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G-GRADED CASTELNUOVO MUMFORD REGULARITY

NICOLAS BOTBOL AND MARC CHARDIN

ABSTRACT. We develop a general graded variant of Castelnuovo-Mumford regularity for mod-
ules over a commutative ring R graded by a finitely generated abelian group G. With this aim,
we establish a clear relation between supports of local cohomology modules and supports of
Tor modules and Betti numbers. We give a definition of weak and very weak vy-regularity, as
well as an extension of the notion of Castelnuovo-Munford regularity which is closely related
to previous ones. We provide new stability results for these regularity regions.

We extend results on Hilbert function to multigraded polynomial rings. In particular,
we prove that for a finitely generated module, by Grothendieck-Serre formula, there is a
numerical polynomial that coincides with its Hilbert function in the regularity region.

1. INTRODUCTION.

Castelnuovo-Mumford regularity is a fundamental invariant in commutative algebra and al-
gebraic geometry. It is a kind of universal bound for important invariants of graded algebras
such as the maximum degree of the syzygies and the maximum non-vanishing degree of the local
cohomology modules.

Intuitively, it measures the complexity of a module or sheaf: the regularity of a module
approximates the largest degree of the minimal generators and the regularity of a sheaf estimates
the smallest twist for which the sheaf is generated by its global sections. It has been used as a
measure for the complexity of computational problems in algebraic geometry and commutative
algebra (see for example [EG84] or [BM93]).

One has often tried to find upper bounds for the Castelnuovo-Mumford regularity in terms
of simpler invariants. The simplest invariants which reflect the complexity of a graded algebra
are the dimension and the multiplicity. However, the Castelnuovo-Mumford regularity can not
be bounded in terms of the multiplicity and the dimension, what has made it computation
interesting and not trivial in many cases.

The two most popular definitions of Z-graded Castelnuovo-Mumford regularity are the one
in terms of graded Betti numbers and the one using local cohomology. The equivalence of this
two definitions constitutes one of the main basic results of the theory. For more discussion on
the regularity, refer to the survey of Bayer and Mumford [BM93], or to [Mum66].

The aim of this paper is to develop a multigraded variant of Castelnuovo-Mumford regularity
for modules over a commutative ring R graded by a finitely generated abelian group G. This
notion is closely relate to previous definitions by other authors.

One motivation for studying regularity over multigraded polynomial rings comes from toric
geometry. For a simplicial toric variety X, the homogeneous coordinate ring, introduced in
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[Cox95], is a polynomial ring S graded by the divisor class group G of X. The dictionary linking
the geometry of X with the theory of G-graded S-modules leads to geometric interpretations
and applications for multigraded regularity.

In [HWO04], Hoffman and Wang define the concept of regularity for bigraded modules over
a bigraded polynomial ring motivated by the geometry of P! x P!. They prove analogs of
some of the classical results on m-regularity for graded modules over polynomial algebras. In
[MS04], Maclagan and Smith develop a multigraded variant of Castelnuovo-Mumford regularity
also motivated by toric geometry. They work with modules over a polynomial ring graded
by a finitely generated abelian group, in order to establish the connection with the minimal
generators of a module and its behavior in exact sequences. In this article, we extend this work
restating some of the results in [MS04].

As in the standard graded case, our definition of multigraded regularity involves the vanishing
of graded components of local cohomology, following [HW04] and [MS04]. In the standard graded
case, it reduces to Z-graded Castelnuovo-Mumford regularity. When S is the homogeneous
coordinate ring of a product of projective spaces, multigraded regularity is the weak form of
bigraded regularity defined in [HWO04].

One point we are interested in remark is that Castelnuovo-Mumford regularity establish a
relation between the degrees of vanishing of local cohomology modules and the degrees where
Tor modules vanish. This provides a powerful tool for computing one region of Z in terms
of the other. In this article, we handle G-graded modules over a G-graded polynomial rings,
where G is a finitely generated abelian group. We exploit some of the similarities we get in
multigraded regularity with standard regularity, being able to compute the regions of G where
local cohomology modules vanish in terms of the supports of Tor modules, and vice-versa. We
also give a definition of weak and very weak v-regularity, and we provide new stability results
for these regularity regions.

Let S be a commutative ring, G an abelian group and R := S[X7, ..., X,,], with deg(X;) = v;
and deg(s) = 0 for s € S. Consider B C (X1,...,X,,) a finitely generated graded R-ideal and
C the monoid generated by {71,...,7vn}, we propose in Definition 4.1 that:

For v € GG, and for a graded R-module M is very weakly y-regular if

v & U Suppg (Hp(M)) + &,

and weakly ~y-regular if
v & U Suppg (Hg(M)) + F;.

where & :={y;, +- -+, [ 1 < - <jitand Fp={y;, + -+ | <000 < it
We also set that if further, M is weakly ~'-regular for any v € v + C, then M is vy-regular
and

reg(M) :={y € G | M is y—regular}.

We deduce from the definition that reg(M) is the maximal set S of elements in G such that
S +C =S8 and M is y-regular for any v € S.

The study of Castelnuovo-Mumford regularity naturally arises questions about Hilbert func-
tions of graded modules. Such questions comes intrinsically from the algebraic perspective, but
also motivated by the geometry behind. Our main example on the second are multi-projective
anisotropic spaces.
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The study of Hilbert functions over standard graded algebras has taken a central role in
commutative algebra and algebraic geometry since the famous paper of Hilbert [Hil90] in 1890.
For a graded module M over a standard graded ring over a field, it can be proven that the
Hilbert function, which measures the length of the graded components of the module M, is
asymptotically polynomial.

In the last section of this article we extend the study of Hilbert functions and Hilbert poly-
nomials to multigraded algebras over k, that, for the sake of simplicity we will assume it is a
field (this hypothesis can be slightly relaxed in many cases). Precisely, in Section 6 we write for
a finitely generated graded R-module M, [M](x) := dim(M,,) and we define

Far(p) := [M] (1) = > (=1 [Hp(M))(p).
We first show that the smallest abelian group of numerical functions from G to Z containing
Fg closed by shifting F{~} : g — F(v + g), coincides with the set of functions of the form
> _o(=1)'Fyy, with s € N and the M;’s in the category of finitely generated graded R-modules.
This result, combined with the notion of regularity, leads to the fact that for any pu € Z",
HE(M) u is a finite dimensional vector space and there exists a numerical polynomial Py such
that

[M](p) = Par(p) + Z(—l)i[ﬂ%(M)](u)-

This, in turn, gives that there exists a numerical polynomial Py such that [M](u) = Par(u),
for every p € reg(M).

