(S)) ≤ Py

(
min
l≥k

Sl ≥ 0, min
n
2
<l≤k

Sl ≥ an(x+ L′), Sk ∈ In(x+ L′)

)
×

P

(
Sn−k ∈ [L′ − 1 + j, L′ + 1 + j], min

k≤n−k
Sl ≥ 0

)
.
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We know from (4.6) that there exists a constant c10 such that

P

(
Sn−k ∈ [L′ − 1 + j, L′ + 1 + j], min

k≤n
Sl ≥ 0

)
≤ c10(n− k + 1)−

3
2 (1 + L′ + j).

For the first term, we have to discuss on the value of k. Suppose that 3
4
n ≤ k ≤ n, then by

(4.7)

Py

(
min
l≥k

Sl ≥ 0, min
n
2
<l≤k

Sl ≥ an(x+ L′), Sk ∈ In(x+ L′)

)
≤ c11

1 + y

n
3
2

.

If 1
2
n ≤ k ≤ 3

4
n we simply write

Py

(
min
l≥k

Sl ≥ 0, min
n
2
<l≤k

Sl ≥ an(x+ L′), Sk ∈ In(x+ L′)

)
≤ P

(
Sk ∈ In(x+ L′),min

l≤k
Sl ≥ 0

)

≤ c12(1 + y)n−
3
2 logn.

To resume we have obtained

(4.22) Py(E
j
k,L′(S)) ≤





c13
(1+y) logn

n
3
2 (n−k+1)

3
2
(1 + L′ + j) if n

2
< k ≤ 3

4
n

c13
1+y

n
3
2 (n−k+1)

3
2
(1 + L′ + j) if 3

4
n < k ≤ n− a

.

Now we can tackle the proof, observe that

P(4.16)(y) ≤ Py


∑

|z|=n

e−βV (z)(1{F a
L′

(z)} + 1{Fa,L′(z)}) ≥
n

3
2
β

eβx
; Mn ≥ an(x)


 +P(4.17)(y).

By Lyons’ change of measure,

n
3
2
β

eβx
Ey


∑

|z|=n

e−βV (z)
1{Fa,L′(z)}


 =

n
3
2
β

eβx
e−yEy

[
e(1−β)Sn1{Fa,L′(S)

}
]

(4.23)

≤ n
3
2
β

eβx
e−y

n−a∑

k=n/2

∑

j≥0
e(1−β)(an(x)+j)Py(E

j
k,L′(S))(4.24)

≤ c14(1 + y)(1 + L′)e−x−ya−
1
2 ,(4.25)

for any a ≥ 1. We also get
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P


∑

|z|=n

1{F a
L′

(z)} ≥ 1


 ≤

∑

k∈[n−a,n]

∑

j≥0
Py


∑

|u|=n

1{Ej

k,L′
(z)} ≥ 1




≤
∑

k∈[n−a,n]
Py

(
∃|z| = k : min

l≥k
V (zl) ≥ 0, min

n
2
<l≤k

V (zl) ≥ an(x+ L′), V (zk) ∈ In(x+ L′)

)
,

which is again by an application of Lyons’ change of measure smaller than

(4.26)
∑

k∈[n−a,n]
c15(1 + y)e−x−y−L

′

= c15(1 + a)(1 + y)e−x−y−L
′

.

Now let a(L+ p)p≥0 = eα(L+p), in combining (4.25) and (4.26) we obtain

P(4.16)(y) ≤ P(4.17)(y) +

Py


∑

p≥0

∑

|z|=n

e−β(V (z)+y)
1{Fa(p),L+p(z)} ≥

eβx

2n
3
2
β


 +P


∑

p≥0

∑

|z|=n

1{F a(p)
L+p(z)}

≥ 1


 .

The two last terms are smaller than

≤
∑

p≥0


n

3
2
β

eβx
E


∑

|z|=n

e−βV (z)
1{Fa(p),L+p(z)}


+P


∑

|z|=n

1{F a(p)
L+p(z)}

≥ 1






≤
∑

p≥0

(
c15(1 + a(L+ p))(1 + y)e−x−y−L+p + c14(1 + y)(1 + L+ p)e−x−ya(L+ p)−

1
2

)

≤ c16(1 + y)e−c4Le−y−z .

The Lemma is proved. �

We have shown that the main contributions to the partition function, are given by the
particles whose paths stay above an(x + L), after the generation n

2
. The following natural

Lemma says that for A and L large enough

(4.27) WA,L
n,β (x) := WA,L

n,β =
∑

|z|=n

e−βV (z)
1{min

k≤n
V (zk)+y≥0, min

n
2 <k≤n

V (zk)+y≥an(x+L), V (z)+y≤an(x)+A}.

and W kill
n,β are almost equal. Hence only particles whose the positions at generation n are

less than an(x) + A give a non-negligible contribution.
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Lemma 4.5 There exists c17 ≥ 0 such that for all n ≥ 0:

Py


∑

|z|=n

e−βV (z)
1{min

k≤n
V (zk)≥0, min

n
2 <k≤n

V (zk)≥an(x+L), V (z)≥an(x)+A} ≥
eβx

n
3
2
β


 ≤ c17(1+y)e−x−yLe−A(β−1).

Proof of Lemma 4.5. The trivial inequality P(X ≥ 1) ≤ E(X), for X positive gives:

Py


∑

|z|=n

e−βV (z)
1{min

k≤n
V (zk)≥0, min

n
2 <k≤n

V (zk)≥an(x+L), V (z)≥an(x)+A} ≥
eβx

n
3
2
β


 ≤

n
3
2
β

eβx
Ey


∑

|z|=n

e−βV (z)
1{min

k≤n
V (zk)≥0, min

n
2 <k≤n

V (zk)≥an(x+L), V (z)≥an(x)+A}


 .

By the Lyons’ change of measure this is equal to

=
n

3
2
β

eβx
e−y
∑

k∈N
Ey

(
e(1−β)Sn1{min

k≤n
Sk≥0, min

n
2 <k≤n

Sk≥an(x+L), Sn∈In(x−A−k)}

)

≤ e−x−A(β−1)
∑

k∈N
e(1−β)kn

3
2Py

(
min
k≤n

Sk ≥ 0, min
n
2
<k≤n

Sk ≥ an(x+ L), Sn ∈ In(x− A− k)

)

≤ c17(1 + y)e−x−yLe−A(β−1)

by (4.7).
�

The following Lemma shows the tension exponential for the partition function of the
killed branching random walk. This is the analogue of Lemma 3.3 in [3].

Lemma 4.6 There exists c18 > 0, c19, c20 > 0 such that ∀x ∈ R, y ≥ 0, n ≥ 1, j ∈ Z

(4.28) ex+yPy

(
W̃ kill

n,β ≥ eβx,Mkill
n ∈ In(x− j)

)
≤ c18(1 + y)je−c19j.

(4.29) ex+yPy

(
W̃ kill

n,β ≥ eβx
)
≤ (1 + y)c20.
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Proof of Lemma 4.6. We note that for any L > 0

Py

(
W̃ kill

n,β ≥ eβx,Mkill
n ∈ In(x− j)

)

≤ c7(1 + y)e−y−xe−c8L +Py


∑

|z|=n

e−βV (z)
1{min

j≤n
V (zk)≥0, min

j∈[n/2,n]
V (zk)≥an(x+L),V (z)≥an(x−j)} ≥

eβx

n
3
2
β




≤ c7(1 + y)e−y−xe−c8L + c17(1 + y)e−x−yLe−j(β−1),

by Lemma 4.4 and 4.5. Set L = j and c19 = min(β − 1, α)/2 to obtain (4.28). (4.29) follows
easily from

Py

(
W̃ kill

n,β ≥ eβx
)
= Py

(
W̃ kill

n,β ≥ eβx, Mkill
n ≤ an(x)

)
+Py

(
W̃ kill

n,β ≥ eβx, Mkill
n ≥ an(x)

)
,

(4.28) and Lemma 3.5 of [3] �

4.4 Proof of Proposition 4.3

The proof is divided in three parts. First we suppose that the subsequent Lemma below holds
and we demonstrate the point (iv) of the Proposition, two we prove the Lemma and three we

collect all our work to show that we get also the other points. Recall that W̃A,L
n,β := n

3
2
βWA,L

n,β .

Lemma 4.7 ∀K, η > 0, ∃A0(η), L0(η) such that for all (δ1, ..., δk,∆) ∈ [−K,K]k+1, L ≥ L0,
A ≥ A0 there exists D(A,L, η,K) > 0 and N(A,L,D, η, δ,∆) ≥ 0 such that ∀n > N and
∀x ∈ [D, logn]

(4.30)∣∣∣∣∣e
xP

(
⋂

j≤k
{W̃A,L

n,βj
(x− δj) ≥ eβj(x−δj)}; Mkill

n ∈ In(x), m
kill,(n) ∈ Zx−∆,L

)
− c(β, δ,∆)

∣∣∣∣∣ ≤ η.

4.4.1 Part 1, Proof of Proposition 4.3 (iv) in admitting Lemma 4.30

Observe that the only difference between (4.30) and (4.14) is that W̃ kill
n,β is replaced by W̃A,L

n,β .
An easy consequence of Lemma 3.3 [3] is that for any ǫ > 0 there exists L0 > 0 such that
for any L ≥ L0, x ≥ 0, n ∈ N,

(4.31)

∣∣∣∣∣E
(
∏

j≤k
1{W̃ kill

n,βj
≥eβj (x−δj)}(1{Mkill

n ∈In(x)} − 1{Mkill
n ∈In(x),mkill,(n)∈Zx,L})

)∣∣∣∣∣ ≤ ǫe−x.

21



On other hand, for A > A0, L ≥ L0, x, n ≥ 0, we set

erA,L(δ, x, n) :=

∣∣∣∣∣E
(
∏

j≤k
1{W̃ kill

n,βj
≥eβj(x−δj )} −

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj )}

)∣∣∣∣∣ .

It is not difficult to check that for any α ∈ [0, 1]:

erA,L(δ, x, n) ≤
∑

j≤k
P
(
W̃ kill

n,βj
− W̃A,L

n,βj
(x− δj) ≥ (1− α)eβ(x−δj)

)
+P

(
α ≤

W̃A,L
n,βj

(x− δj)

eβ1(x−δj) ≤ 1

)
.

We will bound the terms both. Suppose the following assertion.
For any ǫ > 0, there exists α0 , near enough to 1 such that for any α < α0 there exists

A0(ǫ), L0(ǫ) such that for any A > A0, L > L0 there exists D and N large enough such that
for any n > N , x ∈ [D, log n] and j ∈ [0, k],

P

(
α ≤

W̃A,L
n,βj

(x− δj)

eβj(x−δj) ≤ 1

)
≤ ǫe−x;

true. Then for α < α0,

P
(
W̃ kill

n,βj
− W̃A,L

n,βj
≥ (1− α)eβj(x−δj)

)
≤ (A) + (B),

with

(A) = P


∑

|z|=n

e−βjV (z)
1{min

k≤n
V (zk)≥0, min

n
2≤k≤n

V (zk)≤an(x−δ+L)} ≥
(1− α)eβj−δj

2n
3
2
βj


 ,

(B) = P


∑

|z|=n

e−βjV (z)
1{min

k≤n
V (zk)≥0, min

n
2≤k≤n

V (zk)≥an(x−δj+L), V (z)≥an(x−δj)+A} ≥
(1− α)eβj−δ

2n
3
2
βj


 .

Both terms (A) and (B) are small. Indeed we recognize the terms of the Lemmas 4.4 and
4.5, with x = x + 1

βj
log(1−α

2
) and L = L − 1

βj
log(1−α

2
), and A = A + 1

βj
log(1−α

2
). Thus we

can fix A,L,N and D large enough to conclude erA,L(δ, x, n) ≤ 2ǫe−x. In combining with
(4.30) we obtain (iv). It remains thus to show our assertion in italic. We need a Lemma,

Lemma 4.8 For all ǫ > 0 there exists L∗(ǫ) and A∗(ǫ) such that ∀A > A∗, L > L∗ there
exists D > 0 and N large enough such that for any n ≥ N and x ∈ [D, logn],

(4.32)

∣∣∣∣∣e
xP
(
W̃A,L

n,β (x) ≥ eβx
)
−
(
C1 +

∑

j≥1
ejc(β, 0,−j)

)∣∣∣∣∣ ≤ ǫ.

with C1 the constant which appear in Proposition 1.2 [3].
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Proof of Lemma 4.8. Let ǫ > 0. For j0 large enough,
∑
j≥j0

c12je
−c

(4.6)
j ≤ ǫ (with c(4.6) the

constant which appears in Lemma 4.6) and it implies that
∑

j≥j0

ejc(β, 0,−j) +
∑

j≥j0

exP
(
W̃A,L

n,β ≥ eβx,Mkill
n ∈ In(x− j)

)
≤ 2ǫ ∀A, L, n, x.

Now we fix L∗(ǫ), A∗(ǫ) ≥ 0 such that:
by Lemma 4.7 (in an uni-dimensional case), there exists D(A∗, L∗, D, ǫ

j0
, j0) such that for

all A ≥ A0 and L ≥ L0, j ≤ j0, ∃N(A,L,D, ǫ
j0
, j0), such that ∀n > N , x ∈ [D, log n]

(4.33)
∣∣∣exP

(
W̃A,L

n,β ≥ eβx,Mkill
n ∈ In(x− j)

)
− ejc(β, 0,−j)

∣∣∣ ≤ ǫ

j0
.

by Lemma 6.1 (see appendix) ∀L > L∗, A, x ≥ 1, n ∈ N
∗,

(4.34)
∣∣∣P
(
W̃A,L

n,β ≥ eβx,Mkill
n ≤ an(x)

)
− C1

∣∣∣ ≤ ǫe−x.

