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Using the Pais-Uhlenbeck Oscillator as a toy model, we outline a consistent alternative to the
indefinite-metric quantization scheme that does not violate unitarity. We describe the basic math-
ematical structure of this method by giving an explicit construction of the Hilbert space of state
vectors and the corresponding creation and annihilation operators. The latter satisfy the usual
bosonic commutation relation and differ from those of the indefinite-metric theories by a sign in the
definition of the creation operator. This change of sign achieves a definitization of the indefinite-
metric that gives life to the ghost states without changing their contribution to the energy spectrum.
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1. Introduction: The recent renewal of interest in
higher derivative theories of gravity [1] has provided in-
centive for reconsidering the old problem of quantizing
the classical Pais-Uhlenbeck (PU) Oscillator [2]. Re-
cently the authors of [3] have proposed a quantization
scheme involving non-Hermitian PT -symmetric Hamil-
tonians [4–6] that yields a stable and unitary quantum
system for the non-degenerate forth-order PU oscillator.
A critical assessment and an alternative quantization of
the PU oscillator are given in [7, 8]. In the present paper
we explore the quantum analog of the imaginary scaling
trick of [3] and use its mathematical properties to develop
a consistent ghost-free alternative to the indefinite-metric
quantization of the PU oscillator. Our method enjoys
general applicability and does not involve non-Hermitian
Hamiltonian operators.
The forth-order classical PU oscillator is the dynamical

system defined by the equation of motion:

z(4) + α z(2) + β z = 0, (1)

where z(k) denotes the k-th derivative of the real dynam-
ical variable z, α := ω2

1 + ω2
2 , β := ω2

1ω
2
2 , and ω1 and

ω2 are positive real numbers. The solution of (1) is a
linear combination of e±iω1t and te±iω1t for the degen-
erate case where ω1 = ω2, and e

±iω1t and e±iω2t for the
non-degenerate case where ω1 6= ω2.
Eq. (1) may be obtained from either the higher-

derivative Lagrangian: L = 1
2 (z̈

2 − α ż2 + β z) or the

Lagrangian: L = 1
2 (ẋ

2 − αx2 + β z2) + λ(ż − x) that
involves a pair of real dynamical variables x and z and a
Lagrange multiplier λ. The latter enforces the constraint
x = ż that gives rise to (1). Applying Dirac’s Hamilto-
nian formulation of the constrained systems to the latter
Lagrangian, one finds the quadratic Hamiltonian [9, 10]:

H =
1

2

(

p2x + 2xpz + αx2 − βz2
)

, (2)

that can be decoupled via a linear canonical transfor-
mations. A particular example is the transformation

(x, px, z, pz) → (x1, p1, x2, p2) defined by

x1 :=
pz + ω2

1x

ω1

√

ω2
1 − ω2

2

, x2 :=
px + ω2

1z
√

ω2
1 − ω2

2

, (3)

p1 :=
ω1(px + ω2

2z)
√

ω2
1 − ω2

2

, p2 :=
pz + ω2

2x
√

ω2
1 − ω2

2

, (4)

where we have taken ω1 > ω2 without loss of generality
[10]. This canonical transformation maps (2) to

H =
1

2
(p21 + ω2

1q
2
1)−

1

2
(p22 + ω2

2q
2
2). (5)

The standard canonical quantization of (5),
(x1, p1, x2, p2) → (x̂1, p̂1, x̂2, p̂2), with

(x̂jψ)(x1, x2) := xjψ(x1, x2),
(p̂jψ)(x1, x2) := −i ∂

∂xj
ψ(x1, x2),

(6)

yields the Hermitian Hamiltonian operator,

Ĥ =
1

2
(p̂1

2 + ω2
1 q̂1

2)−1

2
(p̂2

2 + ω2
2 q̂2

2) (7)

with eigenvalues: ω1(n1 +
1
2 )− ω2(n2 +

1
2 ). Here ψ is an

square-integrable function, n1, n2 = 0, 1, 2, · · · , and we
have used units in which ~ = 1. Because the spectrum
of Ĥ is unbounded both from below and above, the cor-
responding quantum system is unstable. One can avoid
this problem by performing an indefinite-metric quanti-
zation of the system, [11–13]. This yields a stable quan-
tum theory which is, however, plagued with the presence
of ghost states and the associated lack of unitarity. The
same problem arises in the indefinite-metric quantization
of higher-derivative theories of gravity [14].
In Ref. [3], the authors propose an alternative quanti-