In Theorem 6.5 we show that for a polynomial ring R over a field in finitely many variables,
graded by an abelian group G, if the subgroup generated by the degrees is 1Z & - - - & v,Z and
the degree of each variable is in v;Z for some i, with B; for the ideal generated by the variables
whose degree is a multiple of v; and B := N}, B;. There exists positive integers {1, ...,l, such
that the following holds:

For any decomposition G = Z"@® H such that the images €1,...,¢, of y1,...,v, In Z" = G/H
are linearly independent, set £ := {>"1" | Nie;l;, 0 < \; < 1} N Z", denote by £ the semi-group
generated by the l;e;’s and by Z& for the lattice in Z™ generated by £. Then, for any finitely
generated graded R-module M and any e € F, there exist a polynomial P, in Qlt1,...,%,] such
that [M](u) = P.(u), for all u € e + ZE such that & H C regg(M).

This contributes to the understanding of Hilbert functions over toric varieties, generalizing
previous results as for example those in [Hil90], and in [CNOS].

2. LocaAL COHOMOLOGY

Let R be a commutative ring and B be a finitely generated ideal. One can define the local
cohomology groups of an R-module M as the homologies of the Cech complex constructed on a
finite set of generators of B. These homology groups only depend on the radical of the ideal B,
and correspond the sheaf cohomology with support in V(B) (see [Har67, Chap. 2.3] or [CJR11]).
This in particular implies that one has a Mayer-Vietoris sequence for Cech cohomology. This
cohomology commutes with arbitrary direct sums. It coincide with the right derived functors of
the left exact functor HY in several instances (notably when R is Noetherian or B is generated by
a regular sequence in R). From the Mayer-Vietoris sequence, it also follows that both coincides
when B is a finitely generated monomial ideal in a polynomial ring (see below).
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2.1. Local cohomology with support on monomial ideals. In this section we study the
support of the local cohomology with support on a monomial ideal B. Thus, assume R :=
S[X1,...,Xy] is a polynomial ring over a commutative ring S, deg(X;) =y, € Gfor 1 <i<n
and deg(s) =0 for s € S. Take (y1,...,7,) € G™

Assume that B C (X1,...,X,) be a finitely generated monomial R-ideal. Since the local
cohomology modules depend only on the radical of the support ideal B, assume wlog that
B = /B, hence, B = ﬂzzl Ji, where J; = (Xi;,..., X, ) is an R-ideal. The motivating
examples are those where S is the G-graded homogeneous coordinate ring of a toric variety with
irrelevant ideal B, for a wider reference see [Cox95].

Lemma 2.1. Let M be a graded R-module, then
(1) Swpa(Hp(M) < | [ Swpe(HSL,,, (M)).

1<i<t 1< <+ <js <t
Proof. Let B = ﬂle J;. We induct on ¢t. The result is obvious for ¢ = 1, thus, assume that
t > 1 and that (1) holds for ¢t — 1. Write J<;—1 := J1N---NJz_1. The, for t > 1 and £ > 0
consider the Mayer-Vietoris long exact sequence of local cohomology

o= H_, g, (M) = HY_ (M) ® Hj (M) = Hg(M) - Hf}i}flﬂt (M) = - .

Hence, Supp (H4(M)) C SuppG(Hﬁgi1 (M)) U Suppg (HY, (M))U SuppG(H§i<rt171+Jt (M)). By

. . . (+i—
inductive hypothesis SuppG(Hﬁgi1 (M)) C Ulgigtfl U1§j1<~~~<ji§t71 SuppG(Hth_ﬁ_Hji (M)).
Since J<i—1 + Jy = (J1 + Je) N --- N (Ji—1 + Ji), again by inductive hypothesis we obtain that
141 (+i—1 :
SuppG(HJthl-i-Jp(M)) C U1§igt71 U1§j1<---<ji§t71SuppG(HJ;t-i-»»»-i-in—i-th (M)) which com-
plets the proof. O

Remark 2.2. The exact sequence

Hglm...m(]til(M) S Hi (M) — Hé(M) — H(Zz{h]t)ﬁ---ﬂ((]t71+(]t)(M)

applied for £ > 1 and M injective shows, by recursion on ¢, that H5(M) = 0 in this case (the

case t = 1 is classical and follows from the fact that B is then generated by a regular sequence).
This in turn shows that H is the ¢-th right derived functor of H%, when B is monomial.

The approach of Mustata in [Mus00] that we now recall uses the isomorphism
HE(M) ~lim Ext(R/B', M)
—
t
which holds over any commutative ring, taking for H% the i-th derived functor of H%. As
for a monomial ideal B this agrees with Cech cohomology we have an isomorphism in our
setting. Let Bl := (ff,...  f!) where the f;’s are the minimal monomial generators of B,
the Taylor resolution T of R/B! has a natural map to the one of R/BI] for t > t' that
in turn provides a natural map : Hompg(T!, R) — Hompg(T!, R). This Z"-graded map is an
isomorphism of complexes in degree v € (—t',...,—t') + Z%, and else HomR(Tf/,R)V = 0.
For a = (a1, - ,a,) € {0,1}", let E, := {i, a; = 0} and R}, = 3-5[X;, X;'i € E,,j €
{1,...,n}\ E,]. .
Setting N, o := H'(Hompg(Ts, R)_,), were Ty := T, is the Taylor resolution of R/B, by
Mustata description one has :

Hp(R) = @ae{o,l}nHJis(R)—a ®s Ry = @aco,137 Nia @5 Ry,
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and this sum is restricted by the inclusion (1) or by inspecting a little T}. For instance if
n— #Eq, = |a| < i then N; , =0.