Hence, with

exP
(
W̃A,L

n,β ≥ eβx
)
= P

(
W̃A,L

n,β ≥ eβx, Mkill
n ≤ an(x)

)
+
∑

j≥0
P
(
W̃A,L

n,β ≥ eβx,Mkill
n ∈ In(x− j)

)
,

for all A ≥ A0 et L ≥ L0, n > N and x ∈ [D, logn]

∣∣∣∣∣e
xP
(
W̃A,L

n,β ≥ eβx
)
− (C1 +

∑

j≥1
ejc(β,−j))

∣∣∣∣∣ ≤ ǫ+ ǫ+ 2
∑

j≥j0
c12je

−αj +
∑

j≤j0

ǫ

j0
,

≤ 4ǫ.

by (4.33) and (4.34). The Lemma is proved. �

Proof of the assertion in italics.It’s still rigorous to suppose δ = 0. Let ǫ > 0. We choose α
near enough to one such that

(
C1 +

∑

j≥1
ejc(β, 0,−j)

)∣∣∣∣
1

α
1
β

− 1

∣∣∣∣ ≤ ǫ.

Let A1(ǫ) = A∗(ǫ) − 1
β
logα and L1(ǫ) = L∗(ǫ) (A∗, L∗ are the constants defined by the

previous Lemma). With

P

(
α ≤

W̃A,L
n,β (x)

eβx
≤ 1

)
= P

(
W̃A,L

n,β (x)

eβx
≥ α

)
−P

(
W̃A,L

n,β (x)

eβx
≥ 1

)
and

P

(
W̃A,L

n,β (x)

eβx
≥ α

)
= P


W̃

A+ 1
β
log(α),L− 1

β
log(α)

n,β (x+ 1
β
log(α))

eβ(x+
1
β
log(α))

≥ 1


 ,
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we may affirm that ∀A ≥ A1, L ≥ L1, there exists D, N such that for any n > N and
x ∈ [D, logn].

∣∣∣∣∣e
xP
(
W̃A,L

n,β ≥ eβx
)
−
(
C1 +

∑

j≥1
ejc(β, 0,−j)

)∣∣∣∣∣ ≤ ǫ,(4.35)

∣∣∣∣∣e
xP
(
W̃A,L

n,β ≥ αeβx
)
−
(
C1 +

∑

j≥1
ejc(β, 0,−j)

)
1

α
1
β

∣∣∣∣∣ ≤ ǫ.(4.36)

The assertion in italics follows. �

Finally, admitting Lemma 4.30 the Proposition 4.3 is true.

4.4.2 Part 2, Proof of the Lemma 4.7

Proof of the Lemma is inspired of [3]. We use the same tools, ideas and several results are
very similar. Thus some lemma will be stated without proof, deferring it to the appendix.

Definition 4.9 For b integer, we define the event ξn by

(4.37) ξn := ξn(x, b, A) := {∀k ≤ n− b, ∀v ∈ Ω(wk), min
u≥v,|u|=n

V (u) > an(x) + A},

where Ω(wk) denotes the set of brothers of wk. On the event ξn ∩ {Mkill
n ∈ In(x)} we are

sure that any particle located at the minimum separated from the spine after the time n-b.

Definition 4.10 Let for x, L, A > 0 and b ∈ N∗ we define
(i) the event

♦A,L,b(βj , δj, y) := 1{
e−βj(δj+L)≤

∑
|z|=b

e−βj (V (z)+y)
1{V (z)+y≤δj+L+A, min

k≤b
V (zk)+y≥δj}

}.

(ii)The function FA,L,b by
(4.38)

FA,L,b(β, δ,∆, y) := EQy



eV (ωb)−L1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}
1{V (ωb)∈[∆+L−1,∆+L],min

k≤b
V (ωb)≥∆}

∏

j≤k
♦A,L,b(βj, δj , 0)


 .

We stress that Mb which appears in the definition of FA,L,b(β, δ,∆, y) is the minimum at
time b of the non killed branching random walk.

(iii) cA,L,b(β, δ,∆) := C−C+
√
π

σ
√
π

∫
x≥0 FA,L,b(β, δ,∆, y)R−(y)dy, where C−, C+ and R−(x)

are defined in introduction.
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By adding

P

(
⋂

j≤k
{W̃A,L

n,βj
(x− δj) ≤ eβj(x−δj)}; Mkill

n ∈ In(x), m
kill,(n) ∈ Zx−∆,L

)

= EQ



eV (ωn)1{V (ωn)=Mkill

n ,ωn∈Zx−∆,L}∑
|u|=n

1{V (u)=Mkill
n }

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj )}


 ,

(which is true by lyons’change of measure) to the three Lemma (see Appendix for the proofs)

Lemma 4.11 ∀K, η, L, A > 0 ∃D(A, η) > 0 and B(A,L,K, η) ≥ 1 such that ∀b ≥ B, n ≥
b, x ≥ D and ∆ ∈ [−K,K]

(4.39) Q((ξn)
c, ωn ∈ Zx−∆,L

n ) ≤ ηn−
3
2 .

Lemma 4.12 y 7→ FA,L,b(β, δ,∆, y) is Riemann integrable and there exists a non-increasing
function F̄ : R+ → R such that |F (x)| ≤ F̄ (x) for any x ≥ 0 and

∫
x≥0 xF̄ (x) < ∞.

Lemma 4.13 Let L,A > 0 and K, η > 0. Let D and B be as in Lemma 4.11 then ∀b ≥
B, (δ1, ..., δk) ∈ [−K,K]k ∃N(b, L, δ1, ..., δk, η) > 0 such that ∀n > N and ∀x ∈ [D, logn]

(4.40)∣∣∣∣∣∣∣
exEQ



eV (ωn)1{V (ωn)=Mkill

n ,ωn∈Zx−∆,L}∑
|u|=n

1{V (u)=Mkill
n }

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj )}, ξn


− cA,L,b(β, δ,∆)

∣∣∣∣∣∣∣
≤ (2+eK+1)η.

we are nearly to the Proposition 4.3. Indeed by combining the Lemma 4.13 and 4.11 we can
drop ξn in the expectation of (4.40), so we obtain that the probability of Lemma 4.3 almost
behaves like a constant factor e−x as x → ∞. “Almost” because the factor depends to A,L
and b. With the following we will can drop ”almost”.

Lemma 4.14 (i) For all β > 1, δ ∈ K, ∆ ∈ R, cA,L(β, δ,∆) := lim
b→∞

cA,L,b(β, δ,∆) exists.

(ii) lim
A,L→∞

cA,L(β, δ,∆) converge in increasing and we denote c(β, δ,∆) the limit.

(iii)(δ,∆) 7→ cA,L(β, δ,∆) and (δ,∆) 7→ c(β, δ,∆) are continuous and thus cA,L(β., .)
converges uniformly on compact subsets to c(β, ., .) by Dini Lemma.

Proof of lemma 4.14. Let η > 0. We call Q(4.40) the expectation in the left-hand side of

(4.40), we introduce

c−A,L,b(β, δ,∆) := lim inf
x→∞

lim inf
n→∞

exQ(4.40)(β, δ,∆),
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c+A,L,b(β, δ,∆) := lim sup
x→∞

lim sup
n→∞

exQ(4.40)(β, δ,∆).

In particular, taking n → ∞ then x → ∞ in (4.40), for all A,L ∈ R+ there exists
B(A,L,K, η) such that for any b ≥ B(A,L,K, η), ∆ ∈ [−K,K]

cA,L,b(β, δ,∆)− η ≤ c−A,L,b(β, δ,∆) ≤ c+A,L,b(β, δ,∆) ≤ cA,L,b(β, δ,∆) + η.

Notice that ξn (hence Q(4.40)) is increasing with b. It implies that c−A,L,b(β, δ,∆) and

c+A,L,b(β, δ,∆) are both increasing in b. Let c−A,L(β, δ,∆) and c+A,L(β, δ,∆) the respectively
limits when b → ∞. By Lemma 4.6 both are bounded uniformly in A and L. We have then

lim sup
b→∞

cA,L,b(β, δ,∆)− η ≤ c−A,L(β, δ,∆) ≤ c+A,L(β, δ,∆) ≤ lim inf
b→∞

cA,L,b(β, δ,∆) + η.

Letting η go to 0, it yields that cA,L,b has a limit as b → ∞, that we denote by cA,L(β, δ,∆) =
c+A,L(β, δ,∆) = c−A,L(β, δ,∆). We stress that this equality is valid for all A, L > 0. Similarly
we see that Q(4.40) is increasing with L, thus cA,L(β, δ,∆) is increasing with L. Same

cA,L,b(β, δ,∆) is increasing with A and thus cA,L(β, δ,∆) is increasing with A. Finally
cA,L(β, δ,∆) is bounded and increasing with A and L. This prove (i) and (ii), it remains
(iii). Here are two useful lemmas (proved in the appendix):

Lemma 4.15 For all L > 0, there exists CL such that

(4.41) lim
x→∞

lim
n→∞

exP(Mkill
n ∈ In(x), m

kill,(n) ∈ Zx,L) = CL.

Lemma 4.16 For all A,L > 0, (δ,∆) ∈ R2

(4.42)

lim
x→∞

lim
n→∞

exP
(
W̃A,L

n,β (x− δ) ≥ eβ(x−δ),Mkill
n ∈ In(x), m

kill,(n) ∈ Zx−∆,L
)
= cA,L(β, δ,∆).

For (∆,∆′) ∈ R2, (δ, δ′) ∈ K2, by Lyons’ change of measure

ex|Q(4.40)(β, δ,∆)−Q(4.40)(β, δ
′,∆′)| ≤

∑

j≤k
exEQ



eV (ωn)1{V (ωn)=Mkill

n }∑
|u|=n

1{V (u)=Mkill
n }

1{W̃A,L
n,βj

(x−δj)≥eβj (x−δj), ωn∈Zx−∆,L} − 1
{W̃A,L

n,βj
(x−δ′j)≥e

βj (x−δ′
j
)
, ωn∈Zx−∆′,L}




≤
∑

j≤k
exE

[
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj ),mkill,(n)∈Zx−∆,L} − 1

{W̃A,L
n,βj

(x−δ′j)≥e
βj (x−δ′

j
)
,mkill,(n)∈Zx−∆′,L}

]
.
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Thus it’s enough to control

(4.43) lim
x→∞

lim
n→∞

exE

(
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj)} − 1

{W̃A,L
n,βj

(x−δ′j)≥e
β1(x−δ′

j
)}
; mkill,(n) ∈ Zx−∆,L

)
,

and

(4.44) lim
x→∞

lim
n→∞

E
(
1{mkill,(n)∈Zx−∆,L} − 1{mkill,(n)∈Zx−(∆′),L}

)
.

By (4.41) and a change of variable lim
x→∞

lim
n→∞

(4.44) ≤ CLe
∆|e∆′−∆ − 1|. Other hand

(4.44) ≤ exE

(
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj) mkill,(n)∈Zx−∆,L} − 1

{W̃A,L
n,βj

(x−δ′j)≥e
β1(x−δ′

j
)
, mkill,(n)∈Z(x−δ′+δ)−∆,L}

;

)

+E
(
1{mkill,(n)∈Zx−∆,L} − 1{mkill,(n)∈Zx−(∆−δ+δ′),L}

)

and by (6.3) and again a change of variable

lim
x→∞

lim
n→∞

(4.44) ≤ cA,L(β, δ,∆)|eδj − eδ
′
j |+ CLe

δj |eδ′−δ − 1|.

We conclude by

lim
x→∞

lim
n→∞

ex|Q(4.40)(δ,∆)−Q(4.40)(δ̃
′,∆′)| ≤ c21

∑

j≤k
|eδj − eδ

′
j |+ ke∆|e∆′−∆ − 1|.

for some c21 > 0. As it’s a bound uniform in A,L, b, it implies the continuity of (δ,∆) 7→
cA,L(β, δ,∆) and (δ,∆) 7→ c(β, δ,∆). �

End of proof of Lemma 4.7. Let K > 0, η > 0. Let A0, L0 > 0 such that for any A > A0,
L > L0 there exists D such that for any (δ,∆) ∈ [−K,K]k+1 there exists B, large enough
such that for any b ≥ B0 ∃N(b, A, L, δ,∆, η) such that for any n > N and x ∈ [D, logn],

EQ



eV (ωn)1{V (ωn)=Mkill

n , ωn∈Zx−∆,L}∑
|u|=n

1{V (u)=Mkill
n }

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj )}; ξ

c
n


 ≤ ηe−x,

|cA,L,b(β, δ,∆)− c(β, δ,∆)| ≤ η

and

∣∣∣∣∣∣∣
exEQ



eV (ωn)1{V (ωn)=Mkill

n , ωn∈Zx−∆,L}∑
|u|=n

1{V (u)=Mkill
n }

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj )}, ξn


− cA,L,b(β, δ,∆)

∣∣∣∣∣∣∣
≤ 3η.
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The combination of this three inequalities implies

∣∣∣∣∣e
xP

(
⋂

j≤k
{W̃A,L

n,βj
(x− δj) ≥ eβj(x−δj)};Mkill

n ∈ In(x−∆), mkill,(n) ∈ Zx−∆,L

)
− c(β, δ,∆)

∣∣∣∣∣ ≤ 5η.

Dependence in b disappears which gives exactly Lemma 4.7. �

4.4.3 Part 3, The others points

(i) results of Lemma 4.6 and Lemma 3.5 of [3]. (ii) is stated in Lemma 4.14. (iii) is simply
a consequence of the change of variable

exP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}, Mkill

n ∈ In(x−∆)

)

= e∆ex−∆P

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−∆−(δj−∆))}, Mkill

n ∈ In(x−∆− 0)

)
.