zation of the classical Hamiltonian (2) that solves both
the instability and non-unitarity problems associated
with the standard definite- and indefinite-metric quan-
tizations of the PU-oscillator. In the following we first
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review the quantization scheme developed in [3] and
show that it really amounts to the imaginary scaling,
x2 → −ix2 and p2 → ip2, that clearly maps (5) into
the standard classical Hamiltonian for a pair of decou-
pled simple harmonic oscillators. The latter can be eas-
ily quantized to yield a stable and unitary quantum sys-
tem via the standard canonical quantization scheme. We
then explore the quantum analog of this imaginary scal-
ing transformation and use its properties to develop a
general quantization scheme. This is a definitization of
the indefinite-metric quantization that is related to the
latter via a change of sign in the expression for the cre-
ation operator of the theory.

2. Imaginary-Scaling Quantization: The main point
of departure of the approach of Ref. [3] is the imaginary
scaling of dynamical variable z of the Hamiltonian (2),
namely z → y := −iz and pz → py := ipz. This is a
complex canonical transformation that maps (2) into a
complex classical Hamiltonian whose standard canonical
quantization, namely (x, px, y, py) → (x̂, p̂x, ŷ, p̂y) with

(x̂ψ)(x, y) = xψ(x, y), (p̂xψ)(x, y) = −i ∂
∂xψ(x, y),

(ŷψ)(x, y) = yψ(x, y), (p̂yψ)(x, y) = −i ∂
∂yψ(x, y),

(8)
yields the non-Hermitian PT -symmetric Hamiltonian [3]:

Ĥ
PT

:=
1

2

(

p̂2x − 2ix̂p̂y + αx̂2 + βŷ2
)

. (9)

It turns out that, for ω1 6= ω2, there is a similarity trans-
formation [5, 15] that maps this operator to the sum of

two simple harmonic oscillator Hamiltonians, ĥ. This
shows that the spectrum of Ĥ

PT
is real and positive.

Moreover, it implies the existence of a nonstandard inner
product and the associated Hilbert space H that restore
the Hermiticity of Ĥ

PT
, [5, 6]. The quantum system [6]

defined by either of the unitary-equivalent Hilbert space-

Hamiltonian pairs (H , Ĥ
PT

) and (L2(R2), ĥ) is, there-
fore, both unitary and stable.
Next, we recall that the similarity transformations

mapping Ĥ
PT

to ĥ correspond to (complex) linear canon-
ical transformations. Because these commute with the
canonical quantization of the underlying classical Hamil-
tonian, one may perform the necessary linear canonical
transformations in the classical level and then quantize
the system. This is particularly desirable, because it
avoids dealing with the non-Hermitian Hamiltonian op-
erator (9) and gives the same Hermitian Hamiltonian

operator ĥ. Following this approach we first apply the
real linear canonical transformation (3)-(4) on the classi-
cal Hamiltonian (2) to obtain (5). We then perform the
imaginary scaling transformation:

(x2, p2) → (−ix2, ip2) =: (x̃2, p̃2), (10)

that flips the unwanted sign in (5). Finally we quantize
the resulting classical Hamiltonian to obtain:

ĥ :=
1

2

(

p̂21 + ω2
1x̂

2
1 + ˆ̃p22 + ω2

2
ˆ̃x22

)

. (11)

Clearly, this defines a unitary and stable quantum sys-
tem. The procedure outlined in [3] can therefore be re-
duced to a simple imaginary scaling transformation.
Another equivalent prescription is to perform the imag-

inary scaling transformation on the quantum Hamilto-
nian operator (7). This is affected by a linear operator
with rather peculiar properties.
Let C∞ denote the vector space of smooth complex-

valued functions defined on the real line and x̂, p̂ be the
standard position and momentum operators acting in
C∞; for all f ∈ C∞, (x̂f)(x) := xf(x) and (p̂f)(x) :=
−if ′(x). Consider the operator A : C ∞ → C∞ that is
defined by

A := exp
(π

4
{x̂, p̂}

)

. (12)

It is not difficult to show that [16]

(Af)(x) = f(−ix). (13)

We can view A as a linear operator acting in the Hilbert
space of square-integrable functions L2(R). This is a
densely-defined unbounded one-to-one linear operator
A : L2(R) → L2(R) with a dense range [21] that real-
izes the quantum imaginary scaling transformation:

x̂
A−→ ˆ̃x := A x̂A−1 = −ix̂,

p̂
A−→ ˆ̃p := A p̂A−1 = ip̂.

