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G-GRADED CASTELNUOVO MUMFORD REGULARITY

NICOLÁS BOTBOL AND MARC CHARDIN

Abstract. We develop a general graded variant of Castelnuovo-Mumford regularity for mod-
ules over a commutative ring R graded by a finitely generated abelian group G. With this aim,
we establish a clear relation between supports of local cohomology modules and supports of
Tor modules and Betti numbers. We give a definition of weak and very weak γ-regularity, as
well as an extension of the notion of Castelnuovo-Munford regularity which is closely related
to previous ones. We provide new stability results for these regularity regions.

We extend results on Hilbert function to multigraded polynomial rings. In particular,
we prove that for a finitely generated module, by Grothendieck-Serre formula, there is a

numerical polynomial that coincides with its Hilbert function in the regularity region.

1. Introduction.

Castelnuovo-Mumford regularity is a fundamental invariant in commutative algebra and al-
gebraic geometry. It is a kind of universal bound for important invariants of graded algebras
such as the maximum degree of the syzygies and the maximum non-vanishing degree of the local
cohomology modules.

Intuitively, it measures the complexity of a module or sheaf: the regularity of a module
approximates the largest degree of the minimal generators and the regularity of a sheaf estimates
the smallest twist for which the sheaf is generated by its global sections. It has been used as a
measure for the complexity of computational problems in algebraic geometry and commutative
algebra (see for example [EG84] or [BM93]).

One has often tried to find upper bounds for the Castelnuovo-Mumford regularity in terms
of simpler invariants. The simplest invariants which reflect the complexity of a graded algebra
are the dimension and the multiplicity. However, the Castelnuovo-Mumford regularity can not
be bounded in terms of the multiplicity and the dimension, what has made it computation
interesting and not trivial in many cases.

The two most popular definitions of Z-graded Castelnuovo-Mumford regularity are the one
in terms of graded Betti numbers and the one using local cohomology. The equivalence of this
two definitions constitutes one of the main basic results of the theory. For more discussion on
the regularity, refer to the survey of Bayer and Mumford [BM93], or to [Mum66].

The aim of this paper is to develop a multigraded variant of Castelnuovo-Mumford regularity
for modules over a commutative ring R graded by a finitely generated abelian group G. This
notion is closely relate to previous definitions by other authors.

One motivation for studying regularity over multigraded polynomial rings comes from toric
geometry. For a simplicial toric variety X , the homogeneous coordinate ring, introduced in
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[Cox95], is a polynomial ring S graded by the divisor class group G of X . The dictionary linking
the geometry of X with the theory of G-graded S-modules leads to geometric interpretations
and applications for multigraded regularity.

In [HW04], Hoffman and Wang define the concept of regularity for bigraded modules over
a bigraded polynomial ring motivated by the geometry of P1 × P1. They prove analogs of
some of the classical results on m-regularity for graded modules over polynomial algebras. In
[MS04], Maclagan and Smith develop a multigraded variant of Castelnuovo-Mumford regularity
also motivated by toric geometry. They work with modules over a polynomial ring graded
by a finitely generated abelian group, in order to establish the connection with the minimal
generators of a module and its behavior in exact sequences. In this article, we extend this work
restating some of the results in [MS04].

As in the standard graded case, our definition of multigraded regularity involves the vanishing
of graded components of local cohomology, following [HW04] and [MS04]. In the standard graded
case, it reduces to Z-graded Castelnuovo-Mumford regularity. When S is the homogeneous
coordinate ring of a product of projective spaces, multigraded regularity is the weak form of
bigraded regularity defined in [HW04].

One point we are interested in remark is that Castelnuovo-Mumford regularity establish a
relation between the degrees of vanishing of local cohomology modules and the degrees where
Tor modules vanish. This provides a powerful tool for computing one region of Z in terms
of the other. In this article, we handle G-graded modules over a G-graded polynomial rings,
where G is a finitely generated abelian group. We exploit some of the similarities we get in
multigraded regularity with standard regularity, being able to compute the regions of G where
local cohomology modules vanish in terms of the supports of Tor modules, and vice-versa. We
also give a definition of weak and very weak γ-regularity, and we provide new stability results
for these regularity regions.

Let S be a commutative ring, G an abelian group and R := S[X1, . . . , Xn], with deg(Xi) = γi
and deg(s) = 0 for s ∈ S. Consider B ⊆ (X1, . . . , Xn) a finitely generated graded R-ideal and
C the monoid generated by {γ1, . . . , γn}, we propose in Definition 4.1 that:

For γ ∈ G, and for a graded R-module M is very weakly γ-regular if

γ 6∈
⋃

i

SuppG(H
i
B(M)) + Ei,

and weakly γ-regular if

γ 6∈
⋃

i

SuppG(H
i
B(M)) + Fi.

where Ei := {γj1 + · · ·+ γji | j1 < · · · < ji} and Fi := {γj1 + · · ·+ γji | j1 ≤ · · · ≤ ji}.
We also set that if further, M is weakly γ′-regular for any γ′ ∈ γ + C, then M is γ-regular

and

reg(M) := {γ ∈ G | M is γ−regular}.
We deduce from the definition that reg(M) is the maximal set S of elements in G such that

S + C = S and M is γ-regular for any γ ∈ S.
The study of Castelnuovo-Mumford regularity naturally arises questions about Hilbert func-

tions of graded modules. Such questions comes intrinsically from the algebraic perspective, but
also motivated by the geometry behind. Our main example on the second are multi-projective
anisotropic spaces.
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The study of Hilbert functions over standard graded algebras has taken a central role in
commutative algebra and algebraic geometry since the famous paper of Hilbert [Hil90] in 1890.
For a graded module M over a standard graded ring over a field, it can be proven that the
Hilbert function, which measures the length of the graded components of the module M , is
asymptotically polynomial.

In the last section of this article we extend the study of Hilbert functions and Hilbert poly-
nomials to multigraded algebras over k, that, for the sake of simplicity we will assume it is a
field (this hypothesis can be slightly relaxed in many cases). Precisely, in Section 6 we write for
a finitely generated graded R-module M , [M ](µ) := dimk(Mµ) and we define

FM (µ) := [M ](µ)−
∑

i

(−1)i[Hi
B(M)](µ).

We first show that the smallest abelian group of numerical functions from G to Z containing
FR closed by shifting F{γ} : g 7→ F (γ + g), coincides with the set of functions of the form
∑s

i=0(−1)iFMi
with s ∈ N and the Mi’s in the category of finitely generated graded R-modules.

This result, combined with the notion of regularity, leads to the fact that for any µ ∈ Zn,
Hi

B(M)µ is a finite dimensional vector space and there exists a numerical polynomial PM such
that

[M ](µ) = PM (µ) +
∑

i

(−1)i[Hi
B(M)](µ).

This, in turn, gives that there exists a numerical polynomial PM such that [M ](µ) = PM (µ),
for every µ ∈ reg(M).