3. LocaL COHOMOLOGY AND GRADED BETTI NUMBERS

In this chapter we aim is to establish a clear relation between supports of local cohomology
modules and supports of Tor modules and Betti numbers, in order to give a general definition
for Castelnuovo-Munford regularity in next chapter.

Throughout this chapter let G be a finitely generated abelian group, and let R be a commu-
tative G-graded ring with unit. Let B be a homogeneous ideal of R.

Remark 3.1. Is of particular interest the case where R is a polynomial ring in n variables over
a commutative ring whose elements have degree 0 and G = Z" /K, is a quotient of Z" by some
subgroup K. Note that, if M is a Z"-graded module over a Z"-graded ring, and G = Z" /K,
we can give to M a G-grading coarser than its Z"™-grading. For this, define the G-grading on
M by setting, for each v € G, M., := EBderl(v) M.

In order to fix the notation, we state the following definitions concerning local cohomology
of graded modules, and support of a graded modules M on G. Recall that the cohomological
dimension of a module M is cdg(M) := inf{i | H}(M) = 0,Vj > i}.

Definition 3.2. Let M be a graded R-module, the support of the module M is Supps(M) :=
{reG: M, #0}.

Observe that if F, is a free resolution of a graded module M, much information on the module
can be read from the one of the resolution. Next we present a result that permits describing the
support of a graded module M in terms of some homological information of a complex which
need not be a resolution of M, but M is its first non-vanishing homology.

Definition 3.3. Let C, be a complex of graded R-modules. For all i, j € Z we define a condition
(Dy;) as above

(D) H5(H;(Cy)) # 0 implies Hy™ T (H;10(Co)) = Hiy " (H;—¢(Cy)) = 0 for all £ > 1.

We have the following result on the support of the local cohomology modules of the homologies
of Co assuming (D;;).

Theorem 3.4. Let Co be a complex of graded R-modules and i € Z. If (D;;) holds, then

Suppe (Hp(H;(Ch))) € | Suppa(HE™ (Cjr)).
k€Z

Proof. Consider the two spectral sequences that arise from the double complex (f]'gC. of graded
R-modules.

The first spectral sequence has as second screen 4 E} = Hy(H;(C,)). Condition (D;;) implies
that WEi = 4EI = Hp(Hj(C,)). The second spectral sequence has as first screen {E} =
Hp(C).

By comparing both spectral sequences, one deduces that, for all v € G, the vanishing of
(H5™*(Cjyx))y for all k implies the vanishing of (f)OEJZiﬁ),Y for all ¢, which carries the vanishing
of (Hp(H;(Cs)))y- 0
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We next give some cohomological conditions on the complex C, to imply (D;;) of Definition
3.3.

Lemma 3.5. Let C, be a complex of graded R-modules. Consider the following conditions
(1) Ce is a right-bounded complez, say C; = 0 for j < 0 and, cdg(H;(C,)) < 1 for all
j#0.
(2) For some ¢ € ZU{—o0}, H;j(C,) =0 for all j < q and, cdg(H,;(C,.)) <1 for all j > q.
(8) H;(Co) =0 for j <0 and cdp(Hy(C,)) < k+1i for all k> 1.

Then,
(1) (1) = (2) = (Dyj) for alli,j € Z, and
(i) (1) = (3) =(Dyy) jor j = 0.

Proof. For proving item (i), it suffices to show that (2) = (D;;) for all 4, j € Z since (1) = (2)
is clear.

Let £>1.

Condition (2) implies that H5(H;(Ce)) = 0 for j > g and i # 0,1 and for j < ¢q. If
HE(H;j(Cy)) # 0, either j > g and i € {0,1} in which case j +¢ > g and i+ ¢+ 1 > 2 and
i—¢—1<0,o0rj=gqin which case j +¢ >qandi+¢+1> 2 and j — ¢ < 0. In both cases
the asserted vanishing holds.

Condition (1) automatically implies (3). Condition (3) implies that H5™ ™ (H,(C4)) = 0 and
H;_¢(C,) =0. O

In the following subsection we establish the relation between the support of local cohomology
modules and support of Tor modules. With this purpose we will base our results on Theorem
3.4 and Lemma 3.5 with C, denoting the Koszul complex Ko (X1, ..., X,; M) as we show below.

3.1. From Local Cohomology to Betti numbers. In this subsection we bound the support
of Tor modules in terms of the support of local cohomology modules. This generalizes the fact
that for Z-graded Castelnuovo-Mumford regularity, if b;(M) := max{yu | Tor*(M, k), # 0} and
a;(M) :=max{p | H, (M), # 0}, then b;(M) — i < reg(M) := max;{a;(M) + i}.

Assume R := S[X;,...,X,] is a polynomial ring over a commutative ring S, deg(X;) =v; € G
for 1 <i <n and deg(s) =0 for s € S. Take (y1,...,7) € G™.
Let B C (X1,...,Xp) be a finitely generated graded R-ideal.

Definition 3.6. Set & = {0} and & :={v;, +- -+, : 91 <--- <74} for [ #0.
Observe that if I < 0 or [ > n, then & = 0. If 4, = v for all 4, & = {l - v} when & # 0.

Notation 3.7. For an R-module M, we denote by M|[y'] the shifted module by " € G, with
M)y == My 4 for all v € G.

Let M be a graded R-module. Write KM := Ko(X1,..., X,,; M) for the Koszul complex of
the sequence (X1, ..., X,,) with coefficients in M. We next establish a relationship between the
support of the local cohomologies of its homologies and graded Betti numbers of M.

The Koszul complex K is graded with KM = @, .., M[—v, —--- — 7). Let ZM
and BM be the Koszul i-th cycles and boundaries modules, with the grading that makes the
inclusions ZM, BM ¢ KM a map of degree 0 € G, and set HM = ZM /BM.
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Theorem 3.8. Let M be a G-graded R-module. Then

Suppg(Torf' (M, S)) C | J (Suppe (HE(M)) + &),
k>0

for all j > 0.

Proof. Notice that H JM o~ Torf (M, S) is annihilated by B, hence has cohomological dimension
0 relatively to B. According to Lemma 3.5 (case (1)), Theorem 3.4 applies and shows that

Suppg (Torj (M, 8)) C | Suppe(Hp(Kj1e)) = | (Suppg (HE (M) + Ej1)- m
£>0 k>0

Notice that taking G = Z and deg(X;) = 1, Theorem 3.8 gives the well know bound b;(M) —
i <reg(M) := max;{a;(M) +i}.