(14)

Expression (12) suggests that A is a Hermitian opera-
tor acting in L2(R). This is however not true. One way
of seeing this is to notice that if A was a Hermitian op-
erator, its square A2, that is also densely defined, would
have been a positive operator [17]. This contradicts the

fact that g(x) := xe−x4

is an eigenfunction of A2 with
eigenvalue −1, [22]. Therefore, A is not Hermitian.
Another unusual but obvious property of A is that the

harmonic oscillator eigenfunctions do not belong to its
domain, unless we consider it as mapping L2(R) into an-

other function space. Let ψn(x) := NnHn(x)e
−x2/2 be

the normalized eigenfunctions of the simple harmonic os-
cillator Hamiltonian Ĥ := 1

2 (p̂
2 + x̂2), with Nn and Hn

being the normalization constants and Hermit polynomi-
als. Clearly, ψn ∈ C ∞ and

ψ̃n(x) := (Aψn)(x) = NnHn(−ix)ex
2/2 /∈ L2(R). (15)

This observation suggests the definition of an appropriate
Hilbert space H̃ containing ψ̃n and viewing A as a linear
operator mapping L2(R) to H̃ . In order to construct H̃ ,

we endow the linear span S̃ of ψ̃n with the inner product:

〈〈φ̃, ψ̃〉〉 := 〈A−1φ̃|A−1ψ̃〉 =
∫ ∞

−∞

φ̃(ix)∗ψ̃(ix)dx, (16)

and identify H̃ with the Cauchy completion of the re-
sulting inner-product space [18, 19].
By construction, for all φ, ψ ∈ L2(R) satisfying

Aφ,Aψ ∈ H̃ , we have 〈φ|ψ〉 = 〈〈Aφ,Aψ〉〉. Therefore,
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A : L2(R) → H̃ is a densely-defined isometry [18]. In
particular, it is a bounded operator with a bounded in-
verse whose domain includes ψn. As we will see mo-
mentarily this is a necessary step in relating the above
imaginary-scaling quantization of the PU oscillator to its
indefinite-metric quantization.

Now, consider ˆ̃H := −Ĥ = − 1
2 (p̂

2 + x̂2). If we view ˆ̃H
as an operator acting in L2(R), it is a Hermitian opera-
tor with a negative spectrum, {−(n+ 1

2 )|n = 0, 1, 2, · · · }.
The situation is different if we identify ˆ̃H with an opera-
tor acting in H̃ . In this case, performing the imaginary

scaling transformation on ˆ̃H, we find the operator

ĥ := A−1 ˆ̃HA =
1

2
(p̂2 + x̂2) = Ĥ, (17)

that acts in L2(R) and has a positive spectrum, {n +
1
2 |n = 0, 1, 2, · · · }. Because A : L2(R) → H̃ is a
bounded operator with a bounded inverse and domain
of A contains the eigenfunctions ψn of ĥ, the operators
ˆ̃H : H̃ → H̃ and ĥ : L2(R) → L2(R) are isospectral.
In particular, the spectrum of the former operator is also
real and positive. It is easy to see that ψ̃n are the eigen-

functions of ˆ̃H with eigenvalue n+ 1
2 .

3. Connection to Indefinite-Metric Quantization:

Consider the standard annihilation and creation opera-
tors, â := (x̂+ ip̂)/

√
2 and â† := (x̂− ip̂)/

√
2, that satisfy

[â, â†] = 1, âψ0 = 0, and ψn = (n!)−1/2â†nψ0. We can
view ψn as elements of C∞ and try to reconstruct the
Hilbert space of the state vectors of the simple Harmonic
oscillator ĥ, namely L2(R), using ψn. This is done by
endowing the linear span S of ψn with an inner product
〈·, ·〉 that renders the number operator N̂ := â†â Her-
mitian. This holds if â† is the adjoint of â, i.e., for all
φ, ψ ∈ S , 〈φ, aψ〉 = 〈a†φ, ψ〉. Once we select an in-
ner product fulfilling this condition, we can identify the
Hilbert space with the Cauchy completion of S . If we use
the L2-inner product, 〈ψ|φ〉 =