In Theorem 6.5 we show that for a polynomial ring R over a field in finitely many variables,
graded by an abelian group G, if the subgroup generated by the degrees is γ1Z⊕ · · · ⊕ γnZ and
the degree of each variable is in γiZ+ for some i, with Bi for the ideal generated by the variables
whose degree is a multiple of γi and B := ∩n

i=1Bi. There exists positive integers l1, . . . , ln such
that the following holds:

For any decomposition G = Zn⊕H such that the images ǫ1, . . . , ǫn of γ1, . . . , γn in Zn = G/H
are linearly independent, set E := {∑n

i=1 λiǫili, 0 ≤ λi < 1} ∩ Zn, denote by E the semi-group
generated by the liǫi’s and by ZE for the lattice in Zn generated by E . Then, for any finitely
generated graded R-module M and any e ∈ E, there exist a polynomial Pe in Q[t1, . . . , tn] such
that [M ](µ) = Pe(µ), for all µ ∈ e+ ZE such that µ⊕H ⊂ regB(M).

This contributes to the understanding of Hilbert functions over toric varieties, generalizing
previous results as for example those in [Hil90], and in [CN08].

2. Local Cohomology

Let R be a commutative ring and B be a finitely generated ideal. One can define the local
cohomology groups of an R-module M as the homologies of the Čech complex constructed on a
finite set of generators of B. These homology groups only depend on the radical of the ideal B,
and correspond the sheaf cohomology with support in V (B) (see [Har67, Chap. 2.3] or [CJR11]).
This in particular implies that one has a Mayer-Vietoris sequence for Čech cohomology. This
cohomology commutes with arbitrary direct sums. It coincide with the right derived functors of
the left exact functorH0

B in several instances (notably when R is Noetherian or B is generated by
a regular sequence in R). From the Mayer-Vietoris sequence, it also follows that both coincides
when B is a finitely generated monomial ideal in a polynomial ring (see below).



4 NICOLÁS BOTBOL AND MARC CHARDIN

2.1. Local cohomology with support on monomial ideals. In this section we study the
support of the local cohomology with support on a monomial ideal B. Thus, assume R :=
S[X1, . . . , Xn] is a polynomial ring over a commutative ring S, deg(Xi) = γi ∈ G for 1 ≤ i ≤ n
and deg(s) = 0 for s ∈ S. Take (γ1, . . . , γn) ∈ Gn.

Assume that B ⊆ (X1, . . . , Xn) be a finitely generated monomial R-ideal. Since the local
cohomology modules depend only on the radical of the support ideal B, assume wlog that
B =

√
B, hence, B =

⋂t
i=1 Ji, where Ji = (Xi1 , . . . , Xis(i)) is an R-ideal. The motivating

examples are those where S is the G-graded homogeneous coordinate ring of a toric variety with
irrelevant ideal B, for a wider reference see [Cox95].

Lemma 2.1. Let M be a graded R-module, then

(1) SuppG(H
ℓ
B(M)) ⊂

⋃

1≤i≤t

⋃

1≤j1<···<ji≤t

SuppG(H
ℓ+i−1
Jj1+···+Jji

(M)).

Proof. Let B =
⋂t

i=1 Ji. We induct on t. The result is obvious for t = 1, thus, assume that
t > 1 and that (1) holds for t − 1. Write J≤t−1 := J1 ∩ · · · ∩ Jt−1. The, for t > 1 and ℓ ≥ 0
consider the Mayer-Vietoris long exact sequence of local cohomology

· · · → Hℓ
J≤t−1+Jt

(M) → Hℓ
J≤t−1

(M)⊕Hℓ
Jt
(M) → Hℓ

B(M) → Hℓ+1
J≤t−1+Jt

(M) → · · · .

Hence, SuppG(H
ℓ
B(M)) ⊂ SuppG(H

ℓ
J≤t−1

(M)) ∪ SuppG(H
ℓ
Jt
(M)) ∪ SuppG(H

ℓ+1
J≤t−1+Jt

(M)). By

inductive hypothesis SuppG(H
ℓ
J≤t−1

(M)) ⊂ ⋃

1≤i≤t−1

⋃

1≤j1<···<ji≤t−1 SuppG(H
ℓ+i−1
Jj1+···+Jji

(M)).

Since J≤t−1 + Jt = (J1 + Jt) ∩ · · · ∩ (Jt−1 + Jt), again by inductive hypothesis we obtain that

SuppG(H
ℓ+1
J≤t−1+Jt

(M)) ⊂ ⋃

1≤i≤t−1

⋃

1≤j1<···<ji≤t−1 SuppG(H
ℓ+i−1
Jj1+···+Jji

+Jjt
(M)) which com-

plets the proof. �

Remark 2.2. The exact sequence

Hℓ
J1∩···∩Jt−1

(M)⊕Hℓ
Jt
(M) → Hℓ

B(M) → Hℓ+1
(J1+Jt)∩···∩(Jt−1+Jt)

(M)

applied for ℓ ≥ 1 and M injective shows, by recursion on t, that Hℓ
B(M) = 0 in this case (the

case t = 1 is classical and follows from the fact that B is then generated by a regular sequence).
This in turn shows that Hℓ

B is the ℓ-th right derived functor of H0
B, when B is monomial.

The approach of Mustata in [Mus00] that we now recall uses the isomorphism

Hi
B(M) ≃ lim

−→
t

ExtiR(R/Bt,M)

which holds over any commutative ring, taking for Hi
B the i-th derived functor of H0

B. As

for a monomial ideal B this agrees with Čech cohomology we have an isomorphism in our
setting. Let B[t] := (f t

1, . . . , f
t
s) where the fi’s are the minimal monomial generators of B,

the Taylor resolution T t
• of R/B[t] has a natural map to the one of R/B[t′] for t ≥ t′ that

in turn provides a natural map : HomR(T
t′

• , R) → HomR(T
t
•, R). This Zn-graded map is an

isomorphism of complexes in degree γ ∈ (−t′, . . . ,−t′) + Zn
≥0 and else HomR(T

t′

• , R)γ = 0.

For a = (a1, · · · , an) ∈ {0, 1}n, let Ea := {i, ai = 0} and R∗
a = 1

XaS[Xi, X
−1
j , i ∈ Ea, j ∈

{1, . . . , n} \ Ea].
Setting Ni,a := Hi(HomR(T•, R)−a), were T• := T 1

• is the Taylor resolution of R/B, by
Mustata description one has :

Hi
B(R) = ⊕a∈{0,1}nHi

B(R)−a ⊗S R∗
a = ⊕a∈{0,1}nNi,a ⊗S R∗

a.
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and this sum is restricted by the inclusion (1) or by inspecting a little T 1
• . For instance if

n−#Ea = |a| < i then Ni,a = 0.

3. Local Cohomology and graded Betti numbers

In this chapter we aim is to establish a clear relation between supports of local cohomology
modules and supports of Tor modules and Betti numbers, in order to give a general definition
for Castelnuovo-Munford regularity in next chapter.

Throughout this chapter let G be a finitely generated abelian group, and let R be a commu-
tative G-graded ring with unit. Let B be a homogeneous ideal of R.

Remark 3.1. Is of particular interest the case where R is a polynomial ring in n variables over
a commutative ring whose elements have degree 0 and G = Zn/K, is a quotient of Zn by some
subgroup K. Note that, if M is a Zn-graded module over a Zn-graded ring, and G = Zn/K,
we can give to M a G-grading coarser than its Zn-grading. For this, define the G-grading on
M by setting, for each γ ∈ G, Mγ :=

⊕

d∈π−1(γ)Md.