3.2. From Betti numbers to Local Cohomology. In this subsection we bound the support

of local cohomology modules in terms of the support of Tor modules. This generalizes the fact

that for Z-graded Castelnuovo-Mumford regularity, if a;(M) +i < reg(M) := max;{b;(M) —i}.
We keep same hypotheses and notation as in Section 3.1

Next result gives an estimate of the support of local cohomology modules of a graded R-
module M in terms of the supports of those of base ring and the twists in a free resolution.
This permits (combined with Lemma 3.10) to give a bound for the support of local cohomology
modules in terms of Betti numbers.

The key technical point is that Lemma 3.10 part (1) and (2) give a general version of
Nakayama Lemma in order to relate shifts in a resolution with support of Tor modules; while
part (3) is devoted to give a ‘base change lemma’ in order to pass easily to localization.

Theorem 3.9. Let M be a graded R-module and Fy be a graded complex of free R-modules,
with Ho(Fe) = M. Write Fi = @, Rl—ij] and T; == {~i; | j € Ei}. Let £ >0 and assume
cdp(H;(F,)) < £+ j for all j > 1. Then,

Suppg (Hp(M)) | (Suppe (H5(R)) + To).
>0

Proof. Lemma 3.5 (case (3)) shows that Theorem 3.4 applies for estimating the support of local
cohomologies of Hy(F,), and provides the quoted result as local cohomology commutes with
arbitrary direct sums

Suppg (HE (R[-9])) = Supp(HE(R)) + 7, and Suppg(®ierNi) = Uic sSuppe(N;)
for any set of graded modules N, i € F. 0

Lemma 3.10. Let M be a graded R-module.

(1) Let S be a field and let Fy be a G-graded free resolution of a finitely generated module
M. Then

F; = @ R[-~]%, and T; = Suppg(Torl(M, S)).
YET;
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(2) Assume that there exists ¢ € Homz(G,R) such that ¢(deg(x;)) > 0 for all i. If
o(deg(a)) > m for some m € R and any a € M, then there exists a G-graded free
resolution Fy of M such that

Fi= (D Rl with 7 € |J Suppg(Tor (M, 5)) V.
JEE; 0<t<i
If, furthermore, there exists p such that F; is finitely generated for i < p, then E; is
finite for i < p.
(8) Assume that (S, m, k) is local. Then
Suppg (Torf (M, k)) C U SuppG(Torf(M, S)).
Jj<i

Proof. For Part (1) and (2) see [CJR11]. Part (3) follows from the fact that if (S, m, k) is local

there is an spectral sequence Torg (Torf(M, S), k) = Torzﬁ_q(M, k) and the fact that S C Ry. O

Combining Theorem 3.9 with Lemma 3.10 (case (1)) one obtains:

Corollary 3.11. Assume that S is a field and let M be a finitely generated graded R-module.
Then, for any £,

Suppg(Hg(M)) C | (Suppg (Hp™ (R)) + Suppg(Tor{ (M, 5))).
i>0
If S is Noetherian, Lemma 3.10 (case (3)) implies the following:
Corollary 3.12. Assume that (S,m, k) is local Noetherian and let M be a finitely generated
graded R-module. Then, for any ¢,
Suppg(Hy(M)) < UiZO(SuppG(Hé—H(RD + SUPPG(TOYZR(Mv k)))
c UiszO(SuppG(H?Z(R)) + SUPPG(TOI";%(M, S)))-
After passing to localization, Corollary 3.12 shows that:
Corollary 3.13. Let M be a finitely generated graded R-module, with S Noetherian. Then, for
any ¢,
¢ o+i R
Suppe(Hp(M)) C U (Suppe (Hg™(R)) + Suppg(Tor; (M, S))).
12520

Proof. Let v € Suppg(H5(M)). Then HS(M)., # 0, hence there exists p € Spec(S) such that
(H5(M),) ®s Sp = ng®ssp (M ®gs Sp) # 0. Applying Corollary 3.12 the result follows since
both the local cohomology functor and the Tor functor commute with localization in S, and
preserves grading as S C Ryp. O

Finally, Lemma 3.10 (case (2)) gives:

Corollary 3.14. Let M be a graded R-module, and assume that there exists ¢ € Homz (G, R)
such that ¢(deg(x;)) > 0 for all i. If ¢(deg(a)) > m for some m € R and any a € M, then, for
any ¢,
Suppg (Hp(M)) € | (Suppg(HE(R)) + Suppg(Tor (M, 5))).
12520
Notice that taking G = Z and deg(X;) = 1, Corollaries 3.11, 3.12, 3.13 and 3.14 give the well
know bound a;(M) + i < max;{b;(M) —i}.
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4. CASTELNUOVO-MUMFORD REGULARITY

One point we are interested in remark is that Castelnuovo-Mumford regularity establishes a
relation between the degrees of vanishing of local cohomology modules and the degrees where
Tor modules vanish. It is clear that this provides a powerful tool for computing one region of Z
in terms of the other.

In this section we give a definition for a G-graded R-module M and v € G to be weakly
~y-regular or just -y-regular, depending if « is or is not on the shifted support of some local
cohomology modules of M (cf. 4.1). This definition allows us to generalize the classical fact that
weak regularity implies regularity. Lemma 4.2 and Theorem 4.3 provide new stability results
for these regularity regions.

In the later part of this section, in Theorem 4.5, we prove that for j > 0, the supports of
Torf (M, S) does not meet the support of any shifted regularity region reg(M )+~ for v moving
on &;. As we have mentioned in the introduction of this chapter, this result generalizes the fact
that when G = Z and the grading is standard, reg(M) + j > end(Torf(M, S)).

4.1. Regularity for Local Cohomology modules. Let S be a commutative ring, G an
abelian group and R := S[Xy,...,X,], with deg(X;) = 7; and deg(s) = 0 for s € S. Let
BC Ry :=(Xy,...,X,) be a graded R-ideal and C be the monoid generated by {71,...,vn}

In addition to the definition of &;, we introduce the following sets already used by Hoffman
and Wang, Maclagan and Smith and other authors:

Fii={vi +-+

g1 < < gike
It is clear that & C F;.