It remains (v). Let ǫ > 0. By Lemma 3.5 [3], there exists p0 ≥ 0 such that for any x ≥ 0
and n ≥ 1

∑

p≥p0

exP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}, Mkill

n ∈ In(x−∆+ p)

)
≤ ǫ

2
.

Moreover (iv) says that there exists A = A(p0 +K, ǫ
p0
) such that for all δ ∈ [−K,K]k there

exists N such that for any n ≥ N and x ∈ [A,A+ 3
2
log n] p ≤ p0

∣∣∣∣∣e
xP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}, Mkill

n ∈ In(x− (∆− p))

)
− e∆−pc(β, δ − (∆− p))

∣∣∣∣∣ ≤
ǫ

p0
.

By combining these inequalities with

exP

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}, Mkill

n ≤ an(x−∆)

)

= ex
∑

p≥0
P

(
⋂

j≤k
{W̃ kill

n,βj
≥ eβj(x−δj)}, Mkill

n ∈ In(x−∆+ p)

)
,

we get also the point (v). �
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5 Proof of the Proposition 2.2

This section partially prove the Proposition 2.2, rigorously we will need to Proposition 2.1.

5.1 The branching random walk at the beginning

Following [3] we introduce some notations. To go from the tail distribution of W kill
n,β to the

one of Wn,β, we have to control excursions inside the negative axis that can appear at the
beginning of the branching random walk. This can be seen as the analogue of the ”delay”
mentioned by Lalley and Sellke [20]. For z ≥ A ≥ 0 and n ≥ 1, we define the set

SA := {u ∈ T : min
k≤|u|−1

V (uk) > V (u) ≥ A− x and |u| ≤ √
n}.

We notice that SA depends on n and x, but we omit to write this dependency in the notation
for sake of concision. For x ≥ 0 and u ∈ SA, we define the indicator Bn,z(u) equal to 1 if and
only if the branching random walk emanating from u and killed below V (u) has its minimum
below 3

2
log n− x. Equivalently,

Definition 5.1 For u ∈ SA, we call Bn,x(u) the indicator of the event that there exists
|v| = n, v > u such that V (vl) ≥ V (u), ∀|u| ≤ l ≤ n and V (v) ≤ 3

2
logn− x.

Identically for u ∈ SA, we call BW
β,n,x(u) the indicator of the event {W u

n,β,kill ≥ eβ(x+V (u))

n
3
2β

},
where

W u
n,β,kill :=

∑

|z|=n,z>u

e−β(V (z)−V (u))
1{ min

k∈[|u|,n]
V (zk)−V (u)≥0}.

Finally, let for |v| ≥ 1,

ξ(v) :=
∑

w∈Ω(v)

(1 + (V (w)− V (
←
v ))+)e

−(V (w)−V (
←
v )).

To avoid some extra integrability conditions, we are led to consider vertices u ∈ SA which
behave ’nicely’, meaning that ξ(uk) is not too big along the path {u1, ..., u|u| = u}.

5.2 Proof of Proposition 2.2 in admitting ”an italic assertion” and
the Proposition 2.1

The assertion in italics is
∀K, ǫ > 0 ∃A(K, ǫ) > 0 such that ∀(δ1, ..., δj,∆) ∈ [−K,K]k+1, ∃N(ǫ, δ,∆) such that

∀n > N , x ∈ [A,A+ log log n]

∣∣∣∣∣
ex

x
P

(
⋂

j≤k
{W̃n,βj

≥ eβj(x−δj)}, Mn ≤ an(x−∆)

)
− c0χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.
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Suppose that it’s true.
Proof of Proposition 2.2 in admitting Proposition 2.1. We need to observe that ∀K, ǫ > 0

there exists A(K, ǫ) > 0 such that ∀(i, δ1, ..., δk) ∈ [−K,K]k+1 ∃N(ǫ, i, δ) such that ∀n >
N, x ∈ [A,A+ log log n]

(5.1)

∣∣∣∣∣
ex

x
P

(
⋂

j≤k
1{eβj (x−δj)≤W̃n,βj

}; Mn ∈ In(x− i)

)
− eic0c(β, δ − i, 0)

∣∣∣∣∣ ≤ ǫ.

Indeed it’s obvious because 1{Mn∈In(x−i)} = 1{Mn≤an(x−i)} − 1{Mn≤an(x−i)−1}, and χ(β, δ, i)−
χ(β, δ, i− 1) = eic(β, δ − i, 0). So

ex

x
P

(
⋂

j≤k
{W̃n,βj

≥ eβj(x−δj)}
)

=
ex

x

∑

i≥i0

P

(
⋂

j≤k
{W̃n,βj

≥ eβj(x−δj)}, Mn ∈ In(x− i)

)
+

ex

x
P

(
∩
j≤k

{W̃n,βj
≥ eβj(x−δj)}, Mn ≤ an(x− i0)

)
.

Now when x then n tend to infinity, the question is to know whether the sum is negligible.
The answer is yes, thanks to Proposition 2.1. Recall that this Proposition says exactly there
exists N > 0 such that for any n ≥ N ,j ≥ 1 and x ∈ [1, log log n]

P

(
⋂

j≤k
{W̃n,βj

≤ eβj(x−δj)}, Mn ∈ In(x− i)

)
≤ c1xe

−xe−αi.

So we get the first assertion of Proposition 2.2, with χ(β, δ) = χ(β, δ,−∞). For the asser-
tions (i), (ii), (iii) it’s obvious thanks to Proposition 4.3. �

So it remains to prove the assertion in italics. We decompose the proof in two steps. As
for the previous section, step 1 is very close to [3] and contains statements without proof.
Step 2, contains some calculus which concern specifically the partition function, their aim is
to ensure that step 1 is relevant for the partition function.

5.3 Step 1

Recall that R is the renewal function associated to (Sn)n∈N and c0 = lim
n→∞

R(x)
x

. For the step

1 we want show

Proposition 5.2 For any K, ǫ > 0 there exists A = A(K, ǫ) and X > A such that for any
(δ1, ..., δk,∆) ∈ [−K,K]k+1 there exists N(ǫ, δ,∆) such that for all n > N , x ∈ [X,X +
1
2
logn]

(5.2)

∣∣∣∣∣
ex

x
P

(
k⋂

j=1

{
∑

u∈SA

BW
βj ,n,x−δj(u) ≥ 1};

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
− c0χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.
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We see that it’s identical to the assertion in italic except W̃n,βj
which is replaced by

∑
u∈SA

BW
βj ,n,x−δj .

The proof requires the following two lemmas that we suppose for the moment (the demon-
stration are deferring to the Appendix).

Lemma 5.3 (i)Recall that R(x) is the renewal function of (Sn)n≥0 previous defined. Let

ǫ > 0. There exists A ≥ 0 such that for n large enough and z ∈ [A, (log n)
1
5 ],

(5.3)

∣∣∣∣∣
ex

R(x− A)
E

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.

(ii) For any |u| ≥ 1, let Γ(u) := {∀1 ≤ k ≤ |u| : ξ(uk) < eV (uk−1)+x−A)/2}. We have

P

(
∑

u∈SA

W̃
u,x+V (u)
n,β,kill 1Γ(u)c ≥ 1

)
≤ c22 log+(x)e

−x,

uniformly in A ≥ 0, ∆ ∈ [−K,K] and n ≥ 1.
(iii) In particular

P

(
∑

u∈SA

BW
n,x1Γ(u)c ≥ 1

)
≤ c22 log+(x)e

−x.

Next lemma serves to close the expectation in (5.3) with the probability in (5.2). Let θ > 1
(θ will be better determinate later). For u ∈ SA, we call BW,θ

n,x (u) the indicator of the event

{ W̃u
n,β,kill

eβ(x+V (u)) ≥ e−
βθ
β−1

log+ log+ x)}.

Lemma 5.4 Set K, θ > 1. There exists a constant c23 > 0 such that for any (δ1, δ2,∆) ∈
[−K,K]3 x ≥ A ≥ 0, and n ≥ 1 we get the following inequalities:

(5.4) E

(
∑

u 6=v,∈SA

BW,θ
β1,n,x−δ1(u)B

W,θ
β2,n,x−δ2(v)1Γ(u)∩Γ(v)

)
≤ c23(log x)

βθ
β−1

+1e−xe−A,

(5.5) E

(
∑

u 6=v,∈SA

BW,θ
β1,n,x−δ1(u)Bn,x−∆(v)1Γ(u)∩Γ(v)

)
≤ c23(log x)

βθ
β−1

+1e−xe−A.

In particular as BW,θ
n,x ≤ BW

n,x it is also true with BW
n,x at the place of BW,θ

n,x .
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This Lemma implies that for any K > 0 there exists a constant c24 > c23 such that for
any (δ,∆) ∈ [−K,K]k+1 x ≥ A ≥ 0, and n ≥ 1

∣∣∣∣∣P
(

k⋂

j=1

{
∑

u∈SA

BW
βj ,n,x−δj(u) ≥ 1},

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
−P

(
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u) ≥ 1

)∣∣∣∣∣

≤ c24(log x)
βθ
β−1

+1e−xe−A

and we are now able to show the
Proof of Proposition 5.2. Let ǫ > 0. Suppose A > 0 large enough to apply Lemma 5.3 (i)
and such that c24e

−A1 ≤ ǫ. Suppose also X > 0 large enough such that for any x ≥ X ≥ A

|R(x− A)− xc0| ≤ ǫx and (log x)
βθ
β−1

+1

x
≤ ǫ. Let us look at the upper bound. We have for n

large enough and x ∈ [X, log n]

ex

x
P

(
k⋂

j=1

{
∑

u∈SA

BW
βj ,n,x−δj(u) ≥ 1},

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
− c0χ(β, δ,∆)

≤ ex

x
P

(
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u) ≥ 1

)
− c0χ(β, δ,∆) + ǫ

≤ ex

x
E

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− c0χ(β, δ,∆) + ǫ

≤
(
ex|R(x− A)− xc0|

R(x− A)x
+

c0e
x

R(x− A)

)
E

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− c0χ(β, δ,∆) + ǫ

≤ 2χ(β, δ,∆)ǫ+ c0ǫ+ ǫ.

It’s enough for the upper bound. It remains the lower bound. If we write
U :=

∑
u∈SA

Bn,x−∆(u)
∏
j≤k

BW
βj ,n,x−δj(u)1Γ(u) then by the Paley-Zygmund formula, we haveP(U ≥

1) ≥ E[U ]2

E[U2]
. Under the conditions in italics, we have that E[U2] ≤ (1 + ǫ)E[U ]. Hence, by

Lemma 5.3 (i) and (ii) ex

R(x−A)
P(U ≥ 1) ≥ ex

R(x−A)(1+ǫ)
E[U ] ≥ χ(β,δ,∆)−2ǫ

1+ǫ
. It yields
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ex

x
P

(
k⋂

j=1

{
∑

u∈SA

BW
βj ,n,x−δj(u) ≥ 1},

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
− c0χ(β, δ,∆)

≥ ex

x
P

(
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u) ≥ 1

)
− c0χ(β, δ,∆)

≥
(
−
ex|R(x−A)

c0
− x|

R(x− A)x
+

ex

R(x− A)

)
P

(
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u) ≥ 1

)
− c0χ(β, δ,∆)

≥ −2χ(β, δ,∆)ǫ+
c0χ(β, δ,∆)− 2ǫ

1 + ǫ
− c0χ(β, δ,∆)

≥ −ǫ

(
1 + c0χ(β, δ,∆)

1 + ǫ
+ 2χ(β, δ,∆)

)
.

Thus the Proposition 5.2 follows.
�

5.4 Step 2

Recall the notation W̃ u
n,β = n

3
2
βW u

n,β and W̃n−p,β = n
3
2
βWn−p,β for u ∈ SA, p ∈ [0,

√
n] ∩ N.

For the step 2 our goal is:

Proposition 5.5 For any K > 0, η > 0 there exists A > 0 and X > A such that, for any
(δ,∆) ∈ [−K,K]k+1 ∃N(ǫ, δ,∆) such that for any n ≥ N and x ∈ [X, 3

2
log(n)− 1]

(5.6)

∣∣∣∣∣∣∣

ex

x
E



∏

j≤k
1

{
∑

u∈SA

W̃u
n,βj ,kill

e
βj(x−δj )

≥eβjV (u)}
−
∏

j≤k
1{

∑
u∈SA

BW
βj,n,x−δj

≥1};
∑

u∈SA

Bn,x−∆(u) ≥ 1




∣∣∣∣∣∣∣
≤ η.

This Proposition means that only one particle u among those of SA own a partition func-
tion e−βV (u)W̃ u

n,β,kill non negligible. Intuitively, the amounts e−βV (u)W̃ u
n,β,kill are ”almost”

independent and P(e−βV (u)W̃ u
n,β,kill ≥ eβx) ≤ cste−(V (u)+x). Thus the probability

P
(
∃u, v ∈ SA, u 6= v such that e−βV (u)W̃ u

n,β,kill ≥ eβx, e−βV (v)W̃ v
n,β,kill ≥ eβx

)

decreases fast.
This Proposition requires the subsequent Lemma. Part (. bis) will be useful only for

the proof of Proposition 2.1 (see Appendix). For sake of lightness in the notation we denote
W u,a

n,β,kill := e−βaW u
n,β,kill.
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Lemma 5.6 (i) For any ǫ > 0, η > 0 there exists θ > 0 such that for all x ≥ 1 and n > 5

(5.7) P


 ∑

|u|=k,u∈SA

W̃
u,x+V (u)
n,β,kill 1

{W̃u,x+V (u)
n,β,kill ≤e−

βθ
β−1

log+ log+ x}
≥ ǫ


 ≤ ηxe−x.