In order to fix the notation, we state the following definitions concerning local cohomology
of graded modules, and support of a graded modules M on G. Recall that the cohomological
dimension of a module M is cdB(M) := inf{i | Hj

B(M) = 0, ∀j > i}.
Definition 3.2. Let M be a graded R-module, the support of the module M is SuppG(M) :=
{γ ∈ G : Mγ 6= 0}.

Observe that if F• is a free resolution of a graded module M , much information on the module
can be read from the one of the resolution. Next we present a result that permits describing the
support of a graded module M in terms of some homological information of a complex which
need not be a resolution of M , but M is its first non-vanishing homology.

Definition 3.3. Let C• be a complex of graded R-modules. For all i, j ∈ Z we define a condition
(Dij) as above

(Dij) Hi
B(Hj(C•)) 6= 0 implies Hi+ℓ+1

B (Hj+ℓ(C•)) = Hi−ℓ−1
B (Hj−ℓ(C•)) = 0 for all ℓ ≥ 1.

We have the following result on the support of the local cohomology modules of the homologies
of C• assuming (Dij).

Theorem 3.4. Let C• be a complex of graded R-modules and i ∈ Z. If (Dij) holds, then

SuppG(H
i
B(Hj(C•))) ⊂

⋃

k∈Z

SuppG(H
i+k
B (Cj+k)).

Proof. Consider the two spectral sequences that arise from the double complex Č•
BC• of graded

R-modules.
The first spectral sequence has as second screen ′

2E
i
j = Hi

B(Hj(C•)). Condition (Dij) implies

that ′
∞Ei

j = ′
2E

i
j = Hi

B(Hj(C•)). The second spectral sequence has as first screen ′′
1E

i
j =

Hi
B(Cj).
By comparing both spectral sequences, one deduces that, for all γ ∈ G, the vanishing of

(Hi+k
B (Cj+k))γ for all k implies the vanishing of (′∞Ei+ℓ

j+ℓ)γ for all ℓ, which carries the vanishing

of (Hi
B(Hj(C•)))γ . �
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We next give some cohomological conditions on the complex C• to imply (Dij) of Definition
3.3.

Lemma 3.5. Let C• be a complex of graded R-modules. Consider the following conditions

(1) C• is a right-bounded complex, say Cj = 0 for j < 0 and, cdB(Hj(C•)) ≤ 1 for all
j 6= 0.

(2) For some q ∈ Z ∪ {−∞}, Hj(C•) = 0 for all j < q and, cdB(Hj(C•)) ≤ 1 for all j > q.
(3) Hj(C•) = 0 for j < 0 and cdB(Hk(C•)) ≤ k + i for all k ≥ 1.

Then,

(i) (1) ⇒ (2) ⇒ (Dij) for all i, j ∈ Z, and
(ii) (1) ⇒ (3) ⇒(Dij) for j = 0.

Proof. For proving item (i), it suffices to show that (2) ⇒ (Dij) for all i, j ∈ Z since (1) ⇒ (2)
is clear.

Let ℓ ≥ 1.
Condition (2) implies that Hi

B(Hj(C•)) = 0 for j > q and i 6= 0, 1 and for j < q. If
Hi

B(Hj(C•)) 6= 0, either j > q and i ∈ {0, 1} in which case j + ℓ > q and i + ℓ + 1 ≥ 2 and
i − ℓ − 1 < 0, or j = q in which case j + ℓ > q and i + ℓ + 1 ≥ 2 and j − ℓ < 0. In both cases
the asserted vanishing holds.

Condition (1) automatically implies (3). Condition (3) implies that Hi+ℓ+1
B (Hℓ(C•)) = 0 and

Hj−ℓ(C•) = 0. �

In the following subsection we establish the relation between the support of local cohomology
modules and support of Tor modules. With this purpose we will base our results on Theorem
3.4 and Lemma 3.5 with C• denoting the Koszul complex K•(X1, . . . , Xn;M) as we show below.

3.1. From Local Cohomology to Betti numbers. In this subsection we bound the support
of Tor modules in terms of the support of local cohomology modules. This generalizes the fact
that for Z-graded Castelnuovo-Mumford regularity, if bi(M) := max{µ | TorRi (M,k)µ 6= 0} and
ai(M) := max{µ | Hi

m(M)µ 6= 0}, then bi(M)− i ≤ reg(M) := maxi{ai(M) + i}.
Assume R := S[X1, . . . , Xn] is a polynomial ring over a commutative ring S, deg(Xi) = γi ∈ G

for 1 ≤ i ≤ n and deg(s) = 0 for s ∈ S. Take (γ1, . . . , γn) ∈ Gn.
Let B ⊆ (X1, . . . , Xn) be a finitely generated graded R-ideal.

Definition 3.6. Set E0 := {0} and El := {γi1 + · · ·+ γil : i1 < · · · < il} for l 6= 0.

Observe that if l < 0 or l > n, then El = ∅. If γi = γ for all i, El = {l · γ} when El 6= ∅.

Notation 3.7. For an R-module M , we denote by M [γ′] the shifted module by γ′ ∈ G, with
M [γ′]γ := Mγ′+γ for all γ ∈ G.

Let M be a graded R-module. Write KM
• := K•(X1, . . . , Xn;M) for the Koszul complex of

the sequence (X1, . . . , Xn) with coefficients in M . We next establish a relationship between the
support of the local cohomologies of its homologies and graded Betti numbers of M .

The Koszul complex KM
• is graded with KM

l :=
⊕

i1<···<il
M [−γi1 − · · · − γil ]. Let ZM

i

and BM
i be the Koszul i-th cycles and boundaries modules, with the grading that makes the

inclusions ZM
i , BM

i ⊂ KM
i a map of degree 0 ∈ G, and set HM

i = ZM
i /BM

i .
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Theorem 3.8. Let M be a G-graded R-module. Then

SuppG(Tor
R
j (M,S)) ⊂

⋃

k≥0

(SuppG(H
k
B(M)) + Ej+k),

for all j ≥ 0.

Proof. Notice that HM
j ≃ TorRj (M,S) is annihilated by B, hence has cohomological dimension

0 relatively to B. According to Lemma 3.5 (case (1)), Theorem 3.4 applies and shows that

SuppG(Tor
R
j (M,S)) ⊂

⋃

ℓ≥0

SuppG(H
ℓ
B(Kj+ℓ)) =

⋃

k≥0

(SuppG(H
k
B(M)) + Ej+k). �

Notice that taking G = Z and deg(Xi) = 1, Theorem 3.8 gives the well know bound bi(M)−
i ≤ reg(M) := maxi{ai(M) + i}.

3.2. From Betti numbers to Local Cohomology. In this subsection we bound the support
of local cohomology modules in terms of the support of Tor modules. This generalizes the fact
that for Z-graded Castelnuovo-Mumford regularity, if ai(M) + i ≤ reg(M) := maxi{bi(M)− i}.

We keep same hypotheses and notation as in Section 3.1

Next result gives an estimate of the support of local cohomology modules of a graded R-
module M in terms of the supports of those of base ring and the twists in a free resolution.
This permits (combined with Lemma 3.10) to give a bound for the support of local cohomology
modules in terms of Betti numbers.

The key technical point is that Lemma 3.10 part (1) and (2) give a general version of
Nakayama Lemma in order to relate shifts in a resolution with support of Tor modules; while
part (3) is devoted to give a ‘base change lemma’ in order to pass easily to localization.