Definition 4.1. For v € G and ¢ € N, a graded R-module M is very weakly y-regular at level
¢ if
v & | Suppg (Hp(M)) + &;.
i>0
M is very weakly v-regular if it is very weakly y-regular at level 0.
M is weakly vy-regular at level ¢ if

v & |J Swppe(Hp(M)) + Fi.

i>0

M is weakly ~-regular if it is weakly ~y-regular at level 0.
If further M is weakly +'-regular (resp. weakly +/-regular at level £) for any 7' € v+ C, then
M is y-regular (resp. y-regular at level £). One writes reg(M) := reg?(M) with

reg(M) := {y € G | M is y—regular at level £}.

It immediately follows from the definition that reg®(M) is the maximal set S of elements in
G such that S +C =S and M is weakly y-regular at level £ for any v € S. Also notice that, as
Fi+C = &;+C, one may replace “weakly y-regular” by “very weakly v-regular” in the previous
sentence.

The following lemma will give cases where weak regularity implies regularity under some
extra requirement.
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Lemma 4.2. Let M be a graded R-module, I be a graded ideal generated by elements of degrees
81,05 and set & = {0} and & = {6j, + -+ + ;.1 < -+ < ji} and £ be an integer. If
¢>cdp(R/(I +anng(M))),

v & | Suppa(H5 (M) + &Ly = 7 & Suppa(Hp (M)).
i>0

If ¢ = cdp(R/(I +anng(M))) and v & U;~q Suppg (Hg ™ (M)) + &L 4, then
(Hp(M)/THE(M)), € Hg(M/IM),
and equality holds if v & U;~¢ Suppg (H5H (M) + &/

Proof. Write I = (f1,...,fs), Ke := Ko(f1,..., fs; M) and H; for the j-th homology module of
K. Consider the two spectral sequences that arise from the double Cech-Koszul complex (fl'glC.
of graded R-modules.

The first spectral sequence has as second screen 4 E} = Hy(Hj). As I and anng (M) annihilate
Hj, cdp(H;) < cdp(R/(I + anng(M))) < £, which shows that 57 = 0 for i —j = (£ unless
£ =cdp(M/IM) = cdg(R/(I +anng(M))), in which case ’QEJZ =0 for j #0and LEf = Ef =
Hg(M/IM). The second spectral sequence has as first screen (YE}), = Dyee! Iﬁé(M)Zj’_”V for
some positive bj , € Z (bgo = 1).

By hypothesis (’{Ef:f)# = 0foralli>0 As (YE“",) =0 for i > 0, we deduce that
VEG), = (LB As ({Ef), = Hg(M),, and ,E} =/ Ei = 0 for i — j = £, the conclusion
follows. O

Recall that cdg(R/J) < cdp(R/I) if I C J. Also, by [CJR11, Thm. 4.3] cdg(M) <
cdp(R/anng(M)) for any R-module M and equality holds if M is finitely generated. Fur-
thermore, by [CJR11, Lem. 4.6], cdg(N) < cdg(M) if M is finitely presented and Supp(N) C
Suppp(M); which implies that Lemma 4.2 holds with cdg(R/(I + anng(M))) replaced by
cdp(M/IM) in the case where M is finitely presented.

If G = Z and R has the standard grading, we have that if £ > cdg(R/(I 4+ anng(M))) or
> cdp(M/IM) it M is finitely presented, then, v > reg(M)— £+ 1 implies v > end(Hf%+ (M)).
Equivalently, v > reg(M) implies v > a; — 1.

Before establishing the relation between weak v-regularity at level ¢ and y-reqularity at level

£, we introduce some notation. Let {y1,...,vn} = {f1, ..., m}, with p; # p; for i # j. Denote
by B, for ¢ from 1 to m, the ideal generated by the variables of degree p;.

Theorem 4.3. Assume that B C B; for every i. Let M be a graded R-module, ¢ € N and
assume that M is weakly y-regular at level £. Then,

(1) If £ > 1, then M is y-regular at level £.

(2) If ¢ = 0, then M is y-regular at level 1, (M/Ry M), = (HY(M)/RyH%(M)),, for any
1 € v+ C and the following conditions are equivalent :

(i) HY (M) e =0,

(i) M is y-regular.

As a consequence, if condition (i) or (ii) holds, then (M /Ry M) 4c = 0.

Proof. For 1 < p<mlet F§ = F?) = {0}, FP := {in,},
FP = {4 4 L < - < and vy, # gy, V0
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Applying Lemma 4.2 with I := B, one gets

7# USuppa(HE (M) + F v+ ¢ U _L>JO<SuppG<H§”’”<M>> +FP) + FF
12> 12Uy =2

=7+ mp & U Suppa(Hp" (M) + F.
For any p one can write )
Uiz Supbe (Hp (M) + Fi - = Ujzg Uiso(Suppe (HE (M) + FF) + 7}
which shows that v & ;> Suppe (H5™ (M) + Fi = v + ptp & Usso Suppe(Hg (M) + F;
for any p and concludes the proof. |
Next example illustrates Theorem 4.3 in the standard multigraded case.

Example 4.4. Assume that R = S[X;;,1 <i<m,0 < j <] is a finitely generated standard
multigraded ring, B; := (X;;,0<j <r;), B:=B1N---NBy, and Ry := By +--- + By,. Let
M be a graded R-module.

If M is weakly ~-regular, then

(a) M/H%(M) is y-regular,

(b) (HY(M)/RLHY(M))y = (M/R: M), for any o' € v+ C.

Next Theorem substantiate our results in Section 3 on regularity. Organized with the subse-
quent ones, they exhibit the importance of (weak) -regularity (at level ¢).

Theorem 4.5. Let M be a G-graded R-module. Then
() (reg(M) + 7)) Suppg(Torf (M, S)) = 0
YEE;
for all 57 > 0.
When G = Z and the grading is standard, this reads with the usual definition of reg(M) € Z:
reg(M) +j > end(Torf(M, S))

for all j > 0. Thus, reg(M) > max;{b;} that gives by local duality the equivalence of both
definitions of regularity.