(i bis)For the same θ there exists c(1) and α(1) (The numbering is different to better remember
this constant) such that for all x ≥ 1 and n, j > 5,

(5.8)

P



∑

u∈S
−

κj
2

W̃
u,x+V (u)
n,β,kill 1

{W̃u,x+V (u)
n,β,kill ≤e

−
βθ
β−1

log+ log+ x}
≥ 1, Mn ≥ an(x− j)


 ≤ c(1)e

−α(1)jxe−x.

(ii) There exists c25 > 0 such that for all x ≥ 1, s ≤ 0, and any integer n > 5, p ≤ √
n

(5.9) Ey

(
e−β(x+s)W̃ kill

n−p,β1{e−β(x+s)W̃ kill
n−p,β≤1}

)
≤ c25 log+ x (1 + y)e−ye−(x+s).

(ii bis)For all x ≥ 1, s ≤ 0, and any integer n, j > 5, p ≤ √
n

(5.10)

Ey

(
e−β(x+s)W̃ kill

n−p,β1{e−β(x+s)W̃ kill
n−p,β≤1}

, Mn−p ≥ an(x− j)
)
≤ c(1)e

−α(1)j log+ x (1+y)e−ye−(x+s).

Proof of Proposition 5.5 in admitting Lemma 5.6. To obtain Proposition 5.5 we need to
resume all our previous inequalities, observe that for any ǫ ≥ 0

ex

x

∣∣∣∣∣∣∣
E



∏

j≤k
1

{
∑

u∈SA

W̃u
n,βj,kill

e
βj(x−δj)

≥eβjV (u)}
−
∏

j≤k
1{

∑
u∈SA

BW
βj,n,x−δj

≥1};
∑

u∈SA

Bn,x−∆(u) ≥ 1




∣∣∣∣∣∣∣
≤ P1 + P2 + P3 + P4,

with
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P1 =
ex

x

∑

j≤k
P

(
∑

u∈SA

W̃
u,x−δj+V (u)
n,βj ,kill

1Γ(u)c ≥
ǫ

2

)
,

P2 =
ex

x

∑

j≤k
P


∑

u∈SA

W̃
u,x−δj+V (u)
n,βj,kill

1

{W̃u,x−δj+V (u)

n,βj,kill
≤e
−

θβj
βj−1

log+ log+(x−δj+V (u))
}
≥ ǫ

2


 ,

P3 =
ex

x

∑

j≤k
P

(
∑

u∈SA

W̃
u,x−δj+V (u)
n,βj ,kill

1Γ(u)B
W,θ
βj ,n,x−δj(u) ∈ [1− ǫ, 1],

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
,

P4 =
ex

x

∑

j≤k
P
(
∃u, v ∈ SA, u 6= v, BW,θ

βj ,n,x
(u)1Γ(u)B

W,θ
βj ,n,x

(v)1Γ(v) = 1
)
.

Suppose that: for any K > 0, η > 0 there exists ǫ0 ∈ [0, 1] such that for any θ > 1
there exists A1 > A > 0 such that for all δ ∈ [−K,K], ǫ ∈ [0, ǫ0] there exists N such that
∀n > N, x ∈ [A1,

3
2
logn]

(5.11) P3 = PA,n,x
3 (ǫ, θ, δ) ≤ η,

is true, then the Proposition 5.5 is too. Indeed let η > 0 and K > 0. It suffices first
to fix ǫ0 for the previous affirmation. We choose θ large enough such that for any n > 0
and x ∈ [1, 3

2
logn] P2 is smaller than η. Then there exists A1 > A > 0 such that for all

δ ∈ [−K,K], ǫ ∈ [0, ǫ0] there exists N such that ∀n > N, x ∈ [A1,
3
2
log n] P1, P3 and P4 ≤ η

and we conclude.
It remains to prove this affirmation. Main difficulty holds in the multiplication of variables

and quantifiers, but idea is simply. We stay rigorous if we suppose δ = 0. It suffices to see
that

{
∑

u∈SA

W̃
u,x+V (u)
n,β,kill 1Γ(u)B

W,θ
β,n,x(u) ≥ 1− α

}
−
{
∑

u∈SA

1{W̃u,x+V (u)
n,β,kill ≥1−α}

1Γ(u) ≥ 1

}

⊂
{
∃u, v ∈ SA, u 6= v, 1Γ(u),Γ(v)B

W,θ
β,n,x(u)B

W,θ
β,n,x(v) = 1

}
.

and that by Lemma 5.4: for any θ > 0 there exists A0 > A such that ∀A > A0, ∃δ ∈
[−K,K], N > 0 such that ∀n > N, x ∈ [A, 3

2
logn] the probability of this event is smaller

than ηxe−x. Finally this inclusion is also true on

{
∑

u∈SA

Bn,x−∆(u) ≥ 1

}
, hence by Proposition

5.3 under the same quantifiers, probability of the event

{
∑

u∈SA

1{W̃u,x+V (u)
n,β,kill ≥1−α}1Γ(u) ≥ 1

}
∩
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{
∑

u∈SA

Bn,x−∆(u) ≥ 1

}
is very close xe−xχ(β, 1

β
log(1− α),∆). Identically the probability of

{
∑

u∈SA

W̃u
n,β,kill

eβ(x+V (u))1Γ(u)B
W,θ
β,n,x(u) ≥ 1

}
is very close to xe−xχ(β, 0,∆). We conclude in keeping

in mind that χ is continuous.
�

Proof of Lemma 5.6 (i)

Let ǫ > 0 and η > 0. Proof consists to seek a good decomposition of [0, e−
θβ
β−1

log+ log+ x].

Let max
k≤√n,n≥5

exP(W̃ kill
n−k,β ≥ eβx) := c26 < ∞, and c27 such that for any A, x > 1 R(x− A) ≤

c27x. Let θ > 0 large enough such that:

(5.12)
(c27 + c26c27)

ǫ

∑

k≥2
k−θ < η.

We define the sequence f0 = +∞ and fl(x + V (u)) := 1
βl (x + V (u)) + θ

∑
0≤j≤l

log(l+2−j)
βj for

l ∈ N∗. A quickly study show that

[0, e−
2θβ
β−1

log+ log+ x] ⊂
⌊ log(x+V (u))

log β
⌋+1

∪
l=0

[e−fl(x+V (u)), e−fl+1(x+V (u))].

Observe by Lyons’ change of measure that

1

ǫ
E


 ∑

|u|=k,u∈SA

W̃
u,x+V (u)
n,β,kill 1{W̃u,x+V (u)

n,β,kill ≤e
fx+V (u)(1)}


 ≤ 1

ǫ
E



√
n∑

k=0

∑

|u|=k,u∈SA

e−x2−θe−V (u)




≤ R(x− A)e−x2−θ

ǫ

≤ c272
−θ

ǫ
e−xx.

Same

1
ǫ

E



√
n∑

k=0

∑

|u|=k,u∈SA

W̃
u,x+V (u)
n,β,kill 1{e−fl+1(x+V (u))≥W̃u,x+V (u)

n,β,kill ≥e−fl(x+V (u))}




≤ 1
ǫ

E


 ∑

|u|=k,u∈SA

e
− 1

βl+1 (x+V (u))−θ ∑
0≤j≤l+1

log(l+1+2−j)

βj

1{W̃u,x+V (u)
n,β,kill ≥e−fl(x+V (u))}


 ,
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which is, by Markov property, equal to

=
1

ǫ
E



√
n∑

k=0

∑

|u|=k,u∈SA

e
− 1

βl+1 (x+V (u))−θ
∑

0≤j≤l+1

log(l+1+2−j)

βj

P
(
W̃ x+s

n−p,β,kill ≥ e−fl(x+s)}
)
s=V (u),|u|=p,u∈SA


 .

As u ∈ SA implies |u| ≤ √
n

P
(
W̃ x+s

n−p,β,kill ≥ e−fl(x+s)
)
s=V (u),p=|u|,u∈SA

≤ c26e
−x−se

1

βl+1 (x+V (u))+θ
∑

0≤j≤l

log(l+1+2−j)

βj

,

it follows that

1

ǫ
E



√
n∑

k=0

∑

|u|=k,u∈SA

W̃
u,x+V (u)
n,β,kill 1{e−fl+1(x+V (u))≥W̃u,x+V (u)

n,β,kill ≥e−fl(x+V (u))}




≤ 1

ǫ
E



√
n∑

k=0

∑

|u|=k,u∈SA

c26e
−x−V (u)(l + 2)−θ


 ≤ c26R(x−A)(l + 2)−θ

ǫ
e−x.

≤ c26c27(l + 2)−θ

ǫ
xe−x.

So we sum all these inequalities up to ∞ to obtain

P



√
n∑

k=0

∑

|u|=k,u∈SA

W̃
u,x+V (u)
n,β,kill 1

{W̃u,x+V (u)
n,β,kill ≤e−

2θβ
β−1

log+ log+ x}
≥ ǫ


 ≤ ηe−xx.

Hence we have proved exactly (5.7) with θ′ = 2θ . �

Proof of (i bis) Suppose that there exists c28,c29 and c30 such that for any n, j ∈ N∗, p ≤√
n, s ≤ 0, x ≥ 1

(5.13) E
(
W̃ s+x

n−p,β,kill1{W̃ s+x
n−p,β,kill≤e

−c28 log+ log(x+j)}; Mn−p ≥ an(x+ s− j)
)
≤ c30e

−(x+s)e−c29j ,

then for x = x+ c29
β
j we get trivially

E

(
W̃ s+x

n−p,β,kill1{W̃ s+x
n−p,β,kill≤e

−c28[log+ log(x+j)− 1
c28

j
]}
1
{Mn−p≥an(x+s−(1−

c
(4.6)

β
)j)}

)
≤ c30e

−(x+s)e−
c29
β

j .

Since log+ log(x + j) − 1
c28

j ≤ log+ log+ x when x, j ≥ 1, for some c31 > c30 then for any

n, j ∈ N∗, p ≤ √
n, s ≤ 0, x ≥ 1
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E
(
W̃ s+x

n−p,β,kill1{W̃ s+x
n−|u|,β,kill

≤e−c28[log+ log x]}; Mn−p ≥ an(x+ s− j)
)
≤ c31e

−(x+s)e−
c29
β

j.

So if the last inequality is true then

P



∑

u∈S
−

κj
2

W̃
u,x+V (u)
n,β,kill 1{W̃u,x+V (u)

n,β,kill ≤e−c28 log+ log+ x} ≥ 1, Mn ≥ an(x− j)




≤ E



∑

u∈S
−

κj
2

E
(
W̃ s+x

n−|u|,β,kill1{W̃ s+x
n−|u|,β,kill

≤e−c28[log+ log x,Mn−|u|≥an(x+V (u)−j)}

∣∣∣u ∈ S−κj
2
, V (u) = s

)



≤ c31e
−xe−

c29
β

jE



∑

u∈S
−

κj
2

e−V (u)


 ≤ c31e

−xe−
c29
β

jR(x+
κj

2
)

≤ c(4)e
−xe−α(4)j.

with c(4) > c31 and c(4) < c29. Thus (i bis) is true if (5.13) is too, but it’s exactly the

same reasoning. It’s suffices to introduce fl(x + V (u) + j) := (
1+c

(4.6)

β
)l(x + V (u) + j) +

θ
∑

0≤s≤l

log(l+2−j)

(
1+c

(4.6)
β

)s
and keeping in mind

E
(
W̃ s+x

n−p,β,kill1{W̃ s+x
n−p,β,kill∈[e−fl(x+s+j),e−fl+1(x+V (u)+j)],Mn−p≥an(x+s−j)}

)
≤ e−θ log(l+1+2)e−x−se−c29j,

thanks to Lemma 4.6.
Proof of (ii) By Lemma 4.6, if n ≥ 5, p ≤ √

n and s ≤ 0

Ey

(
e−β(x+s)W̃ kill

n−p,β1{e−β(x+s)W̃ kill
n−p,β≤e−(x+s)}

)
≤ e−(x+s).

Ey

(
e−β(x+s)W̃ kill

n−p,β1{2e
− 1

β2 (x+s)
≥e−β(x+s)W̃ kill

n−p,β≥e
− 1

β
(x+V (u))}

)
≤ c26e

−(x+s)(1 + y)e−y.

...

Ey

(
e−β(x+s)W̃ kill

n−p,β1{2e
− 1

βt (x+V (u))
≥e−β(x+s)W̃ kill

n−p,β≥e
− 1

βt−1 (x+V (u))
}

)
≤ c26e

−(x+s)(1 + y)e−y.

We continue until 2e
− 1

βt (x+s) ≥ 1 ⇐⇒ t ≥ 1
log β

(log(x+ s)− log log 2). We get at most

c log(x+ s) term which explain that:

Ey

(
W̃ x+s

n−p,β,kill1{W̃ x+s
n,β,kill≤1}

)
≤ c25 log+(x+ s)(1 + y)e−ye−(x+s).

Remark: Proof of (ii bis) run like proof of (i bis) knowing (i). �
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5.5 End of proof of assertion in italic

Now we can affirm that:
For any K, ǫ > 0 there exists A = A(K, ǫ) and X > A (which depend only of R)

such that for any (δ1, ..., δk,∆) ∈ [−K,K]k+1 there exists N(ǫ,∆) such that for all n > N ,
x ∈ [X,X + 1

2
log n]

(5.14)

∣∣∣∣∣
ex

x
P

(
⋂

j≤k
{
∑

u∈SA

W̃ u
n,βj ,kill

eβj(x−δj) ≥ eβjV (u)},
∑

u∈SA

Bn,x−∆(u) ≥ 1

)
− c0χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.