Theorem 3.9. Let M be a graded R-module and F• be a graded complex of free R-modules,
with H0(F•) = M . Write Fi =

⊕

j∈Ei
R[−γij ] and Ti := {γij | j ∈ Ei}. Let ℓ ≥ 0 and assume

cdB(Hj(F•)) ≤ ℓ+ j for all j ≥ 1. Then,

SuppG(H
ℓ
B(M)) ⊂

⋃

i≥0

(SuppG(H
ℓ+i
B (R)) + Ti).

Proof. Lemma 3.5 (case (3)) shows that Theorem 3.4 applies for estimating the support of local
cohomologies of H0(F•), and provides the quoted result as local cohomology commutes with
arbitrary direct sums

SuppG(H
p
B(R[−γ])) = SuppG(H

p
B(R)) + γ, and SuppG(⊕i∈ENi) = ∪i∈ESuppG(Ni)

for any set of graded modules Ni, i ∈ E. �

Lemma 3.10. Let M be a graded R-module.

(1) Let S be a field and let F• be a G-graded free resolution of a finitely generated module
M . Then

Fi =
⊕

γ∈Ti

R[−γ]βi,γ , and Ti = SuppG(Tor
R
i (M,S)).
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(2) Assume that there exists φ ∈ HomZ(G,R) such that φ(deg(xi)) > 0 for all i. If
φ(deg(a)) > m for some m ∈ R and any a ∈ M , then there exists a G-graded free
resolution F• of M such that

Fi =
⊕

j∈Ei

R[−γij] with γij ∈
⋃

0≤ℓ≤i

SuppG(Tor
R
ℓ (M,S)) ∀j.

If, furthermore, there exists p such that Fi is finitely generated for i ≤ p, then Ei is
finite for i ≤ p.

(3) Assume that (S,m, k) is local. Then

SuppG(Tor
R
i (M,k)) ⊆

⋃

j≤i

SuppG(Tor
R
j (M,S)).

Proof. For Part (1) and (2) see [CJR11]. Part (3) follows from the fact that if (S,m, k) is local

there is an spectral sequence TorSp (Tor
R
q (M,S), k) ⇒ TorRp+q(M,k) and the fact that S ⊂ R0. �

Combining Theorem 3.9 with Lemma 3.10 (case (1)) one obtains:

Corollary 3.11. Assume that S is a field and let M be a finitely generated graded R-module.
Then, for any ℓ,

SuppG(H
ℓ
B(M)) ⊂

⋃

i≥0

(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
i (M,S))).

If S is Noetherian, Lemma 3.10 (case (3)) implies the following:

Corollary 3.12. Assume that (S,m, k) is local Noetherian and let M be a finitely generated
graded R-module. Then, for any ℓ,

SuppG(H
ℓ
B(M)) ⊂ ⋃

i≥0(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
i (M,k)))

⊂ ⋃

i≥j≥0(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
j (M,S))).

After passing to localization, Corollary 3.12 shows that:

Corollary 3.13. Let M be a finitely generated graded R-module, with S Noetherian. Then, for
any ℓ,

SuppG(H
ℓ
B(M)) ⊂

⋃

i≥j≥0

(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
j (M,S))).

Proof. Let γ ∈ SuppG(H
ℓ
B(M)). Then Hℓ

B(M)γ 6= 0, hence there exists p ∈ Spec(S) such that
(Hℓ

B(M)γ) ⊗S Sp = Hℓ
B⊗SSp

(M ⊗S Sp) 6= 0. Applying Corollary 3.12 the result follows since

both the local cohomology functor and the Tor functor commute with localization in S, and
preserves grading as S ⊂ R0. �

Finally, Lemma 3.10 (case (2)) gives:

Corollary 3.14. Let M be a graded R-module, and assume that there exists φ ∈ HomZ(G,R)
such that φ(deg(xi)) > 0 for all i. If φ(deg(a)) > m for some m ∈ R and any a ∈ M , then, for
any ℓ,

SuppG(H
ℓ
B(M)) ⊂

⋃

i≥j≥0

(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
j (M,S))).

Notice that taking G = Z and deg(Xi) = 1, Corollaries 3.11, 3.12, 3.13 and 3.14 give the well
know bound ai(M) + i ≤ maxi{bi(M)− i}.
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4. Castelnuovo-Mumford regularity

One point we are interested in remark is that Castelnuovo-Mumford regularity establishes a
relation between the degrees of vanishing of local cohomology modules and the degrees where
Tor modules vanish. It is clear that this provides a powerful tool for computing one region of Z
in terms of the other.

In this section we give a definition for a G-graded R-module M and γ ∈ G to be weakly

γ-regular or just γ-regular, depending if γ is or is not on the shifted support of some local
cohomology modules of M (cf. 4.1). This definition allows us to generalize the classical fact that
weak regularity implies regularity. Lemma 4.2 and Theorem 4.3 provide new stability results
for these regularity regions.

In the later part of this section, in Theorem 4.5, we prove that for j ≥ 0, the supports of
TorRj (M,S) does not meet the support of any shifted regularity region reg(M)+ γ for γ moving
on Ej . As we have mentioned in the introduction of this chapter, this result generalizes the fact

that when G = Z and the grading is standard, reg(M) + j ≥ end(TorRj (M,S)).

4.1. Regularity for Local Cohomology modules. Let S be a commutative ring, G an
abelian group and R := S[X1, . . . , Xn], with deg(Xi) = γi and deg(s) = 0 for s ∈ S. Let
B ⊆ R+ := (X1, . . . , Xn) be a graded R-ideal and C be the monoid generated by {γ1, . . . , γn}.

In addition to the definition of Ei, we introduce the following sets already used by Hoffman
and Wang, Maclagan and Smith and other authors:

Fi := {γj1 + · · ·+ γji | j1 ≤ · · · ≤ ji}.
It is clear that Ei ⊂ Fi.

Definition 4.1. For γ ∈ G and ℓ ∈ N, a graded R-module M is very weakly γ-regular at level
ℓ if

γ 6∈
⋃

i≥ℓ

SuppG(H
i
B(M)) + Ei.

M is very weakly γ-regular if it is very weakly γ-regular at level 0.
M is weakly γ-regular at level ℓ if

γ 6∈
⋃

i≥ℓ

SuppG(H
i
B(M)) + Fi.

M is weakly γ-regular if it is weakly γ-regular at level 0.
If further M is weakly γ′-regular (resp. weakly γ′-regular at level ℓ) for any γ′ ∈ γ + C, then

M is γ-regular (resp. γ-regular at level ℓ). One writes reg(M) := reg0(M) with

regℓ(M) := {γ ∈ G | M is γ−regular at level ℓ}.

It immediately follows from the definition that regℓ(M) is the maximal set S of elements in
G such that S + C = S and M is weakly γ-regular at level ℓ for any γ ∈ S. Also notice that, as
Fi+ C = Ei+ C, one may replace “weakly γ-regular” by “very weakly γ-regular” in the previous
sentence.

The following lemma will give cases where weak regularity implies regularity under some
extra requirement.
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Lemma 4.2. Let M be a graded R-module, I be a graded ideal generated by elements of degrees
δ1, . . . , δs and set E

I
0 := {0} and E

I
i := {δj1 + · · · + δji , j1 < · · · < ji} and ℓ be an integer. If

ℓ > cdB(R/(I + annR(M))),

γ 6∈
⋃

i≥0

SuppG(H
ℓ+i
B (M)) + E

I
i+1 ⇒ γ 6∈ SuppG(H

ℓ
B(M)).