Proof. If v € SuppG(Torf(M, S)), then it follows from Theorem 3.8 that v € Suppg (H%(M)) +
Ej4¢ for some £. Hence

Y=Y~ Vigee € SuppG(Hé(M))
for some 41 < --- < i;4¢. By definition it follows that if p € reg(M) and t; < --- < 4, then
V= Vi T T Yigee BT T T Y
in particular choosing tj := i;4, one has
Y=Y — =Y, Ereg(M). O

The following result evidence the relation between regularity and vanishing of Betti numbers.

Corollary 4.6. Assume (S, m, k) is locally Noetherian, and let Fy be a minimal free R-resolution
of a finitely generated R-module M. Then,

Suppg(F;) € | J Clreg(M)) + 1.
v€EE;
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On the other hand, Corollary 3.13 shows that:

Proposition 4.7. Assume S is Noetherian, let M be a finitely generated G-graded R-module
and set T; := Suppg(Tor; (M, S)). Then, for any ¢,

Suppg (Hp(M) + &) € | J(Suppe(Hg*(R)) + & + T)).
i>7

If further S is a field,

Suppg (H5(M) + &) C U(SuppG(H?i(R)) + &+ Ty).

Proposition 4.7 was stated requesting S to be Noetherian and M be a finitely generated, for
the sake of simplicity. It can be proven that these hypotheses can be relinquished, by asking that
there exists a function f : G — R such that f(v;) > 0 for all ¢ as in the case (2) of Lemma 3.10
(cf. [CJR11]). This generalization include many rings from algebraic geometry as toric rings, in
particular, product of anisotropic projective spaces.

In some applications it is useful to consider local cohomologies of indices at least equal to
some number, for instance positive values or values at least two. In view of Lemma 4.3, most
of the time weak regularity and regularity agrees in this case. We set :

reg' (M) :={y | /' € C, v+7' & | Suppe(Hp(M)) + &}
>0

With this notation, Proposition 4.7 implies the following

Theorem 4.8. Assume S is Noetherian, let M be a finitely generated G-graded R-module and
set Ty := Suppg(Torf (M, S)). Then, for any (,

reg/(M)2 () reg(R)+y—9 2reg’(R)+ () - +C
J<i,v€T;,v' EE; J<i,v€T; Y EE;

The above intersection can be restricted to i < cdg(R) — £. If further S is a field,

reg!(M)2 [ regM(R)+v-9'2reg!(R)+ () v-7+C
i,yET; Y €E; i, €T,y €E;

Proof. If i & reg?(M), by Proposition 4.7, there exists i > j such that
1 € Suppg (H5(R)) + &+ T;
hence there exists 7' € &; and 7 € T} such that
p+r' =7 € Suppg (Hp ' (R)) + Eite-
Therefore 1 & reg* (R) +~v — 7. O
When G = Z and the grading is standard, this reads with the usual definition of reg?(M) € Z:
reg’ (M) < reg’(R) + mzax{end(TorlR(M, S)) —i} = reg’(R) + Inzax{bi}.
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5. LOCAL COHOMOLOGY OF MULTIGRADED POLYNOMIAL RINGS

This chapter aims to clarify Castelnuovo-Mumford regularity in the multigraded context. It is
mainly focused on the advantages of having a well understood decomposition of local cohomology
modules, given by Kiinneth formula. These isomorphisms will provide a clear description of
regularity region.

Let S be a commutative ring, s and m be fixed positive integers, r; < --- < rg non-negative
integers, and write x; = (2;.1,..., %) for 1 <i < s. Define R; := S[x;], the standard Z-graded
polynomial ring in the variables x; for 1 <i < s, R = @g Ri, and Ry, ... a,) := Qg(Ri)a, stands
for its multigraded part of multidegree (aq, ..., as).

We define R; := %S[zﬁl, R ]. Given integers 1 < i3 < -+ < iy < s, take

i1 T,y 7T

o= {i1,..., i}, and set R, := (®jea Rj)®s (®j€a Rj). Observe that R{i} = Ri®s®#i R;.
Given integers 1 < iy < --- < i; < s, take &« = {é1,...,4:}. For any integer j write sg(j) := 1 if
j € aand sg(j) :=0if j ¢ «. We define

Qo = H (—1)Sg(j)N —sg(j)rje; C Z°,

1<j<s

the shift of the orthant whose coordinates {41, ...,%:} are negative and the rest are all positive.
Following the notation in section 4, before Theorem 4.3, we set B; for the R-ideal generated by
the elements in x;, B:= By -+ By, By := B, +---+ B;, and |a| = r;, + -+ +14,.

For every a C {1,...,s}, we have Suppg.(Rs) = Q4. Notice that for a, 8 C {1,...,s}, if
a # 8, then Qo N Qs = 0.

Lemma 5.1. Given integers 1 < i3 < -+ < iy < s, let &« = {iy,...,it}. There are graded
isomorphisms of R-modules

(2) Hp(R) = R,.

Proof. Recall that for any ring S and any S-module M, if x1,...,x, are variables, then
; [0 ifi#n

(3) H(ml,...,mn)(M[Il’ coTn]) = { zl___ng[xl_l, coxpt] ford =n.

We induct on |«|. The result is obvious for |a| = 1. Assume that |a| > 2 and (2) holds for |«|—1.
Take I = By, -+ B;,_, and J = B;,. There is a spectral sequence H%(H{(R)) = HYT%(R). By
(3), HY(R) = 0 for p # r;,. Hence, the spectral sequence stabilizes in degree 2, and gives
=Y (H 7" (R)) = HS % (R). The result follows by applying (3) with M = H|*'""*(R), and
inductive hypothesis. O

Lemma 5.2. With the above notations,

~ Tyt iy ~ s
(4)  Hp(R) = & Hy 4 (R) = D Ra.
1<id; <--- <4 <s aC{1,...,s}
Tig ot —(E—1) = ¢ la| = (F#a—-1)=¢