It remains to make disappear SA to obtain our result. Let ǫ > 0. We see that for any r ≥ 0,

P

(
∃|u| ≥ √

n : V (u) ∈ [−r, 0],min
j≥|u|

V (uj) ≥ −r

)
≤

∑

k≥√n

E


∑

|u|=k

1{V (u)∈[−r,0],min
j≥k

V (uj)≥−r}




=
∑

k≥√n

E

[
eSk , Sk ∈ [−r, 0], S

j≤kj
≥ −r

]

≤
∑

k≥√n

P

(
Sk ∈ [−r, 0],min

j≥l
Sj ≥ −r

)
.

We notice that P

(
Sk ∈ [−r, 0], Sj

j≥k
≥ −r

)
≤ c(1 + r)2k−

3
2 . Therefore

P

(
∃|u| ≥ √

n : V (u) ∈ [−r, 0],min
j≥|u|

V (uj) ≥ −r

)
≤ c(1 + r)2(

√
n)−5.

We also observe that:

P (∃u ∈ T : V (u) ≤ −r) ≤
∑

n≥0
E


∑

|u|=n

1{V (u)≤−r,V (uk)>−r ∀k<n}




=
∑

n≥0
E
[
eSn , Sn ≤ −r, Sk > −r ∀k < n

]

≤ e−r.

On the event {∀|u| ≥ √
n : V (u) ≥ 0} ∩ {∀u ∈ T, V (u) ≥ A− x}, we observe that

W̃n,β

eβx ≥ 1

andMn ≤ 3
2
(logn)− (x−∆) if and only if

∑
u∈SA

W̃u
n,β,kill

eβ(x+V (u)) ≥ 1 and
∑

u∈SA

Bn,x−∆ ≥ 1. Moreover

with the two previous Propositions there exists X > A > 0 such that for n large enough and
x ≥ X .
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∣∣∣∣∣
ex

x
P

(
⋂

j≤k
{W̃n,βj

≥ eβj(x−δj)}, Mn ≤ an(x−∆)

)
− c0χ(β, δ,∆)

∣∣∣∣∣ ≤

≤ c32(1 + x− A)2

(
√
n)5

+ eA−x +

∣∣∣∣∣
ex

x
E

(
⋂

j≤k
{
∑

u∈SA

BW
βj ,n,x−δj ≥ 1},

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
− c0χ(β, δ,∆)

∣∣∣∣∣

≤ c32(1 + x− A)2

(
√
n)5

+ eA−x + η.

The assertion 2.2 follows easily, if x ∈ [X,X + log logn]. �

6 Appendix

6.1 Proofs for the killed branching random walk

We state and prove 6 Lemmas. Their proofs require continual references to [3]. We re-
call that ξn = {∀k ≤ n − b, ∀v ∈ Ω(wk), min

u≥v,|u|=n
V (u) > an(x) + A} and ♦A,L,b(βj, δj , y) :=

1{
e−βj (δj+L)≤

∑
|z|=b

e−βj (V (z)+y)
1{V (z)+y≤δj+L+A, min

k≤b
V (zk)+y≥δj}

}. Remenber also that W̃A,L
n,β (x) = n

3
2
βWA,L

n,β (x)

Lemma 6.1 For any ǫ > 0 there exists L0 > 0 such that ∀L > L0, A, x ≥ 1, n ∈ N

∣∣∣P
(
W̃A,L

n,β (x) ≥ eβx, Mkill
n ≤ an(x)

)
−P

(
Mkill

n ≤ an(x)
)∣∣∣ ≤ ǫe−x.

Proof of lemma 6.1. It’s a consequence of Lemma 3.3 [3], indeed keeping in mind that there
exists L0 such that ∀L > L0, x ≥ 1, n ∈ N we have

∑

j≥0
P
(
Mkill

n ∈ In(x+ j), mkill,(n) /∈ Zx+j,L
)

≤
∑

j≥0
ǫe−je−x

≤ ǫe−x,

we notice that
∣∣∣E
(
(1{W̃A,L

n,β ≥eβx} − 1)1{Mkill
n ≤an(x)}

)∣∣∣ =
∣∣∣∣∣
∑

j≥0
E
(
(1{W̃A,L

n,β ≥eβx} − 1)1{Mkill
n ∈In(x+j)}

)∣∣∣∣∣

=

∣∣∣∣∣
∑

j≥0
E
(
(1{W̃A,L

n,β ≥eβx} − 1)(1{Mkill
n ∈In(x+j),mkill,(n)∈Zx+j,L} + 1{Mkill

n ∈In(x+j),mkill,(n) /∈Zx+j,L})
)∣∣∣∣∣

=

∣∣∣∣∣
∑

j≥0
E
(
(1{W̃A,L

n,β ≥eβx} − 1)(1{Mkill
n ∈In(x+j),mkill,(n) /∈Zx+j,L})

)∣∣∣∣∣

≤ ǫe−x.
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Last equality follows from Mkill
n ∈ In(x+ j), mkill,(n) ∈ Zx+j,L ⇒ W̃A,L

n,β ≥ eβx. �

Lemma 4.11 ∀K, η, L, A > 0 ∃D(A, η) > 0 and B(A,L,K, η) ≥ 1 such that ∀b ≥ B, n ≥
b, x ≥ D and ∆ ∈ [−K,K]

(6.1) Q((ξn)
c, ωn ∈ Zx−∆,L

n ) ≤ ηn−
3
2 .

Proof of lemma 4.11. LetK,L,A, η > 0, and ∆ ∈ [−K,K]. We take numbers (ek, 0 ≤ k ≤ n)
such that

(6.2) ek = e
(n)
k =

{
k1/2 if n

2
< k ≤ 3

4
n

(n− k)1/2 if 3
4
n < k ≤ n− a

,

and denote

(6.3) dk = dk(n, x−∆, L) :=

{
0 if 0 ≤ k ≥ n

2

max(3
2
log n− x+∆− L− 1, 0) if n

2
< k ≤ n

.

We say that |u| = n is a good vertex if u ∈ Zx−∆,L and

∑

w∈Ω(uk)

e−(V (v)−dk){1 + (V (v)− dk)+} ≤ Be−ek ∀1 ≤ k ≤ n.

According to Lemma C.1 [3], there exists B(= B(L)) such that, for n ≥ 1 and x−∆ ≥ 0

(6.4) Q(wn ∈ Zx−∆,L, wn is not a good vertex ) ≤ η

n
3
2

.

For ξn to happen, every brother of the spine at generation less than n − b must have its
descendants at time n greater than an(x) + A. In others words,

(6.5) Q((ξn)
c, ωn is a good vertex) = Q


1−

n−b∏

k=1

∏

u∈Ω(ωk)

p(u, x−A), ωn is a good vertex


 ,

where p(u, x− A) = PV (u)(M
kill
n−|u| ≥ an(x− A)) is the probability that the killed branching

random walk rooted at u has its minimum greater an(x) + A at time n− |u|. From Lemma
3.5 [3], we see that

− log p(u, x−A) ≤ 1− p(u, x− A) ≤ c33(1 + V (u)+)e
−(x−A)−V (u).
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Since wn is a good vertex, we have for k ≤ n/2 (hence dk = 0),
∑

u∈Ω(ωk)

(1 + V (u)+)e
−V (u) ≤

Be−ek = Be−k
1
12 . It implies that for x large enough and 1 ≤ k ≤ n/2,

∏

u∈Ω(ωk)

p(u, x− A) ≥ exp(−c34Be−(x−A)e−k
1
12 ).

It yields that

⌊n/2⌋∏

k=1

∏

u∈Ω(ωk)

p(u, x− A) ≥ exp(−c34Be−(x−A)

n/2∑

k=1

e−k
1
12 ) ≥ exp(−c35Be−(x−A)).

Therefore, there exists D1(A) > 0 such that for any x ≥ D1

(6.6)

⌊n/2⌋∏

k=1

∏

u∈Ω(ωk)

p(u, x− A) ≤ (1− η)1/2.

If k > n/2, we simply observe that if Mkill
k ≤ x, a fortiori Ml ≤ x. Since Wn (defined in (4.2)

is a martingale, we have 1 = E[Wl] ≥ E[e−Ml] ≥ e−xP(Ml ≤ x) for any l ≥ 1 and x ∈ R.
We get that

1− p(u, x− A) ≤ P
(
Mn−|u| ≤ an(x) + A− V (u)

)
≤ ean(x−A)e−V (u).

We rewrite it (we have x − A ≥ 0), 1 − p(u, x − A) ≤ n
3
2 e−V (u)e−x+A = e−(V (u)−dk)eA−∆+L

for n/2 < k ≤ n. Since wn is a good vertex, we get that
∏

u∈Ω(wk)

p(u, x−A) ≥ e−c36eke
A−∆+L

=

e−c36(n−k)
1/12eA−∆+L

. Consequently,

n−b∏

k=⌊n/2⌋+1

∏

u∈Ω(ωk)

p(u, x−A) ≥ e
−c36e+A+K+L

n−b∑
⌊n/2⌋+1

e−(n−k)
1
12

.

It yields that there exists B(A, η,K, L) ≥ 1 large enough such that ∀b ≥ B, n > b, we have,

(6.7)
n−b∏

k=⌊n/2⌋+1

∏

u∈Ω(ωk)

p(u, x− A) ≥ (1− η)
1
2 .

In view of (6.6) and (6.7), we have for b ≥ B, x ≥ D1 and n ≥ b,
n−b∏
k=1

∏
u∈Ω(wk)

p(u, x − A) ≥

(1− η). Plugging into (6.5) yields that
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Q((ξn)
c, wn is a good vertex) ≤ ηQ(wn is a a good vertex) ≤ ηQ(wn ∈ Zx−∆,L).

It follows from (6.4) that

Q((ξn)
c, wn ∈ Zx−A,L) ≤ η(Q(wn ∈ Zx−∆,L) + n−

3
2 ).

Remember that the spine behaves as a centred random walk. Then apply (4.7) to see that

Q(wn ∈ Zx−∆,L) ≤ c37n
− 3

2with c37 which run for any ∆ ∈ [−K,K]), which completes the
proof of the Lemma. �

Lemma 4.12 y 7→ FA,L,b(β, δ,∆, y) is Riemann integrable and there exists a non-increasing
function F̄ : R+ → R such that |F (x)| ≤ F̄ (x) for any x ≥ 0 and

∫
x≥0 xF̄ (x) < ∞.

Proof of Lemma 4.12. We recall that by Proposition 4.1 the spine has the law of (Sn)n≥0.

We see that
1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}
is smaller than 1, and eV (ωb)−L ≤ e∆. Hence, |FA,L,b(β, δ,∆, y)| ≤

P(Sb ≤ L − x) =:
−
F (x) which is non-increasing in x, and

∫
x≥0

−
F (x)xdx = 1

2
E[(L −

Sb)
21{Sb≤L}] < ∞. Moreover, observe that

FA,L,b(β, δ,∆, y) := EQ



eV (ωb)+y−L

1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}
1{V (ωb)+y∈[L+∆−1,L+∆],min

k≤b
V (ωk)+y≥∆}

∏

j≤k
♦A,L,b(βj, δj , y)


 .

The fraction in the expectation is smaller than e∆. Using the identity |1E − a1F | ≤ 1− a+
|1E − 1F | for a ∈ (0, 1), it yields that for y2 ≥ 0,ǫ > 0 and any y1 ∈ [y2, y2 + ǫ],

1
e∆

|FA,L,b(β, δ,∆, y1)− FA,L,b(β, δ,∆, y2)| ≤ 1− e−ǫ +
∑

j∈[0,k]
EQ [|♦A,L,b(βj , δj, y1)− ♦A,L,b(βj , δj, y2)|] +

EQ

[
|1{V (ωb)+y1∈[L,L−1],min

k≤b
V (ωb)+y1≥0} − 1{V (ωb)+y2∈[L,L−1],min

k≤b
V (ωb)+y2≥0}|

]
.

We easily deduce that y 7→ FA,L,b(β, δ,∆, y) is Riemann integrable. �

Remark: The interest of this Lemma is to allow the application of the Lemma 2.2 [3] to
the function FA,L,b.

Lemma 4.13 Let L,A > 0 and K, η > 0. Let D and B be as in Lemma 4.11 then ∀b ≥
B, (δ,∆) ∈ [−K,K]k+1 ∃N(b, L, δ,∆, η) > 0 such that ∀n > N and ∀x ∈ [D, logn]

(6.8)∣∣∣∣∣∣∣
exEQ



eV (ωn)1{V (ωn)=Mkill

n ,ωn∈Zx−∆,L}∑
|u|=n

1{V (u)=Mkill
n }

∏

j≤k
1{W̃A,L

n,βj
(x−δj)≥eβj (x−δj)}, ξn


− cA,L,b(β, δ,∆)

∣∣∣∣∣∣∣
≤ (2+eK+1)η.
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Proof of lemma 4.13. Let ∆, L, A, η,D,B be as in the Lemma 4.11. Let n > b > B and
x ≥ D. We denote by Q(6.8) the expectation in (6.8). By the Markov property at time n− b

(for n ≥ 2b), we have

Q(6.8) = EQ

[
F kill(V (ωn−b)), V (ωk) ≥ dk ∀k ≥ n− b, ξn

]
,

where we recall that

dk = dk(n, x−∆, L) :=

{
0 if 0 ≤ k ≥ n

2

max(3
2
logn− x+∆− L− 1, 0) if n

2
< k ≤ n

and F kill(y) is defined by

(6.9)

EQy



eV (ωb)1{V (ωb)=Mkill

b }∑
|u|=b

1{V (u)=Mkill
b }

∏

j≤k
♦A,L,b(βj , δj, 0− an(x+ L))1{V (ωb)∈In(x−∆),min

k≤b
V (ωb)≥an(x−∆+L)}


 ,

= EQ



ey+V (ωb)1{V (ωb)=Mkill

b }∑
|u|=b

1{V (u)=Mkill
b }

∏

j≤k
♦A,L,b(βj , δj, y − an(x+ L))1{y+V (ωb)∈In(x−∆),y+min

k≤b
V (ωb)≥an(x−∆+L)}


 .