If ℓ = cdB(R/(I + annR(M))) and γ 6∈ ⋃

i>0 SuppG(H
ℓ+i
B (M)) + E

I
i+1, then

(Hℓ
B(M)/IHℓ

B(M))γ ⊆ Hℓ
B(M/IM)γ

and equality holds if γ 6∈ ⋃

i>0 SuppG(H
ℓ+i
B (M)) + E

I
i .

Proof. Write I = (f1, . . . , fs), K• := K•(f1, . . . , fs;M) and Hj for the j-th homology module of

K•. Consider the two spectral sequences that arise from the double Čech-Koszul complex Č•
BK•

of graded R-modules.
The first spectral sequence has as second screen ′

2E
i
j = Hi

B(Hj). As I and annR(M) annihilate

Hj , cdB(Hj) ≤ cdB(R/(I + annR(M))) < ℓ, which shows that ′
2E

i
j = 0 for i − j = ℓ unless

ℓ = cdB(M/IM) = cdB(R/(I +annR(M))), in which case ′
2E

i
j = 0 for j 6= 0 and ′

2E
ℓ
0 =′

∞ Eℓ
0 =

Hℓ
B(M/IM). The second spectral sequence has as first screen (′′1E

i
j)µ = ⊕γ∈E I

j
Hi

B(M)
bj,γ
µ−γ for

some positive bj,γ ∈ Z (b00 = 1).

By hypothesis (′′1E
ℓ+i
i+1)µ = 0 for all i ≥ 0. As (′′1E

ℓ−i
−i−1) = 0 for i ≥ 0, we deduce that

(′′1E
ℓ
0)µ = (′′∞Eℓ

0)µ. As (′′1E
ℓ
0)µ = Hℓ

B(M)µ and ′′
∞Ei

j =′
∞ Ei

j = 0 for i − j = ℓ, the conclusion
follows. �

Recall that cdB(R/J) ≤ cdB(R/I) if I ⊆ J . Also, by [CJR11, Thm. 4.3] cdB(M) ≤
cdB(R/annR(M)) for any R-module M and equality holds if M is finitely generated. Fur-
thermore, by [CJR11, Lem. 4.6], cdB(N) ≤ cdB(M) if M is finitely presented and SuppR(N) ⊆
SuppR(M); which implies that Lemma 4.2 holds with cdB(R/(I + annR(M))) replaced by
cdB(M/IM) in the case where M is finitely presented.

If G = Z and R has the standard grading, we have that if ℓ > cdB(R/(I + annR(M))) or
ℓ > cdB(M/IM) if M is finitely presented, then, γ > reg(M)− ℓ+1 implies γ > end(Hℓ

R+
(M)).

Equivalently, γ > reg(M) implies γ > aℓ − 1.

Before establishing the relation between weak γ-regularity at level ℓ and γ-regularity at level
ℓ, we introduce some notation. Let {γ1, . . . , γn} = {µ1, . . . , µm}, with µi 6= µj for i 6= j. Denote
by Bi, for i from 1 to m, the ideal generated by the variables of degree µi.

Theorem 4.3. Assume that B ⊂ Bi for every i. Let M be a graded R-module, ℓ ∈ N and
assume that M is weakly γ-regular at level ℓ. Then,

(1) If ℓ ≥ 1, then M is γ-regular at level ℓ.
(2) If ℓ = 0, then M is γ-regular at level 1, (M/R+M)µ = (H0

B(M)/R+H
0
B(M))µ for any

µ ∈ γ + C and the following conditions are equivalent :
(i) H0

B(M)γ+C = 0,
(ii) M is γ-regular.
As a consequence, if condition (i) or (ii) holds, then (M/R+M)γ+C = 0.

Proof. For 1 ≤ p ≤ m let Fp
0 = F (p)

i = {0}, Fp
i := {iµp},

F (p)
i := {γj1 + · · ·+ γji | j1 ≤ · · · ≤ ji and γjl 6= µp, ∀l}.
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Applying Lemma 4.2 with I := Bp, one gets

γ 6∈ ⋃

i≥0

SuppG(H
ℓ+i
B (M)) + Fp

i ⇔ γ + µp 6∈ ⋃

i≥0

⋃

j≥0

(SuppG(H
(ℓ+i)+j
B (M)) + Fp

j+1) + Fp
i

⇒ γ + µp 6∈ ⋃

i≥0

SuppG(H
ℓ+i
B (M)) + Fp

i .

For any p one can write
⋃

i≥ℓ SuppG(H
i
B(M)) + Fi =

⋃

j≥ℓ

⋃

i≥0(SuppG(H
j+i
B (M)) + Fp

i ) + F (p)
j

which shows that γ 6∈ ⋃

i≥0 SuppG(H
ℓ+i
B (M)) + Fi ⇒ γ + µp 6∈ ⋃

i≥0 SuppG(H
ℓ+i
B (M)) + Fi

for any p and concludes the proof. �

Next example illustrates Theorem 4.3 in the standard multigraded case.

Example 4.4. Assume that R = S[Xij , 1 ≤ i ≤ m, 0 ≤ j ≤ ri] is a finitely generated standard
multigraded ring, Bi := (Xij , 0 ≤ j ≤ ri), B := B1 ∩ · · · ∩ Bm and R+ := B1 + · · · + Bm. Let
M be a graded R-module.

If M is weakly γ-regular, then
(a) M/H0

B(M) is γ-regular,
(b) (H0

B(M)/R+H
0
B(M))γ′ = (M/R+M)γ′ , for any γ′ ∈ γ + C.

Next Theorem substantiate our results in Section 3 on regularity. Organized with the subse-
quent ones, they exhibit the importance of (weak) γ-regularity (at level ℓ).

Theorem 4.5. Let M be a G-graded R-module. Then
⋂

γ∈Ej

(reg(M) + γ)
⋂

SuppG(Tor
R
j (M,S)) = ∅

for all j ≥ 0.

When G = Z and the grading is standard, this reads with the usual definition of reg(M) ∈ Z:

reg(M) + j ≥ end(TorRj (M,S))

for all j ≥ 0. Thus, reg(M) ≥ maxi{bi} that gives by local duality the equivalence of both
definitions of regularity.

Proof. If γ ∈ SuppG(Tor
R
j (M,S)), then it follows from Theorem 3.8 that γ ∈ SuppG(H

ℓ
B(M))+

Ej+ℓ for some ℓ. Hence

γ − γi1 − · · · − γij+ℓ
∈ SuppG(H

ℓ
B(M))

for some i1 < · · · < ij+ℓ. By definition it follows that if µ ∈ reg(M) and t1 < · · · < tℓ, then

γ − γi1 − · · · − γij+ℓ
6= µ− γt1 − · · · − γtℓ

in particular choosing tk := ij+k one has

γ − γi1 − · · · − γij 6∈ reg(M). �

The following result evidence the relation between regularity and vanishing of Betti numbers.