∫∞

−∞
φ(x)∗ψ(x)dx, that

has the above property, we obtain L2(R) as the Hilbert
space of the system.
Next, following the standard argument used in the

indefinite-metric quantization scheme, we propose to con-
struct a Hilbert space using a different set of functions,
φ̃n, that we define as follows: φ̃0 is (up to the choice
of a normalization constant) a solution of the differen-

tial equation â†φ̃0 = 0, and φ̃n := (n!)−1/2ânφ̃0 for all

n = 1, 2, · · · . In other words, we now interpret ˆ̃a := â†

and ˆ̃a† := â as the annihilation and creation operators,
respectively. This is because

ˆ̃a φ̃0 = 0, φ̃n = (n!)−1/2ˆ̃a
†n
φ̃0. (18)

The new annihilation and creation operators, ˆ̃a and ˆ̃a sat-
isfy the “abnormal” bosonic commutation relation [12]:

[ˆ̃a, ˆ̃a†] = −1. (19)

We will denote the linear span of φ̃n with T̃ and try
to construct an appropriate inner product ≺ ·, · ≻ on T̃

that makes ˆ̃a† adjoint of ˆ̃a, i.e., for all ξ̃, ζ̃ ∈ T̃ ,

≺ ξ̃, ˆ̃a ζ̃ ≻=≺ ˆ̃a†ξ̃, ζ̃ ≻ . (20)

It turns out that the number operator for ψ̃n is the op-

erator ˆ̃N : T̃ → T̃ that is defined by

ˆ̃N := −ˆ̃a†ˆ̃a = −ââ†. (21)

We can use (18) and (19) to show that ˆ̃Nφ̃n = nφ̃n.

Furthermore, in light of (21), we have ˆ̃H = ˆ̃N + 1
2 . This

shows that if we can find an inner product respecting
(20), we can complete T̃ into a Hilbert space H ′ and

view ˆ̃H as an operator acting in H ′. The spectrum of
this operator will then consist of the eigenvalues n + 1

2
with n = 0, 1, 2, · · · . In particular, it will be positive.
The main difficulty with the above construction is that

the condition (20) conflicts with the positive-definiteness
of the inner product ≺ ·, · ≻; one can use (18) and (19)
to show that for all m,n = 0, 1, 2, · · · ,

≺ φ̃m, φ̃n ≻= (−1)nδmn ≺ φ̃0, φ̃0 ≻ . (22)

Therefore, ≺ ·, · ≻ is an indefinite inner product. It gives
S̃ the structure of a Krein space. It is customary to
choose ≺ φ̃0, φ̃0 ≻= 1 and view φ̃2n+1, that have an
imaginary norm, as defining “ghost states.”
A key observation that links the imaginary-scaling and

indefinite-metric quantization schemes is to notice that
up to a constant coefficient φ̃n coincides with ψ̃n; as ele-
ments of C∞, they are related according to

φ̃n = inψ̃n. (23)

This in turn implies that φ̃n belong to the Hilbert space
H̃ of the preceding section, and T̃ = S̃ .
The relationship between the indefinite inner product

≺ ·, · ≻ and the definite inner product 〈〈·, ·〉〉 is typical
of the Hilbert spaces endowed with a Krein-space struc-
ture [20]. To describe this relationship we use the parity
operator P to introduce

Π± :=
1

2
(P±1), S̃± := Π±S̃ , C := Π+−Π−. (24)

It is easy to see that ψ̃2n ∈ S̃+, ψ̃2n+1 ∈ S̃−,

S̃ = S̃+ ⊕ S̃−, (25)

S̃± are the eigenspaces of the restriction of P onto S̃

with eigenvalues ±1, and C is the grading operator as-
sociated with the decomposition (25). Note also that in
view of (16), (22), and (23), this is an orthogonal decom-
position with orthogonality condition defined by either
of 〈〈·, ·〉〉 and ≺ ·, · ≻. Furthermore, we can use (16), (22),

and (23) to show that for all ξ̃, ζ̃ ∈ S̃ ,

〈〈ξ̃, ζ̃〉〉 = ≺ Π+ξ̃,Π+ζ̃ ≻ − ≺ Π−ξ̃,Π−ζ̃ ≻, (26)