Notice that F kill(y) ≤ n
3
2 e−xe∆Qy

(
min
k∈[0,b]

V (ωk) ≥ an(x+ L), V (ωb) ∈ In(x−∆)

)
. Hence

∣∣∣Q(6.8) −EQ

[
F kill(V (ωn−b)), V (ωk) ≥ dk, ∀k ≥ n− b

]∣∣∣
= EQ

[
F kill(V (ωn−b)), V (ωk) ≥ dk, ∀k ≥ n− b, (ξn)

c
]

≤ n
3
2

ex
e∆EQ

[
QV (ωn−b)

(
min
k∈[0,b]

V (ωk) ≥ an(x−∆+ L), V (ωb) ∈ In(x−∆)

)
1{V (ωk)≥dk∀k≤n−b;(ξn)c}

]
.

By Markov property, the last term is equal to

n
3
2

ex
e∆EQ

(
ωn ∈ Zx−∆,L; (ξn)

c
)
≤ ηe−xeK+1,

by our choice of D and B. Therefore

(6.10)
∣∣∣Q(6.8) − EQ

[
F kill(V (wn−b), V (wl) ≥ dl, ∀l ≤ n− b

]∣∣∣ ≤ ηe−x.
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We would like to replace F kill(y) by n
3
2 e−xFA,L,b(β, δ,∆, y − an(x+ L)). We notice that

n
3
2

ex
FA,L,b(β, δ,∆, y − an(x+ L))

= EQy



eV (ωb)1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}

∏

j≤k
♦A,L,b(βj, δj ,−an(x+ L))1{V (ωb)∈In(x−∆),min

k≤b
V (ωb)≥an(x−∆+L)}


 .

We observe that the only difference with (6.9) is that the branching random walk is not killed

any more. Since

∣∣∣∣∣
1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}
−

1
{V (ωb)=Mkill

b
}∑

|u|=b

1
{V (u)=Mkill

b
}

∣∣∣∣∣ is always smaller than 1 and is equal to

zero if no particle touched the barrier 0, we have that, for any H ≥ 0 such thatH ≤ an(x+L)

∣∣∣∣∣∣∣

1{V (ωb)=Mb}∑
|u|=b

1{V (u)=Mb}
−

1{V (ωb)=Mkill
b }∑

|u|=b

1{V (u)=Mkill
b }

∣∣∣∣∣∣∣
≤ 1{∃|u|≤b:V (u)≤an(x+L+H)}.

Consequently,

∣∣∣F kill(x)− n
3
2 e−xFA,L,b(β, δ,∆, x− an(x+ L))

∣∣∣

≤ EQx

[
eV (wb)1{∃|u|≤b:V (u)≤an(x+L+H), min

k∈[0,b]
V (wk)≥an(x−∆+L),V (wb)∈In(x−∆)}

]

≤ n
3
2 e∆

ex
EQx

[
1{∃|u|≤b:V (u)≤an(x+L+H), min

k∈[0,b]
V (wk)≥an(x−∆+L),V (wb)∈In(x−∆)}

]

= n
3
2 e∆−xGH(x− an(x+ L)),

with

GH(y) := Qy

(
{∃|u| ≤ b : V (u) ≤ −H} ∩ {min

k∈[0,b]
V (wk) ≥ ∆, V (wb) ∈ [∆ + L− 1,∆+ L]}

)
.

It shows that, for any H ∈ [0, an(x+ L)]

EQ

[∣∣∣F kill(V (wn−b))− n
3
2 e−xFA,L,b (β, δ,∆, V (wn−b)− an(x+ L))

∣∣∣1{V (wl)≥dl,∀l≤n−b}

]

≤ n
3
2 e∆−xEQ

[
GH (V (wn−b)− an(x+ L))1{V (wl)≥dl,∀l≤n−b}

]
,

we choose H such that C−C+
√
π

σ
√
2

∫
y≥0GH(y)R−(y)dy ≤ η

2eK+1 . The function GH satisfies the

conditions of Lemma 2.2 [3] for the same reasons than FA,L,b(β, δ,∆, .). By Lemma 2.2 [3],
it yields that
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EQ

[∣∣∣F kill(V (ωn−b))− n
3
2 e−xFA,L,b (β, δ,∆, V (ωn−b)− an(x+ L))

∣∣∣1{V (ωl)≥dl,∀l≤n−b}

]
≤ ηe−x,

for n large enough and x ∈ [0, logn]. Combined with (6.10), we get

(6.11)

|Q(6.8) − n
3
2 e−xEQ

[
FA,L,b (β, δ,∆, V (wn−b)− an(x+ L))1{V (ωl)≥dl,∀l≤n−b}

]
| ≤ 2ηe−x.

Remenber the definition of cA,L,b(β, δ,∆), we apply again Lemma 2.2 [3] to see that:

EQ

[
FA,L,b (β, δ,∆, V (wn−b)− an(x+ L))1{V (ωl)≥dl,∀l≤n−b}

]
∼ cA,L,b(β, δ,∆)

n
3
2

,

as n → ∞ uniformly in x ∈ [0, logn]. Consequently, we have for n large enough and
x ∈ [0, logn],

∣∣∣n 3
2 e−xEQ

[
FA,L,b (β, δ,∆, V (wn−b)− an(x+ L))1{V (ωl)≥dl,∀l≤n−b}

]
− e−xcA,L,b(β, δ,∆)

∣∣∣ ≤ ηe−x.

The Lemma follows from (6.11). �

Yet two very close Lemma.

Lemma 6.2 For all L > 0

(6.12) lim
x→∞

lim
n→∞

exP(Mkill
n ∈ In(x), m

kill,(n) ∈ Zx,L) = CL.

CL is defined in [3] p 22.

Lemma 6.3 For all A,L > 0, (δ,∆) ∈ R2

(6.13)

lim
x→∞

lim
n→∞

exP
(
W̃A,L

n,β (x− δ) ≥ eβ(x−δ),Mkill
n ∈ In(x), m

kill,(n) ∈ Zx−∆,L
)
= cA,L(β, δ,∆).

We give only proof of 6.2, 6.3 is identical.
Proof of Lemma 6.2. Let η > 0. With Lemma 3.7 and 3.8 of [3] there exists A > 0 such that
there exists B0 such that for any b ≥ B0, n ≥ 1 and x ≥ A

Q
(
(ξn)

c, wn ∈ Zx,L
)

≤ η

n
3
2

,
∣∣∣∣∣∣∣
exEQ



eV (wn)1{V (wn)=Mn}∑
|u|=n

1{V (u)=Mkill
n }

, wn ∈ Zx,L, ξn


− CL,b

∣∣∣∣∣∣∣
≤ η,

|CL,b − CL| ≤ η.
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By combining this three inequalities we get: ∀η > 0, ∃N,A > 0 such that for any n > N
and x ∈ [A, logn]

ex
∣∣P(Mkill

n , mkill,(n) ∈ Zz,L)− CL

∣∣ ≤ 3η.

�

6.2 Proofs for the section 5 and proof of Proposition 2.1

Careful reader knows that it remains two lemma without proof. We want also prove in
Proposition 2.1. For this purpose it will be convenient to extent the statements of this two
lemma with additional results. Extensions will be recognized as the assertions starting with
(. bis). Recall that the event of particles SA has been introduced to give a precise estimation
of

P

(
k⋂

j=1

{
∑

u∈SA

BW
βj ,n,x−δj(u) ≥ 1},

∑

u∈SA

Bn,x−∆(u) ≥ 1

)
,

According to proposition 4.3, which treat the tail of distribution of W kill
n,β , it was necessary

to suppose A large. For Proposition 2.1 we need simply a bound, but it must be uniform in
n ∈ N. This requirement force us to study also

E




k⋂

j=1

{
∑

u∈S−κj/2

BW
βj ,n,x−δj(u) ≥ 1},

∑

u∈S−j/2

Bn,x−∆(u) ≥ 1


 ,

with j large and κ < c19 (c19 the constant from Lemma 4.6). Thus in the following our
statements will include two part, first for the precise estimation second for our uniform
bound. Proof of the second part which are very similar, are not always given with all details.

We recall some notations for u ∈ SA:

W u
n,β,kill =

∑

|z|=n,z>u

e−β(V (z)−V (u))
1{ min

k∈[|u|,n]
V (zk)−V (u)≥0},

BW
βj ,n,x

(u) = 1{W̃u
n,β,kill≥eβ(x+V (u))}, BW,θ

βj ,n,x
(u) = 1

{
W̃u

n,β,kill

eβ(x+V (u))
≥e−

βθ
β−1

log+ log+ x)}
,

W̃ u,a
n,β,kill = e−βaW u

n,β,kill for any a ∈ R.

and “tilde“ means always ×n
3
2
β.

Lemma 5.3 (i)Recall that R(x) is the renewal function of (Sn)n≥0 previous defined. Let

ǫ > 0. There exists A ≥ 0 such that for n large enough and z ∈ [A, (log n)
1
5 ],

(6.14)

∣∣∣∣∣
ex

R(x− A)
E

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− χ(β, δ,∆)

∣∣∣∣∣ ≤ ǫ.
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(i bis) There exists c(3), α(3) > 0 such that ∀j, n ≥ 0

(3) := P



∑

u∈S
−

κj
2

BW
β,n,x ≥ 1,Mn ≥ an(x− j)


 ≤ c(3)e

−α(3)jxex.

(ii) For any |u| ≥ 1, let Γ(u) := {∀1 ≤ k ≤ |u| : ξ(uk) < eV (uk−1)+x−A)/2}. We have

P(
∑

u∈SA

W̃
u,x+V (u)
n,β,kill 1Γ(u)c ≥ 1) ≤ c22 log+(x)e

−x,

uniformly in A ≥ 0, ∆ ∈ [−K,K] and n ≥ 1. In particular P(
∑

u∈SA

BW
n,x1Γ(u)c ≥ 1) ≤

c22 log+(x)e
−x.

(ii bis) There exists c(2), α(2) > 0 such that ∀j, n ≥ 0

(2) := P



∑

u∈S
−

κj
2

W̃ u
n,β,kill

eβ(V (u)+x)
1Γ(u)c ≥ 1, Mn ≥ an(x− j)


 ≤ c(2)e

−α(2)j log+(x)e
−x.

Be careful, here Γ(u) := {∀1 ≤ k ≤ |u| : ξ(uk) < e(V (uk−1)+x+κj
2
)/2}.

Proof of lemma 5.3. Start by (i), let k ≤ √
n. By the Markov property at time k, we have

E

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)1{|u|=k}

]
=

(6.15) E


∑

u∈SA

1{|u|=k}E

(
∏

j≤k
1{eβj(x−δj+r)≤W̃ kill

n−k,βj
}; M

kill
n−k ≤ an(x+ r −∆)

)

r=V (u)


 .

We observe that V (u) ∈ [A− x, 0] when u ∈ SA. By Proposition 4.3 there exists A > 0 and
N ≥ 1 such that for any n ≥ N, k ≤ √

n and x+ r ∈ [A, logn],

|ex+rE

(
∏

j≤k
1{eβj (x−δj+r)≤W̃ kill

n−k,βj
}; M

kill
n−k ≤ an(x+ r −∆)

)
− χ(β, δ,∆)| ≤ ǫ.

Plugging it into (6.15), it implies that, for n ≥ N, k ≤ √
n and z ∈ [A, log n]
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∣∣∣∣∣e
xE

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)1{|u|=k}

]
− χ(β, δ,∆)E

[
∑

u∈SA

e−V (u)
1{|u|=k}

]∣∣∣∣∣

≤ ǫE

[
∑

u∈SA

e−V (u)
1{|u|=k}

]
.

From the definition of SA, we observe that by Lyons’ change of measure E

[
∑

u∈SA

e−V (u)
1{|u|=k}

]
=

P(Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1). Hence, we can rewrite the inequality above as

∣∣∣∣∣e
xE

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)1{|u|=k}

]
− χ(β, δ,∆)P(Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1)

∣∣∣∣∣
≤ ǫP (Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1)

By definition of the renewal functionR(x), we have R(x−A) =
∑
k≥0

P (Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1).

Therefore, summing over k ≤ √
n (and since |u| ≤ √

n if u ∈ SA), we get

∣∣∣∣∣e
xE

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− χ(β, δ,∆)R(x− A)

∣∣∣∣∣

≤ ǫR(x− A) + χ(β, δ,∆)
∑

k>
√
n

P (Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1) .