Lemma 5.2 can be proven sheaf-theoretically, by means of Kunneth formula (cf. [Gro63, Thm.
6.7.3] or [SW59, Thm. 1]) or by induction on the Mayer-Vietoris sequence of local cohomology
(cf. [Bot10, Lem. 6.4.7.]). It follows from Corollary 3.12 and Lemma 5.2 that:
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Corollary 5.3. Assume that (S,m, k) is local Noetherian and let M be a finitely generated
G-graded R-module. Then, for any ¢,

Suppg(Hp(M)) < EJO(Suppc(Hé+i(R)) + Suppg(Tor{' (M, k)))
= L_J U (Q{i1;~~~7it} + SuppG(TorzR(M, k))) )

i>0 1<ip<---<ig<s
i +"'+”t —(t—1)=20+1
Whenever S is Noetherian, Corollary 3.13 provides an estimate of Supp (H%5(M)) in terms of

the sets Suppg (Tor/ (M, S)). Theorem 3.4 asserts that if Cy is a complex of graded R-modules,
assuming (D;;) we have that for all i € Z

Suppg (H(H;(Cu))) € | Suppa(HE™ (Cjr)).
kEZ

For i =1,...,m, take f; € R homogeneous of the same degree «y for all . Let M be a graded
R-module. Denote by KM the Koszul complex Ko(f1,..., fm; R) @z M. The Koszul complex
KM is graded with K; := Diy<...ct, R(=i- 7). Set HM = H;(KM) the i-th homology module
of KM,

Corollary 5.4. If cdg(HM) <1 for alli > 0. Then, for all j >0

Suppe (Hy(H}")) € | (Suppa(HE(M)) +k-7) + (=) - 7.
kEZ

Proof. This follows by a change of variables in the index k in Lemma 3.4. Since C, is KM and
KlM = EBl0<m<li M(—i-~), we get that

Suppg(Hjp(H")) < | Suppe (HE (K ;) = | (Suppe (HE(M)[=(k +j = i) - 7]).
keZ keZ

The conclusion follows from 3.7. O
Remark 5.5. In the special case where M = R, we deduce that if cdg(H;) < 1 for all ¢ > 0,

Suppg(Hp (H;)) € | (Suppg(HE(R)) +k-7) + (7 —i) -7y, for all 4, j.
keZ

Take j = 0 and write I := (f1,..., fm), we get

Suppe(H(R/1)) € | (Suppg (HE(R)) + (k i) -7), for all i.
keZ

Example 5.6. Let k be a field. Take Ry := k[z1, 22|, Ra = k[y1,¥y2,y3,94], and G := Z2.
Write R := Ry ®j Rz and set deg(z;) = (1,0) and deg(y;) = (0,1) for all . Set By :=
(x1,22), B2 := (y1,Y2,¥3,y4) and define B := By - By C R the irrelevant ideal of R, and
m := B; + By C R, the ideal corresponding to the origin in Spec(R). From Lemma 5.2, it
follows that H%(R) = R{l} = H]231 (R) = o.)]v%l Rk Ra, H%(R) = R{Q} = Héﬁ (R) = R1 ® wl\é&,
H%(R) = Ry 0y = HS(R) = w};, and Hi(R) = 0 for all £ # 2,4 and 5.

Hence, Suppg(H%(R)) = —N x N + (=2,0), Supps(Hg(R)) = N x —N + (0, —4), and
Suppi(H%(R)) = =N x =N + (=2, —4), .
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Take f1,..., fm homogeneous elements of bidegree v, and write I := (f1,..., fin). Assume
cdp(R/I) <1, hence cdg(H;) <1 for all i. We will compute reg(R/I). Set for every v € G,
(5) 65(7) = (J Suppg(H(R) + k- 7).

k>0

Since H5(R) = 0 for all £ # 2,4 and 5, from Remark 5.5 we get that for all i, Supps (H5(R/I)) C
Sp(y) —i-7, and, reg(R/I) 5 L& p(y).

6. HILBERT FUNCTIONS OVER GRADED RINGS

Let R be a polynomial ring over a field k, graded by an abelian group G and B be a non
trivial graded ideal. Assume that H(R), is a finite dimensional k-vector space for any u € G.
For a finitely generated graded R-module M set [M](u) := dimy(M,) and

Far(p) := [M] (1) = > (=1 [Hp(M)](1).
It follows from the proof of Lemma 6.1 below that [H(M)](p) is finite for any i and p. Recall

that in the standard graded situation, Fis is a polynomial function, called the Hilbert polynomial
of M.

Lemma 6.1. Let C be the smallest set of numerical functions from G to Z containing Fr such
that for any F,G € C and v € G, the function F + G, —F and F{v}: g+~ F(v+ g) are in C.

Then C coincides with the set of functions of the form Y.;_,(—=1)"Fas, with s € N and the
M;’s in the category of finitely generated graded R-modules.

Proof. First notice that any function in C can be written in the form Y7 (—1)"Fy,, with
M; = Rly;] for some i. On the other hand if Fy is a graded finite free R-resolution of M,
[M] = >7,(=1)[F;] and the spectral sequence Hp(F;) = Hp ’(M) shows that Hp (M), is a
finite dimensional vector space for any p and that
Y (CUTHR(F)] = Y (-1 [Hg(M)).
i.j ¢
Since F; = Gaqu.R[fyj_q] it follows that
Fu = Z Z ) [Hp(Fy)] = Z(—l)j Z Fr{viq} € C.
J S
O
In the case R := k[X;; | 1 <i < n,0<j <r]is a standard Z"-graded polynomial ring

over a field k, deg(X; ;) = e;, let B := NI (X, ;, 0 <j <r;). The following result generalizes
[JV02, Thm. 2.4], which considers the case n = 2. It is proved in [CNO08, Prop. 2.4.3].

Proposition 6.2. For any u € Z", H%(M)M is a finite dimensional vector space and there
exists a numerical polynomial Pas such that

[M](p) = Par(p) + Z(—l)i[ﬂ%(M)](u)-

Following [CN08, Thm. 2.4.8], from Proposition 6.2 we conclude that
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Corollary 6.3. There ezists a numerical polynomial Pyy such that
[M](1) = Prr(p)-
For every p € reg(M).
The proof of Proposition 6.2 follows directly from Lemma 6.1 and the following result

Lemma 6.4. With the above notations,

Frlar,...a0) = ][ <Tr+“>

1<i<s v
and C is the set of numerical polynomials of multidegree < (r1,...,75).