Corollary 4.6. Assume (S,m, k) is locally Noetherian, and let F• be a minimal free R-resolution
of a finitely generated R-module M . Then,

SuppG(Fi) ⊂
⋃

γ∈Ei

∁(reg(M)) + γ.
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On the other hand, Corollary 3.13 shows that:

Proposition 4.7. Assume S is Noetherian, let M be a finitely generated G-graded R-module
and set Ti := SuppG(Tor

R
i (M,S)). Then, for any ℓ,

SuppG(H
ℓ
B(M) + Eℓ) ⊂

⋃

i≥j

(SuppG(H
ℓ+i
B (R)) + Eℓ + Tj).

If further S is a field,

SuppG(H
ℓ
B(M) + Eℓ) ⊂

⋃

i

(SuppG(H
ℓ+i
B (R)) + Eℓ + Ti).

Proposition 4.7 was stated requesting S to be Noetherian and M be a finitely generated, for
the sake of simplicity. It can be proven that these hypotheses can be relinquished, by asking that
there exists a function f : G → R such that f(γi) > 0 for all i as in the case (2) of Lemma 3.10
(cf. [CJR11]). This generalization include many rings from algebraic geometry as toric rings, in
particular, product of anisotropic projective spaces.

In some applications it is useful to consider local cohomologies of indices at least equal to
some number, for instance positive values or values at least two. In view of Lemma 4.3, most
of the time weak regularity and regularity agrees in this case. We set :

regℓ(M) := {γ | ∀γ′ ∈ C, γ + γ′ 6∈
⋃

i≥ℓ

SuppG(H
i
B(M)) + Ei}.

With this notation, Proposition 4.7 implies the following

Theorem 4.8. Assume S is Noetherian, let M be a finitely generated G-graded R-module and
set Ti := SuppG(Tor

R
i (M,S)). Then, for any ℓ,

regℓ(M) ⊇
⋂

j≤i,γ∈Tj ,γ′∈Ei

regℓ+i(R) + γ − γ′ ⊇ regℓ(R) +
⋂

j≤i,γ∈Tj ,γ′∈Ei

γ − γ′ + C.

The above intersection can be restricted to i ≤ cdB(R)− ℓ. If further S is a field,

regℓ(M) ⊇
⋂

i,γ∈Ti,γ′∈Ei

regℓ+i(R) + γ − γ′ ⊇ regℓ(R) +
⋂

i,γ∈Ti,γ′∈Ei

γ − γ′ + C.

Proof. If µ 6∈ regℓ(M), by Proposition 4.7, there exists i ≥ j such that

µ ∈ SuppG(H
ℓ+i
B (R)) + Eℓ + Tj

hence there exists γ′ ∈ Ei and γ ∈ Tj such that

µ+ γ′ − γ ∈ SuppG(H
ℓ+i
B (R)) + Ei+ℓ.

Therefore µ 6∈ regℓ+i(R) + γ − γ′. �

When G = Z and the grading is standard, this reads with the usual definition of regℓ(M) ∈ Z:

regℓ(M) ≤ regℓ(R) + max
i

{end(TorRi (M,S))− i} = regℓ(R) + max
i

{bi}.
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5. Local cohomology of multigraded polynomial rings

This chapter aims to clarify Castelnuovo-Mumford regularity in the multigraded context. It is
mainly focused on the advantages of having a well understood decomposition of local cohomology
modules, given by Künneth formula. These isomorphisms will provide a clear description of
regularity region.

Let S be a commutative ring, s and m be fixed positive integers, r1 ≤ · · · ≤ rs non-negative
integers, and write xi = (xi,1, . . . , xi,ri) for 1 ≤ i ≤ s. Define Ri := S[xi], the standard Z-graded
polynomial ring in the variables xi for 1 ≤ i ≤ s, R =

⊗

S Ri, and R(a1,...,as) :=
⊗

S(Ri)ai
stands

for its multigraded part of multidegree (a1, . . . , as).
We define Ři := 1

xi,1···xi,ri

S[x−1
i,1 , . . . , x

−1
i,ri

]. Given integers 1 ≤ i1 < · · · < it ≤ s, take

α = {i1, . . . , it}, and set Řα :=
(

⊗

j∈α Řj

)

⊗S

(

⊗

j /∈α Rj

)

. Observe that Ř{i}
∼= Ři⊗S

⊗

j 6=i Rj .

Given integers 1 ≤ i1 < · · · < it ≤ s, take α = {i1, . . . , it}. For any integer j write sg(j) := 1 if
j ∈ α and sg(j) := 0 if j /∈ α. We define

Qα :=
∏

1≤j≤s

(−1)sg(j)N− sg(j)rjej ⊂ Zs,

the shift of the orthant whose coordinates {i1, . . . , it} are negative and the rest are all positive.
Following the notation in section 4, before Theorem 4.3, we set Bi for the R-ideal generated by
the elements in xi, B := B1 · · ·Bs, Bα := Bi1 + · · ·+Bit and |α| = ri1 + · · ·+ rit .

For every α ⊂ {1, . . . , s}, we have Supp
Zs(Řα) = Qα. Notice that for α, β ⊂ {1, . . . , s}, if

α 6= β, then Qα ∩Qβ = ∅.

Lemma 5.1. Given integers 1 ≤ i1 < · · · < it ≤ s, let α = {i1, . . . , it}. There are graded
isomorphisms of R-modules

(2) H
|α|
Bα

(R) ∼= Řα.

Proof. Recall that for any ring S and any S-module M , if x1, . . . , xn are variables, then

(3) Hi
(x1,...,xn)

(M [x1, . . . , xn]) =

{

0 if i 6= n
1

x1···xn
M [x−1

1 , . . . , x−1
n ] for i = n.

We induct on |α|. The result is obvious for |α| = 1. Assume that |α| ≥ 2 and (2) holds for |α|−1.

Take I = Bi1 · · ·Bit−1 and J = Bit . There is a spectral sequence Hp
J(H

q
I (R)) ⇒ Hp+q

I+J(R). By

(3), Hp
J(R) = 0 for p 6= rit . Hence, the spectral sequence stabilizes in degree 2, and gives

H
rit
J (H

|α|−rit
I (R)) ∼= H

|α|
I+J(R). The result follows by applying (3) with M = H

|α|−rit
I (R), and

inductive hypothesis. �

Lemma 5.2. With the above notations,

(4) Hℓ
B(R) ∼=

⊕

1 ≤ i1 < · · · < it ≤ s
ri1 + · · ·+ rit − (t − 1) = ℓ

H
ri1+···+rit
Bi1+···+Bit

(R) ∼=
⊕

α ⊂ {1, . . . , s}
|α| − (#α− 1) = ℓ

Řα.

Lemma 5.2 can be proven sheaf-theoretically, by means of Kunneth formula (cf. [Gro63, Thm.
6.7.3] or [SW59, Thm. 1]) or by induction on the Mayer-Vietoris sequence of local cohomology
(cf. [Bot10, Lem. 6.4.7.]). It follows from Corollary 3.12 and Lemma 5.2 that:
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Corollary 5.3. Assume that (S,m, k) is local Noetherian and let M be a finitely generated
G-graded R-module. Then, for any ℓ,

SuppG(H
ℓ
B(M)) ⊂ ⋃

i≥0

(SuppG(H
ℓ+i
B (R)) + SuppG(Tor

R
i (M,k)))

=
⋃

i≥0

⋃

1 ≤ i1 < · · · < it ≤ s

ri1
+ · · · + rit

− (t − 1) = ℓ + i

(

Q{i1,...,it} + SuppG(Tor
R
i (M,k))

)

.