Observe that

P (Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1) ≤ P

(
Sk ∈]A− x, 0],min

l<k
Sl ≥ A− x

)

≤ c38(1 + x− A)3(1 + k)−
3
2

≤ c38(1 + logn)3(1 + k)−
3
2 ,

for n ≥ 1 and x ∈ [A, log n]. Therefore, P (Sk ≥ A− x, Sk < Sl, ∀0 ≤ l < k − 1) ≤ c39
1√
n
≤ ǫ

for n large enough. Since R(x − A) is always bigger than 1, we obtain for n ≥ N , and
x ∈ [A, log n],

∣∣∣∣∣e
xE

[
∑

u∈SA

Bn,x−∆(u)
∏

j≤k
BW

βj ,n,x−δj(u)

]
− χ(β, δ,∆)R(x− A)

∣∣∣∣∣ ≤ ǫR(x− A)(1 + χ(β, δ,∆))
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This ends the proof of (i). For (i bis),

(3) ≤ E



∑

u∈S
−

κj
2

E(1{eβ(x+r)≤W̃ kill
n−k,β}

; Mkill
n−k ≥ an(x+ r − j))r=V (u)




≤ c18e
−c19jE



∑

u∈S
−

κj
2

e−V (u)−x




≤ c18e
−c19je−xR(x+

κj

2
)

≤ c(3)e
−α(3)jxe−x.

Now we treat (ii) and (ii bis). Similarly, we have by the Markov property, Lemma 4.6 and
Lemma 5.6

P

(
∑

u∈SA

W̃
u,x+V (u)
n,β,kill 1Γ(u)c ≥ 1

)

≤ P

(
∑

u∈SA

W̃
u,x+V (u)
n,β,kill 1{W̃u,x+V (u)

n,β,kill ≤1}
1Γ(u)c ≥ 1/2

)
+P

(
∑

u∈SA

BW
β,n,x1Γ(u)c ≥ 1

)

≤ E

(
∑

u∈SA

E
(
W̃

u,x+V (u)
n,β,kill 1{W̃u,x+V (u)

n,β,kill ≤1} +BW
β,n,x

)
1Γ(u)c

)

≤ c40 log+(x)e
−xE(

∑

u∈SA

e−V (u)
1Γ(u)c).

The application of Lemma is justified because u ∈ SA implies |u| ≤ √
n. Same, for (ii bis)

note that

P



∑

u∈S
−

κj
2

W̃
u,x+V (u)
n,β,kill 1Γ(u)c ≥ 1, Mn ≥ an(x− j)


 ≤ e−α(2)jc41 log+(x)e

−xE(
∑

u∈S
−

κj
2

e−V (u)
1Γ(u)c).

Conclusion follows from this affirmation: there exists c42 such that for any X ∈ R

√
n∑

k=0

E(
∑

|u|=k,u∈SX

1Γ(u)ce
−V (u)) ≤ c42.
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With our integrability condition (1.4), this assertion is included in a proof of [3] (see page
28,29 and 30). �

Lemma 5.4 (i)Set K, θ > 0. There exists a constant c23 > 0 such that for any (δ1, δ2,∆) ∈
[−K,K]3 x ≥ A ≥ 0, and n ≥ 1 we get the following inequalities:

(6.16) E

(
∑

u 6=v,∈SA

BW,θ
β1,n,x−δ1(u)B

W,θ
β2,n,x−δ2(v)1Γ(u)∩Γ(v)

)
≤ c23(log x)

βθ
β−1

+1e−xe−A,

(6.17) E

(
∑

u 6=v,∈SA

BW,θ
β1,n,x−δ1(u)Bn,x−∆(v)1Γ(u)∩Γ(v)

)
≤ c23(log x)

βθ
β−1

+1e−xe−A.

(i bis) There exists constant α(4), c(4) > 0 such that for any j, x ≥ 0, and n ≥ 1 we get the
following inequalities:
(6.18)

E

(
∑

u 6=v,∈SA

BW,θ
β1,n,x

(u)Bn,x(v)1Γ(u)∩Γ(v); Mn ≥ an(x− j)

)
≤ c(4)e

−α(4)j(log x)
(β+1)θ
β−1

+1e−x.

Proof of Lemma 5.4. (6.16) and (6.17) have quasi-identical proofs. We will thus treat only
the first, in the particular case δ1 = δ2 = 0 (case different to 0 is identical). For (i bis) we will
make some checkpoint (signalled by a For (i bis)) at the important moments for explain
the proof, but in a sake of concision we don’t reproduce entirely the proof. First observe
that

(6.19) E

(
∑

u 6=v∈SA

BW,θ
n,x (u)B

W,θ
n,x (v)1Γ(u)1Γ(v)

)
≤ 2E


 ∑

u 6=v∈SA,|u|≤|v|
BW,θ

n,x (u)B
W,θ
n,x (v)1Γ(u)


 .

Then for |u| ≥ |v|, and u 6= v, notice that BW,θ
n,x (u) depends on the branching random walk

rooted at u, whereas BW,θ
n,x (v)1{u∈SA} is independent of it (even if v is a (strict) ancestor of

u). Therefore, by the branching property,

E

(
∑

u 6=v∈SA

BW,θ
n,x (u)B

W,θ
n,x (v)1Γ(u)1Γ(v)

)
≤ 2E


 ∑

u 6=v,|u|≤|v|
Φθ(V (u) + x, n− |u|)BW,θ

n,z (v)1{u,v∈SA}1Γ(u)




with ∀x ≥ 0 and l ≤ n
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(6.20) Φθ(r, l) := P

(
W̃ kill

l,β

eβr
≥ e−[

βθ
β−1

log+ log+ r]

)
.

By Lemma 4.6, we have Φ(V (u)+x, n−|u|) ≤ c20e
−x−V (u)(log(x+V (u)))

θ
β−1 ≤ c20(log x)

θ
β−1 e−x−V (u)

for |u| ≤ √
n, which is the case when u ∈ SA. It gives that

E


 ∑

u 6=v,|u|≥|v|
BW,θ

n,x (u)B
W,θ
n,x (v)1Γ(u)1Γ(v)1{u,v∈SA}




≤ c20(log x)
θ

β−1 e−x
∑

k≥0
E


∑

|u|=k

e−V (u)
1{u∈SA}1{Γ(u)}

∑

v 6=u,|v|≤k
BW,θ

n,x (v)1{v∈SA}


 .

The weight e−V (u) hints for a change of measure from P to Q. For any k ≥ 0, we have by
proposition 4.1 (ii)

E


∑

|u|=k

e−V (u)
1{u∈SA}1{Γ(u)}

∑

v 6=u,|v|≤k
BW,θ

n,x (v)1{v∈SA}


 = EQ


1{ωk∈SA}1Γ(ωk)

∑

v 6=ωk ,|v|≤k
BW,θ

n,x (v)1{v∈SA}




We have to discuss on the location of the vertex v with respect to ωk. We say that ’u non eq v’
if v is not an ancestor of u, nor u is an ancestor of v. If v 6= u and |v| ≤ k = |u|, then either
’v non eq u’, or v = ωl for some l < k. The Lemma will be proved once the following two
estimates are shown:

(6.21)
∑

k≥0
EQ

[
∑

v non eq ωk

BW,θ
n,x (v)1{v∈SA}, ωk ∈ SA,Γ(ωk)

]
≤ c43(log x)

θ
β−1 e−A,

(6.22)
∑

k≥0

k−1∑

l=0

EQ

[
BW,θ

n,x (ωl), ωk ∈ SA,Γ(ωk)
]
≤ c44(log x)

βθ
β−1

+1e−A.

For (i bis) Φθ(r, l) := P

(
W̃ kill

l,β

eβx ≥ e−[
βθ
β−1

log+ log+ r], Mkill
l ≥ an(x+ r − j)

)
and Φθ(V (u), n−

|u|) ≤ c18e
−c19j(log x)

θ
β−1e−x−V (u). We obtain also
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E




∑

u 6=v,∈S
−

κj
2

BW,θ
β1,n,x

(u)Bn,x(v)1Γ(u)∩Γ(v); Mn ≥ an(x− j)




≤ c18e
−c19j(log x)

θ
β−1 e−x

∑

k≥0
EQ


1{ωk∈SA}1Γ(ωk)

∑

v 6=ωk ,|v|≤k
BW,θ

n,x (v)1{v∈S
−

κj
2
}; Mn ≥ an(x− j)


 .

So it suffices to prove

(6.23)
∑

k≥0
EQ

[
∑

v non eq ωk

BW,θ
n,x (v)1{v∈S

−
κj
2
}, ωk ∈ S−κj

2
,Γ(ωk)

]
≤ c45(log x)

θ
β−1 e

κj
2 ,

(6.24)
∑

k≥0

k−1∑

l=0

EQ

[
BW,θ

n,x (ωl), ωk ∈ S−κj
2
,Γ(ωk)

]
≤ c46(log x)

βθ
β−1

+1e
κj
2 .

Since κ < c19 we will get well (6.18) with α(4) =
c19
2
.

Back to (i) Let us prove (6.22). We have

∑

k≥0

k−1∑

l=0

EQ

[
BW,θ

n,x (ωl), ωk ∈ SA,Γ(ωk)
]

=
∑

l≥0

∑

k>l

EQ

[
BW,θ

n,x (ωl), ωk ∈ SA,Γ(ωk)
]

=
∑

l≥0
EQ

[
BW,θ

n,x (wl)1{wl∈SA}
∑

k>l

1{wk∈SA}∩Γ(wk)

]
.

Let tl be the first time t after l such that V (wt) < V (wl). If k > l and wk ∈ SA, then
V (wk) < V (wl), which means that necessarily k ≥ tl (and tl <

√
n). Moreover, we have

Γ(wi) ⊂ Γ(wj) if i ≤ j. Thus,

∑

k>l

1{wk∈SA}∩Γ(wk) = 1{wtl
∈SA,tl<

√
n}
∑

k≥tl

1{wk∈SA}∩Γ(wk)

≤ 1{wtl
∈SA,tl<

√
n}∩Γ(wtl

)

∑

k≥tl

1{ min
tl≤j<k

V (wj)>V (wk)≥A−x}

We observe that BW,θ
n,x is a function of the branching random walk killed below V (wl) and

therefore is independant of the subtree rooted at wtl. Therefore, applying the branching
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property, we get

EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}
∑

k>l

1{ωk∈SA}∩Γ(ωk)

]

≤ EQ

[
BW,θ

n,x (ωl)1{wtl
∈SA,tl<

√
n}∩Γ(wtl

)

∑

k≥tl

1{ min
tl≤j<k

V (wj)>V (wk)≥A−x}

]

= EQ

[
BW,θ

n,x (ωl)1{wtl
∈SA,tl<

√
n}∩Γ(wtl

)R(x−A+ V (wtl))
]
.

We have V (wtl) < V (wl). Since R is a non-decreasing function, we obtain

EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}
∑

k>l

1{ωk∈SA}∩Γ(ωk)

]

≤ EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}1{ωtl
∈SA,tl<

√
n)}∩Γ(ωtl

)R(x− A+ V (ωl))
]

≤ EQ

[
1{ωl∈SA}R(x−A + V (ωl))Φ̃(V (ωl), n− l)

]

≤ 1{l≤√n}EQ

[
1{min

j<l
V (ωj)>V (ωl)≥A−x}R(x−A+ V (ωl))Φ̃(V (ωl), n− l)

]
,

where, τ−0 := min{j ≥ 0 : V (ωj) < 0}, then (when i > n−√
n) and Φ̃(r, i) is:

Q

(
τ−0 <

√
n,

W̃ kill
i,β

eβ(x+r)
≥ e−[

βθ
β−1

log+ log+ r], ∀1 ≤ j ≤ τ−0 , ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2

)

By Proposition 4.1 (iii), it implies that

EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}
∑

k>l

1{ωk∈SA}∩Γ(ωk)

]

(6.25) ≤ 1{l≤√n}E

[
1{min

j<l
V (Sj)>V (Sl)≥A−x}R(x− A+ V (Sl))Φ̃(V (Sl), n− l)

]
.

Let us estimate Φ̃(r, i). We have to decompose along the spine. Notice that

Φ̃(r, i) = Q


τ−0 <

√
n,

τ−0∑

j=1

∑

z∈Ω(ωj)

W̃
V (z),kill
i−j,β
eβ(x+r)

≥ e−[
βθ
β−1

log log(x+r)], ∀1 ≤ j ≤ τ−0 , ξ(ωj) ≤ e
r+V (ωj−1)+x−A

2


 ,
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with by definition: W y,kill
i−j,β :=

∑
|y|=i−j

e−β(y+V (z))
1{ min

k≤i−j
V (zk)+y≥0}. It’s smaller than than

Q



τ−0 ∧
√
n∑

j=1

∑

z∈Ω(ωj)

W̃
V (z),kill
i−j,β
eβ(x+r)

1

{
W̃

V (z),kill
i−j,β

eβ(x+r)
≤1}

≥ e−[
βθ
β−1

log log(x+r)], ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2




+Q



τ−0 ∧
√
n∑

j=1

∑

z∈Ω(ωj)

W̃
V (z),kill
i−j,β
eβ(x+r)

1

{
W̃

V (z),kill
i−j,β

eβ(x+r)
≥1}

≥ e−[
βθ
β−1

log log(x+r)], ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2


 .

We treat each term separately. First is smaller than

√
n∑

j=1

Q


 ∑

z∈Ω(ωj)

W̃
V (z),kill
i−j,β
eβ(x+r)

1

{
W̃

V (z),kill
i−j,β

eβ(x+r)
≤1}

, ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0


 (log(x+ r))

βθ
β−1

=

√
n∑

j=1

Q


 ∑

z∈Ω(ωj)

EV (z)(
W̃ kill

i−j,β
eβ(x+r)

1
{

W̃kill
i−j,β

eβ(x+r)
≤1}

), ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0


 (log(x+ r))

βθ
β−1 ,

which, according to Lemma 5.6 line (5.9), is smaller than

c25(log(x+r))
βθ
β−1

+1e−(x+r)

√
n∑

j=1

Q


 ∑

z∈Ω(ωj)

(1 + V (z)+)e
−V (z), ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0


 .