Proof. The second follows from the first and [Rob98, Thm. 2.1.7].
From Lemma 1 we have that
~ Tyt
mwmE @
1<ip<- - <ig<s
Tig T, +1=12
Take (a1, ...,as) € Z*. If there exists ¢ such that —r; < a; < —1, then both sides are zero,

hence equal.
If a; > 0 for all 4, then Fg(a1,...,as) = [R|(a1,...,as) = [[1<;<, (e,

T4

Denote by E(i1,...,i) the set of (i,7) with i € {i1,--- i}, 0< 5 <ry,.

Tig e Fri +t ~ 1 -1
Bz'11+"'+Btit ( ) = H oy k['ri,j 7{Ei/,j'](i,j)EE(h7~~~,it)7(i’;j’)€E(i1,~-~,it)
(4,5)EE(i1,...,it)
If a;; > —r;, for some j € {1,...,t} or a;; <0 for some j € {t+1,..., s}, then one obtains

Hé(R)(al,...,aS) = O
Next assume that a;; < —ry; for j = 1,...,;t and a;; > 0 for j =t +1,...,s. Then
[H5(R)|(a1,...,as) = 0 unless £ = 7, + -+ +r;, + 1. In the latter case, the identity of

polynomials in a
r+(—a—r—1) S(T+a
() e ()

() (R, )
= (—1)! ngigs ngjgt(_l)'”j (n-j +a¢j) Ht+1§j§s (mj +aij)

Ti. Ti.
i i

(Ti“rai)' O

T4

shows that
FR(al,...,as)

Now assume that R :=k[X;; | 1 <i<n,0<j <r]is G-graded for some abelian group G,
with deg(X; ;) =~ for all j, and let C be the semi-group generated by the ~;’s.

From the standard multigraded setting, we will now derive results on the case where the v;’s
are linearly independent. In that situation

0 ifuegl
H?:l (rnLcl) if uw=civ R CnVn € C.

i

dimy R, = {
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Write ZC for the subgroup of G generated by C and 7 : G — G/ZC, then

M= D M),
0eG/ZC
and only a finite number of the summands are not zero if M is finitely generated. Choosing
representatives 91 (1 <1 < ¥) of the classes of the §’s giving non zero summands, we write M =
EBfZl M3, , z¢c- The modules My, [—0;] are ZC-graded R-modules of finite type. Identifying ZC
with Z", it follows from Lemma above that there exists a numerical polynomial P; € Q[t1, ..., t,]
and C' € N such that

. {0 if p e {01,...,00} +2ZC
dlmk(M‘u)_{ P; (c1,...,¢n) ifu:clfyl+-~-—|—cn”yn+éi and ¢; > C,Vi

Now assume that G = Z"™ @ H and the decomposition v; = (¢;, h;) is such that the ¢;’s are
linearly independent. Such a decomposition always exists. Set £ for the semi-group generated
by the €;’s and ZE for the lattice in Z" generated by €. Let 6; = (€5, h}). By the above remarks,
M4y = 0 unless = e.c+¢; and g = h.c+hj for some c € Z™ and some i € {1,...,¢}. Choosing
the representatives 6; so that the €, belong to the finite set E := {\.e, A € [0,1[*}NZ", it follows
that if 4 € e + ZC with e € F, then

dimg (M,,4)) = Qelct, ..., cn) if p=ce+eand ¢; > C,Vi,

with Q. equal to the sum of the Fj,’s over the 4’s such that e, = e. Finally, as the ¢;’s are linear
forms in the coordinates of i, one can write

dimy (M) = Q(p1, ... pn) if p € e+ Cey + -+ + Cep + €,

where Q! is a polynomial in Q[t1,...,t,] that takes integral values on e + Z&. Such a function
is called a quasi-polynomial with respect to the lattice ZE€ in Z™. It should be noticed that the
functions Qg depend very much on the decomposition G = Z™ @ H. In the case G = Z", closely
related results can be find in [Rob98], [Fie02], and [CNOS].

Notice that with some more generality, if deg(X; ;) = m; ;y; for some positive integers m;_;
—the v;’s being linearly independent— then setting I; := lem(m; ;) and § := (I171,...,ln W), R
is finite over the subring ®©,enn R,..5, which is generated by elements of degrees l17v1,. .., lnVn.

Hence for any finitely generated graded R-module, the construction above shows that there
exists quasi-polynomials Qf with respect to Zlie; @ --- @ Zl,e, such that dimy, (M,,,4)) =
QF (11, -+ -y i) if = e+uilie; + -+ uplpe, and u; > C for all i.

The following result summarizes our discussion above.

Theorem 6.5. Let R be a polynomial ring over a field in finitely many variables, graded by an
abelian group G. Assume that the subgroup generated by the degrees is Y1Z ® - - - ® vy, Z and that
the degree of each variable is in v;Zy for some i. Let B; be the ideal generated by the variables
whose degree is a multiple of v; and B := N}_1B;. There exists positive integers ly,...,l, such
that the following holds.

For any decomposition G = Z"® H such that the images €1, ...,€, 0f V1,...,Yn in 2" = G/H
are linearly independent, set E := {31 | Nieil;, 0 <\, <1} N2Z", denote by € the semi-group
generated by the lie;’s and by ZE for the lattice in Z™ generated by .

Then for any finitely generated graded R-module M and any e € E, there exist a polynomial
P, in Q[t1,...,ts] such that

[M](p) = Pe(p), for all p € e+ ZE such that u ® H C regg(M).
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Notice that by Theorem 4.5, in the context of the above Theorem, there exists s € Z™ such
that u® H C regg (M) for any pu € pup + Q4E.

The main example where the above result applies correspond to a product of anisotropic
projective spaces over a field.

Also remark that Theorem 6.5 can be stated with R being a polynomial ring over a Noetherian
local ring (S, m, k), and for finitely generated modules that are annihilated by a power of m.
Indeed, in this case M is filtered by the modules 0 :3; m?, whose successive quotients are finitely
generated graded modules over R ®g k, which is a polynomial ring over k. This condition on
M is automatically satisfied if S is Artinian.
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