≺ ξ̃, ζ̃ ≻ = 〈〈ξ̃,P ζ̃〉〉 =
∫ ∞

−∞

ξ̃(ix)∗ζ̃(−ix)dx. (27)
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4. Creation and Annihilation Operators: The
above analysis suggests that the number operator Ñ has
a real spectrum and an orthonormal set of eigenvectors
belonging to the Hilbert space H̃ , namely ψ̃n. Hence,
Ñ is a Hermitian operator acting in H̃ . However, we
showed by explicit calculation that every inner product
that identifies ˆ̃a† with the adjoint of ˆ̃a is necessarily indef-
inite. Therefore, as operators acting in H̃ , ˆ̃a† is not the
adjoint of ˆ̃a, yet Ñ = −ˆ̃a†ˆ̃a is a Hermitian (self-adjoint)
operator. In order to see that this strange phenomenon
does not lead to any inconsistency, we make the following
observations. First, we note that according to (16) and
(26),

≺ ξ̃,P ζ̃ ≻=≺ P ξ̃, ζ̃ ≻ . (28)

Combining this relation with (26) and using the fact that

P and ˆ̃a† anticommmute, we have

〈〈ξ̃, ˆ̃aζ̃〉〉 = 〈〈P ˆ̃a†P ξ̃, ζ̃〉〉 = 〈〈−ˆ̃a†ξ̃, ζ̃〉〉. (29)

This identifies the adjoint of ˆ̃a with −ˆ̃a†. Denoting the

latter by ˆ̃a†̃, we find that Ñ = −ˆ̃a†ˆ̃a = ˆ̃a†̃ˆ̃a. There-
fore Ñ is indeed a positive (and in particular Hermitian)

operator acting in H̃ . Another outcome of this calcula-
tion is that we can reconstruct the Hilbert space of the
imaginary-scaling quantization by, respectively, adopting

ˆ̃a := â†, ˆ̃a†̃ := −â, (30)

as the annihilation and creation operators. Note that
these satisfy the standard bosonic commutation relation,

[ˆ̃a, ˆ̃a†̃] = 1. Therefore, the algebra of the creation and
annihilation operators of the imaginary-scaling quanti-
zation is identical with the usual canonical quantization
of a bosonic system. What makes the difference is how
the creation and annihilation operators related to the
position and momentum operators (fields and their time-
derivative in field theory).

5. Concluding Remarks: In this paper we have es-
tablished the imaginary scaling transformation as the
main ingredient of the quantization scheme developed in
Ref. [3]. We have subsequently simplified this scheme
in such a way that it avoids dealing with non-Hermitian
PT -symmetric operators. We have examined the con-
sequences of performing the quantum imaginary scaling

transformation. This is realized by a linear operator with
rather unusual properties. We have exploited these prop-
erties to identify the appropriate Hilbert space of state
vectors of the quantum PU oscillator. We have also
shown how these constructions reappear in the indefinite-
metric quantization scheme. In particular, we have given
an explicit expression for the standard indefinite inner
product and show that it gives the Hilbert space of the
imaginary-scaling quantization the structure of a Krein
space.

We have revealed the relationship between the definite
(Hilbert space) inner product and the indefinite (Krein
space) inner product and obtained an appropriate pair
of creation and annihilation operators for the imaginary-
scaling quantization scheme. These differ from the cre-
ation and annihilation operators of the indefinite-metric
theories in the sign of the creation operator. This seem-
ingly minor difference is responsible for transforming the
ghosts into physical states and the subsequent restoration
of unitarity. It is important to note that this is achieved
at no energy cost; the contribution of the ghost states to
the spectrum of the Hamiltonian is the same as in the
corresponding indefinite-metric theory. In particular, if
we consider the sum of two harmonic oscillator Hamil-
tonians with unit mass and frequency, and quantize the
first of these using the standard canonical quantization
and the second via the imaginary scaling transformation,
the energy spectrum turns out to be the difference of
the mode numbers. In particular, similarly to the case
of indefinite-metric quantization of the second oscillator,
the vacuum energy vanishes identically [11]. This ob-
servation seems to indicate that the imaginary-scaling
quantization shares the niceties of the indefinite-metric
quantization while not suffering from the lack of a con-
sistent probabilistic interpretation. We plan to examine
the prospects of this scheme in dealing with the quantum
mechanical and field theoretical models that were treated
in the context of indefinite-metric quantum theories.
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