The second is equal to

Q


τ−0 <

√
n,

τ−0∑

j=1

∑

z∈Ω(ωj)

1

{
W̃

V (z),kill
i−j,β

eβ(x+r)
≥1}

≥ 1, ∀1 ≤ j ≤ τ−0 , ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2




≤
√
n∑

j=1

EQ


 ∑

z∈Ω(ωj)

1

{
W̃

V (z),kill
i−j,β

eβ(x+r)
≥1}

, ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0




=

√
n∑

j=1

EQ


 ∑

z∈Ω(ωj)

PV (z)

(
W̃ kill

i−j,β
eβ(x+r)

≥ 1

)
, ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0




≤ c20e
−(x+r)

√
n∑

j=1

Q


 ∑

z∈Ω(ωj)

(1 + V (z)+)e
−V (z), ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0


 .

The sum of the two terms is less than:
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e−(x+r)
(
(log(x+ r))

βθ
β−1

+1 +Mc13

) √n∑

j=1

Q


 ∑

z∈Ω(ωj)

(1 + V (z)+)e
−V (z), ξ(ωj) ≤ e(r+V (ωj−1)+x−A)/2, j < τ−0




≤ c30(log(x+ r))
βθ
β−1

+1e−(x+r)

√
n∑

j=1

EQ

[
e−V (wj−1)(1 + V (wj−1))e

(r+V (wj−1)+x−A)/2, j < τ−0
]
.

It follows by Lemma B.2 (ii) of [3] that

Φ̃(r, i) ≤ c47(log(x+ r))
βθ
β−1

+1e−Ae−(r+x−A)/2
∑

j≥1
E[e−Sj−1/2(1 + Sj−1), j < τ−0 ]

≤ c48(log(x+ r))
βθ
β−1

+1e−Ae−(r+x−A)/2

Going back to (6.25), we obtain

EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}
∑

k>l

1{ωk∈SA}∩Γ(ωk)

]

≤ c48(log x)
βθ
β−1

+1e−AE

[
1{min

j<l
Sj>Sl≥A−x}R(x−A + Sl)e

−(Sl+x−A)/2

]
.

We conclude with

∑

l≥0
EQ

[
BW,θ

n,x (ωl)1{ωl∈SA}
∑

k>l

1{ωk∈SA}∩Γ(ωk)

]

≤ c48(log x)
βθ
β−1

+1e−A
∑

l≥0
E

[
1{min

j<l
Sj>Sl≥A−x}R(x−A+ Sl)e

−(Sl+x−A)/2

]

= c48(log x)
βθ
β−1

+1e−A
∑

l≥0
Ex−A

[
1{min

j<l
Sj>Sl≥0}R(Sl)e

−(Sl)/2

]

= c48(log x)
βθ
β−1

+1e−A
∫ 0

−(x−A)

e−(x−A+y)/2R(x−A+ y)U(dy)

≤ c44(log x)
βθ
β−1

+1e−A,

where U denote the renewal measure, and the last inequality comes from Section XI.1 of
[13].
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For (i bis) It suffices to replace A by κ j
2
to obtain

∑

k≥0

k−1∑

l=0

EQ

[
BW,θ

n,x (ωl), ωk ∈ S−κj
2
,Γ(ωk)

]
≤ c46(log x)

βθ
β−1

+1e
κj
2 .

Back to (i) It remains to treat (6.22). Decomposing the sum
∑

v non eq wk

along the spine,

we see that

∑

v non eq wk

BW,θ
n,x (v)1{v∈SA} =

k∑

l=1

∑

x∈Ω(ωl)

∑

v≥x
BW,θ

n,x (v)1{v∈SA},

where Ω(ωl) is as usual the set of brothers of ωl. The branching random walk rooted at x ∈
Ω(ωl) has the same law under P and Q. Let as before G∞ := σ{ωj,Ω(ωj), V (ωj), V (x), x ∈
Ω(ωj), j ≥ 0} be the sigma-algebra associated to the spine and its brothers. We have, for
z ∈ Ω(ωl)

(6.26) EQ

[
∑

v≥z
BW,θ

n,x (v)1{v∈SA}|G∞
]
= EQ

[
∑

v≥z
Φθ(V (v), n− |v|)1{v∈SA}|G∞

]

with the notation of (6.20), which is

≤ c32(log x)
θ

β−1 e−xEQ

[
∑

v≥z
e−V (v)

1{v∈SA}|G∞
]

We observe now that if v ≥ x and v ∈ SA, then min
|z|≤j≤|v|−1

V (vj) > V (v) > A− x. Therefore

EQ

[
∑

v≥z
e−V (v)

1{v∈SA}
∣∣G∞

]
≤ EV (z)

[
∑

v∈T
e−V (v)

1{ min
|x|≤j≤|v|−1

V (vj )>V (v)>A−x}

]
.

Thanks to (4.1), we have

EV (z)

[
∑

v∈T
e−V (v)

1{ min
|z|≤j≤|v|−1

V (vj)>V (v)>A−x}

]
= e−V (z)E

[
∑

i≥0
1{ min
|z|≤j≤|v|−1

Sj>Si>A−x−r}

]

r=V (z)

= e−V (z)R(x− A+ V (z))

by definition of the renewal function R. Going back to (6.26), we get that for any z ∈ Ω(wl)

(6.27) EQ

[
∑

v≥z
BW

n,x(v)1{v∈SA}|G∞
]
≤ c49(log x)

θ
β−1 e−xe−V (z)R(x− A+ V (z)).
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and For (i bis) it suffices to replace A by κ j
2
to obtain

(6.28) EQ

[
∑

v≥z
BW,θ

n,x (v)1{v∈S
−

κj
2
}|G∞

]
≤ c50(log x)

θ
β−1 e−xe−V (z)R(x+

κj

2
+ V (z)).

Conclusion follows from this affirmation: there exists c51 ≥ 0 such that for any X ∈ R

(6.29)
∑

k≥0

k∑

l=1

EQ


 ∑

z∈Ω(wl)

e−V (z)R(x+X + V (z)), wk ∈ S−X ,Γ(wk)


 ≤ c51e

X .

This assertion is included in a proof of [3] (see p32, 33). For X = −A and X = κj
2
and by

combining (6.29) with(6.27) we get (6.21) and (6.23) both. �

We can now prove Proposition 2.1. Recall the statement,
There exists c1 > 0, α > 0 and N > 0 such that for any n > N , j ≥ 0 and x ∈ [1, log log n]

(6.30) P(W̃n,β ≥ eβx, Mn ∈ In(x− j)) ≤ c1xe
−xe−αj

Proof of Proposition 2.1. Let c52 >
6

2(β−1) . We divide the proof in two case
First case, j > c52 log n.

P
(
eβx ≤ W̃n,β1,Mn ∈ In(x− j)

)
≤ n

3
2
β

eβx
E


∑

|z|=n

e−βV (z)1{Mn∈In(x−j)}




≤ n
3
2
β

eβx
E
(
e(1−β)Sn1{Sn>an(x−j)−1}

)

≤ e−xeβ−1e(β−1)(
3

2(β−1)
logn−j),

but j − 3
2(β−1) log n ≥ j − j/2 = j/2. Thus P

(
eβx ≤ W̃n,β1,Mn ∈ In(x− j)

)
≤ c53e

−xe−αj .

Second case, j ≤ c52 logn.

P
(
Wn,β1n

3
2
β1 ≥ eβ1x,Mn ∈ In(x− j)

)
≤ P

(
∃u ∈ T : V (u) ≤ −(x+

κj

2
)

)
+

P

(
∃|u| ≥ √

n, V (u) ≤ 0,min
j≤|u|

V (uj) ≥ −(x+
κj

2
)

)
+P



∑

u∈S
−

κj
2

W̃ u
n,β,kill1{Mn−u+V (u)≥an(x−j)}

eβ(V (u)+x)
≥ 1


 .

Two first term are similar to those encountered p37 in section ”End of proof of an assertion
in italic“. The same approach lead to
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P

(
∃u ∈ T : V (u) ≤ −(x+

κj

2
)

)
+P

(
∃|u| ≥ √

n, V (u) ≤ 0,min
j≤|u|

V (uj) ≥ −(x+
κj

2
)

)
≤ c54e

−xe−κj

once κc52 ≤ 1
4
. It remains to bound the third probability. P


 ∑

u∈S
−

κj
2

n
3
2βWu,kill

n,β

eβ(V (u)+x) ≥ 1, Mn ≥ an(x− j)




is smaller than (1)+(2)+(3)+(4) where:

(1) := P



∑

u∈S
−

κj
2

W̃ u
n,β,kill

eβ(V (u)+x)
1Γ(u)1

{
W̃u

n,β,kill

eβ(V (u)+x)
≤e−

θβ
β−1

log+ log+ x)}
≥ 1

2
,Mn ≥ an(x− j)


 ,

(2) := P



∑

u∈S
−

κj
2

W̃ u
n,β,kill

eβ(V (u)+x)
1Γ(u)c ≥

1

2
,Mn ≥ an(x− j)


 ,

(3) := P



∑

u∈S
−

κj
2

BW
β,n,x ≥ 1,Mn ≥ an(x− j)


 ,

(4) := P
(
∃u, v, u 6= v ∈ S−κj

2
such that BW,θ

n,x (u)B
W,θ
n,x (v)1Γ(u)1Γ(v) = 1,Mn ≥ an(x− j)

)
.

Back to Lemma 5.6, 5.3 and 5.4 we have proved that there exists α(1), α(2), α(3), α(4) and
c(1), c(2), c(3), c(4) such that

(1) ≤ c(1)e
−α(1)jxe−x, (2) ≤ c(2)e

−α(2)jxe−x

(3) ≤ c(3)e
−α(3)jxe−x, (4) ≤ c(4)e

−α(4)j(log x)
(β+1)θ
β−1

+1e−x.

We have thus all the elements and the Proposition follows. �

6.3 Proof for section 2

Proof of Lemma 2.5 According to Kallenberg [17] Lemma 5.1, it suffices to show that for
any f ∈ Cc(R),

(∫
R
f(x)dµn(x)

)
n∈N converge in law to some random variable µ(f). Or

equivalently, for any f ∈ Cc(R) there exists Ψf : R → C continuous at 0 such that

lim
n→∞

E
(
eiθ

∫
R
f(x)e−2xdµn(x)

)
= Ψf(θ) ∀θ ∈ R.

By property of the Fourrier transform and the fact that {f ∈ Cc(R)} = {x 7→ f(x)e−2x ∈
Cc(R)}. If f ∈ R[X ] and f(0)=0, it’s true. Let f ∈ Cc(R) and b > 0 such that supp(f) ∈
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[−b0, b0]. First we will prove that the sequence
(
E
(
eiθ

∫
R
f(x)dµn(x)

))
n∈N admit a limit Ψf(θ)

for any θ. Two we show that Ψf is continuous at 0.
Step1 Let M, ǫ > 0, A associated to (ii) and b > b0 associated to (i). According to Stone-
Weierstrass theorem there exists a polynomial function Q ∈ R[X ] such that

M sup
x∈[−b,+∞]

∣∣Q(e−x)− f(x)
∣∣ = M sup

y∈[0,eb]

∣∣∣∣Q(y)− f(log
1

y
)

∣∣∣∣ ≤
ǫ

A

Let |θ| ≤ M , ∀n, p ∈ N
∗

∣∣∣E
(
eiθ

∫
R
f(x)e−2xdµn(x)

)
− E

(
eiθ

∫
R
f(x)e−2xdµp(x)

)∣∣∣ ≤
∣∣∣1−E

(
eiθ

∫
R
f(x)−Q(e−x)e−2xdµn(x)

)∣∣∣

+
∣∣∣1−E

(
eiθ

∫
R
f(x)−Q(e−x)e−2xdµp(x)

)∣∣∣+
∣∣∣E
(
eiθ

∫
R
Q(x)e−xdµn(x)

)
− E

(
eiθ

∫
R
Q(x)e−2xdµp(x)

)∣∣∣

So there exists N > 0 such that for any n, p ≥ N
∣∣∣E
(
eiθ

∫
R
Q(x)e−2xdµn(x)

)
−E

(
eiθ

∫
R
Q(x)e−2xdµp(x)

)∣∣∣ ≤
ǫ. By a trivial inequality, for any n ∈ N∗

∣∣∣1− E
(
eiθ

∫
R
f(x)−Q(e−x)e−2xdµn(x)

)∣∣∣ ≤ 2E
(
1{

∫
R
e−2xdµn(x)>A} + 1{µn([−∞,−b]>0}

)

+E
((

eiθ
∫
R
[f(x)−Q(e−x)]e−2xdµn(x) − 1

)
1{

∫
R
e−2xdµn(x)≤A,µn([−∞,−b]=0}

)

≤ 4ǫ+ A
ǫ

A
≤ 5ǫ.

The sequence E
(
eiθ

∫
R
f(x)e−2xdµn(x)

)
is Cauchy, hence admits a limit that we denote Ψf(θ).

Step 2. Let ǫ > 0. Let Q such that M sup
x∈[−b,+∞]

|Q(e−x)− f(x)| ≤ ǫ
A
. It’s clear by the

previous inequality that ∀θ ∈ [−M,M ], |Ψf (θ) − ΨQ(θ)| ≤ 5ǫ. We can resume by ∀ǫ > 0
∃Q ∈ R[X ] such that ∀θ ∈ [−M,M ]

|Ψf(θ)−ΨQ(θ)| ≤ ǫ.

Hence ΨQ is continuous at 0, we deduce that Ψf is too. �
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[2] E. Äıdékon, J. Berestycki, É. Brunet, and Z. Shi. The branching Brownian motion seen
from its tip. ArXiv e-prints, April 2011.

[3] Elie Aidekon. Convergence in law of the minimum of a branching random walk. Arxiv,
2011.
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