Whenever S is Noetherian, Corollary 3.13 provides an estimate of SuppG(H
ℓ
B(M)) in terms of

the sets SuppG(Tor
R
i (M,S)). Theorem 3.4 asserts that if C• is a complex of graded R-modules,

assuming (Dij) we have that for all i ∈ Z

SuppG(H
i
B(Hj(C•))) ⊂

⋃

k∈Z

SuppG(H
i+k
B (Cj+k)).

For i = 1, . . . ,m, take fi ∈ R homogeneous of the same degree γ for all i. Let M be a graded
R-module. Denote by KM

• the Koszul complex K•(f1, . . . , fm;R) ⊗R M . The Koszul complex
KM

• is graded with Ki :=
⊕

l0<···<li
R(−i · γ). Set HM

i := Hi(KM
• ) the i-th homology module

of KM
• .

Corollary 5.4. If cdB(H
M
i ) ≤ 1 for all i > 0. Then, for all j ≥ 0

SuppG(H
i
B(H

M
j )) ⊂

⋃

k∈Z

(SuppG(H
k
B(M)) + k · γ) + (j − i) · γ.

Proof. This follows by a change of variables in the index k in Lemma 3.4. Since C• is KM
• and

KM
i :=

⊕

l0<···<li
M(−i · γ), we get that

SuppG(H
i
B(H

M
j )) ⊂

⋃

k∈Z

SuppG(H
k
B(K

M
k+j−i)) =

⋃

k∈Z

(SuppG(H
k
B(M)[−(k + j − i) · γ]).

The conclusion follows from 3.7. �

Remark 5.5. In the special case where M = R, we deduce that if cdB(Hi) ≤ 1 for all i > 0,

SuppG(H
i
B(Hj)) ⊂

⋃

k∈Z

(SuppG(H
k
B(R)) + k · γ) + (j − i) · γ, for all i, j.

Take j = 0 and write I := (f1, . . . , fm), we get

SuppG(H
i
B(R/I)) ⊂

⋃

k∈Z

(SuppG(H
k
B(R)) + (k − i) · γ), for all i.

Example 5.6. Let k be a field. Take R1 := k[x1, x2], R2 := k[y1, y2, y3, y4], and G := Z2.
Write R := R1 ⊗k R2 and set deg(xi) = (1, 0) and deg(yi) = (0, 1) for all i. Set B1 :=
(x1, x2), B2 := (y1, y2, y3, y4) and define B := B1 · B2 ⊂ R the irrelevant ideal of R, and
m := B1 + B2 ⊂ R, the ideal corresponding to the origin in Spec(R). From Lemma 5.2, it
follows that H2

B(R) ∼= Ř{1}
∼= H2

B1
(R) = ω∨

R1
⊗k R2, H

4
B(R) ∼= Ř{2}

∼= H4
B2

(R) = R1 ⊗k ω∨
R2

,

H5
B(R) ∼= Ř{1,2}

∼= H6
m(R) = ω∨

R, and Hℓ
B(R) = 0 for all ℓ 6= 2, 4 and 5.

Hence, SuppG(H
2
B(R)) = −N × N + (−2, 0), SuppG(H

4
B(R)) = N × −N + (0,−4), and

SuppG(H
5
B(R)) = −N×−N+ (−2,−4), .
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Take f1, . . . , fm homogeneous elements of bidegree γ, and write I := (f1, . . . , fm). Assume
cdB(R/I) ≤ 1, hence cdB(Hi) ≤ 1 for all i. We will compute reg(R/I). Set for every γ ∈ G,

(5) SB(γ) :=
⋃

k≥0

(SuppG(H
k
B(R)) + k · γ).

SinceHℓ
B(R) = 0 for all ℓ 6= 2, 4 and 5, from Remark 5.5 we get that for all i, SuppG(H

i
B(R/I)) ⊂

SB(γ)− i · γ, and, reg(R/I) ⊃ ∁SB(γ).

6. Hilbert functions over graded rings

Let R be a polynomial ring over a field k, graded by an abelian group G and B be a non
trivial graded ideal. Assume that Hi

B(R)µ is a finite dimensional k-vector space for any µ ∈ G.
For a finitely generated graded R-module M set [M ](µ) := dimk(Mµ) and

FM (µ) := [M ](µ)−
∑

i

(−1)i[Hi
B(M)](µ).

It follows from the proof of Lemma 6.1 below that [Hi
B(M)](µ) is finite for any i and µ. Recall

that in the standard graded situation, FM is a polynomial function, called the Hilbert polynomial
of M .

Lemma 6.1. Let C be the smallest set of numerical functions from G to Z containing FR such
that for any F,G ∈ C and γ ∈ G, the function F +G, −F and F{γ} : g 7→ F (γ + g) are in C.

Then C coincides with the set of functions of the form
∑s

i=0(−1)iFMi
with s ∈ N and the

Mi’s in the category of finitely generated graded R-modules.

Proof. First notice that any function in C can be written in the form
∑s

i=0(−1)iFMi
, with

Mi = R[γi] for some i. On the other hand if F• is a graded finite free R-resolution of M ,

[M ] =
∑

j(−1)j [Fj ] and the spectral sequence Hi
B(Fj) ⇒ Hi−j

B (M) shows that Hi
B(M)µ is a

finite dimensional vector space for any µ and that
∑

i,j

(−1)i−j [Hi
B(Fj)] =

∑

ℓ

(−1)ℓ[Hℓ
B(M)].

Since Fj = ⊕q∈Ej
R[γj,q], it follows that

FM =
∑

j

(−1)j [Fj ] +
∑

i,j

(−1)i−j [Hi
B(Fj)] =

∑

j

(−1)j
∑

q∈Ej

FR{γj,q} ∈ C.

�

In the case R := k[Xi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ ri] is a standard Zn-graded polynomial ring
over a field k, deg(Xi,j) = ei, let B := ∩n

i=1(Xi,j , 0 ≤ j ≤ ri). The following result generalizes
[JV02, Thm. 2.4], which considers the case n = 2. It is proved in [CN08, Prop. 2.4.3].

Proposition 6.2. For any µ ∈ Zn, Hi
B(M)µ is a finite dimensional vector space and there

exists a numerical polynomial PM such that

[M ](µ) = PM (µ) +
∑

i

(−1)i[Hi
B(M)](µ).

Following [CN08, Thm. 2.4.8], from Proposition 6.2 we conclude that



16 NICOLÁS BOTBOL AND MARC CHARDIN

Corollary 6.3. There exists a numerical polynomial PM such that

[M ](µ) = PM (µ).

For every µ ∈ reg(M).

The proof of Proposition 6.2 follows directly from Lemma 6.1 and the following result

Lemma 6.4. With the above notations,

FR(a1, . . . , as) =
∏

1≤i≤s

(

ri + ai
ri

)

.

and C is the set of numerical polynomials of multidegree ≤ (r1, . . . , rn).

Proof. The second follows from the first and [Rob98, Thm. 2.1.7].
From Lemma 1 we have that

Hℓ
B(R) ∼=

⊕

1 ≤ i1 < · · · < it ≤ s
ri1 + · · · + rit + 1 = ℓ

H
ri1+···+rit+t

Bi1+···+Bit
(R)

Take (a1, . . . , as) ∈ Zs. If there exists i such that −ri ≤ ai ≤ −1, then both sides are zero,
hence equal.

If ai ≥ 0 for all i, then FR(a1, . . . , as) = [R](a1, . . . , as) =
∏

1≤i≤s

(

ri+ai

ri

)

.

Denote by E(i1, . . . , it) the set of (i, j) with i ∈ {i1, · · · , it}, 0 ≤ j ≤ rit .

H
ri1+···+rit+t

Bi1+···+Bit
(R) ∼= 1

∏

(i,j)∈E(i1,...,it)

xi,j
k[x−1

i,j , xi′,j′ ](i,j)∈E(i1,...,it),(i′,j′) 6∈E(i1,...,it)

If aij ≥ −rij for some j ∈ {1, . . . , t} or aij < 0 for some j ∈ {t+ 1, . . . , s}, then one obtains

Hℓ
B(R)(a1,...,as) = 0.
Next assume that aij < −rij for j = 1, . . . , t and aij ≥ 0 for j = t + 1, . . . , s. Then

[Hℓ
B(R)](a1, . . . , as) = 0 unless ℓ = ri1 + · · · + rit + 1. In the latter case, the identity of

polynomials in a
(

r + (−a− r − 1)

r

)

= (−1)r
(

r + a

r

)

shows that

FR(a1, . . . , as) = (−1)ℓ+1[Hℓ
B(R)](a1, . . . , as)

= (−1)ℓ+1
∏

1≤i≤s

∏

1≤j≤t(−1)rij
(

rij+aij
rij

)
∏

t+1≤j≤s

(

rij+aij
rij

)

=
(

ri+ai

ri

)

. �

Now assume that R := k[Xi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ ri] is G-graded for some abelian group G,
with deg(Xi,j) = γi for all j, and let C be the semi-group generated by the γi’s.

From the standard multigraded setting, we will now derive results on the case where the γi’s
are linearly independent. In that situation

dimkRµ =

{

0 if µ 6∈ C
∏n

i=1

(

ri+ci
ri

)

if µ = c1γ1 + · · ·+ cnγn ∈ C.
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Write ZC for the subgroup of G generated by C and π : G → G/ZC, then
M =

⊕

θ∈G/ZC

Mπ−1(θ),

and only a finite number of the summands are not zero if M is finitely generated. Choosing
representatives θ̃i (1 ≤ i ≤ ℓ) of the classes of the θ’s giving non zero summands, we write M =
⊕ℓ

i=1 Mθ̃i+ZC . The modules Mθ̃i
[−θ̃i] are ZC-graded R-modules of finite type. Identifying ZC

with Zn, it follows from Lemma above that there exists a numerical polynomial Pi ∈ Q[t1, . . . , tn]
and C ∈ N such that

dimk(Mµ) =

{

0 if µ 6∈ {θ̃1, . . . , θ̃ℓ}+ ZC
Pθ̃i

(c1, . . . , cn) if µ = c1γ1 + · · ·+ cnγn + θ̃i and ci ≥ C, ∀i
Now assume that G = Zn ⊕H and the decomposition γi = (ǫi, hi) is such that the ǫi’s are

linearly independent. Such a decomposition always exists. Set E for the semi-group generated
by the ǫi’s and ZE for the lattice in Zn generated by E . Let θ̃i = (ǫ′i, h

′
i). By the above remarks,

M(µ,g) = 0 unless µ = ǫ.c+ǫ′i and g = h.c+h′
i for some c ∈ Zn and some i ∈ {1, . . . , ℓ}. Choosing

the representatives θ̃i so that the ǫ′i belong to the finite set E := {λ.ǫ, λ ∈ [0, 1[n}∩Zn, it follows
that if µ ∈ e+ ZC with e ∈ E, then

dimk(M(µ,∗)) = Qe(c1, . . . , cn) if µ = c.ǫ + e and ci ≥ C, ∀i,
with Qe equal to the sum of the Pθ̃i

’s over the i’s such that ǫ′i = e. Finally, as the ci’s are linear
forms in the coordinates of µ, one can write

dimk(M(µ,∗)) = Q♯
e(µ1, . . . , µn) if µ ∈ e+ Cǫ1 + · · ·+ Cǫn + E ,

where Q♯
e is a polynomial in Q[t1, . . . , tn] that takes integral values on e+ ZE . Such a function

is called a quasi-polynomial with respect to the lattice ZE in Zn. It should be noticed that the
functions Q♯

e depend very much on the decomposition G = Zn⊕H . In the case G = Zn, closely
related results can be find in [Rob98], [Fie02], and [CN08].

Notice that with some more generality, if deg(Xi,j) = mi,jγi for some positive integers mi,j

–the γi’s being linearly independent– then setting li := lcm(mi,j) and δ := (l1γ1, . . . , lnγn), R
is finite over the subring ⊕µ∈NnRµ.δ, which is generated by elements of degrees l1γ1, . . . , lnγn.

Hence for any finitely generated graded R-module, the construction above shows that there
exists quasi-polynomials Q♯

e with respect to Zl1ǫ1 ⊕ · · · ⊕ Zlnǫn such that dimk(M(µ,∗)) =

Q♯
e(µ1, . . . , µn) if µ = e+ u1l1ǫ1 + · · ·unlnǫn and ui ≥ C for all i.
The following result summarizes our discussion above.

Theorem 6.5. Let R be a polynomial ring over a field in finitely many variables, graded by an
abelian group G. Assume that the subgroup generated by the degrees is γ1Z⊕ · · ·⊕ γnZ and that
the degree of each variable is in γiZ+ for some i. Let Bi be the ideal generated by the variables
whose degree is a multiple of γi and B := ∩n

i=1Bi. There exists positive integers l1, . . . , ln such
that the following holds.

For any decomposition G = Zn⊕H such that the images ǫ1, . . . , ǫn of γ1, . . . , γn in Zn = G/H
are linearly independent, set E := {∑n

i=1 λiǫili, 0 ≤ λi < 1} ∩ Zn, denote by E the semi-group
generated by the liǫi’s and by ZE for the lattice in Zn generated by E.

Then for any finitely generated graded R-module M and any e ∈ E, there exist a polynomial
Pe in Q[t1, . . . , tn] such that

[M ](µ) = Pe(µ), for all µ ∈ e + ZE such that µ⊕H ⊂ regB(M).
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Notice that by Theorem 4.5, in the context of the above Theorem, there exists µM ∈ Zn such
that µ⊕H ⊂ regB(M) for any µ ∈ µM +Q+E .

The main example where the above result applies correspond to a product of anisotropic
projective spaces over a field.

Also remark that Theorem 6.5 can be stated with R being a polynomial ring over a Noetherian
local ring (S,m, k), and for finitely generated modules that are annihilated by a power of m.
Indeed, in this case M is filtered by the modules 0 :M mi, whose successive quotients are finitely
generated graded modules over R ⊗S k, which is a polynomial ring over k. This condition on
M is automatically satisfied if S is Artinian.
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Departamento de Matemática, FCEN, Universidad de Buenos Aires, Argentina

E-mail address: nbotbol@dm.uba.ar

URL: http://mate.dm.uba.ar/~nbotbol/
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