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Effect of Dust on Lyman-alpha Photon Transfer in Optically Thick Halo

Yang Yang1, Ishani Roy2, Chi-Wang Shu1 and Li-Zhi Fang3

ABSTRACT

We investigate the effects of dust on Lyα photons emergent from an optically thick
medium by solving the integro-differential equation of the radiative transfer of res-
onant photons. To solve the differential equations numerically we use the Weighted
Essentially Non-oscillatory method (WENO). Although the effects of dust on radia-
tive transfer is well known, the resonant scattering of Lyα photons makes the problem
non-trivial. For instance, if the medium has the optical depth of dust absorption and
scattering to beτa ≫ 1, τ ≫ 1, andτ ≫ τa, the effective absorption optical depth
in a random walk scenario would be equal to

√
τa(τa + τ). We show, however, that

for a resonant scattering at frequencyν0, the effective absorption optical depth would
be even larger thanτ(ν0). If the cross section of dust scattering and absorption is
frequency-independent, the double-peaked structure of the frequency profile given by
the resonant scattering is basically dust-independent. That is, dust causes neither nar-
rowing nor widening of the width of the double peaked profile.One more result is that
the time scales of the Lyα photon transfer in the optically thick halo are also basically
independent of the dust scattering, even when the scattering is anisotropic. This is be-
cause those time scales are mainly determined by the transfer in the frequency space,
while dust scattering, either isotropic or anisotropic, does not affect the behavior of
the transfer in the frequency space when the cross section ofscattering is wavelength-
independent. This result does not support the speculation that dust will lead to the
smoothing of the brightness distribution of Lyα photon source with optical thick halo.
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1. Introduction

Lyα photons have been widely applied to study the physics of luminous objects at various
epochs of the universe, such as Lyα emitters, Lyα blob, damped Lyα system, Lyα forest, fluo-
rescent Lyα emission, star-forming galaxies, quasars at high redshifts as well as optical afterglow
of gamma ray bursts (Haiman et al. 2000; Fardal et al. 2001; Dijkstra & Loeb. 2009; Latif et
al. 2011). The resonant scattering of Lyα photons with neutral hydrogen atoms has a profound
effect on the time, space and frequency dependencies of Lyα photons transfer in an optically thick
medium. Lyα photons emergent from an optically thick medium would carryrich information of
photon sources and halo surrounding the source of the Lyα photon. The profiles of the emission
and absorption of the Lyα radiation are powerful tools to constrain the mass density,velocity, tem-
perature and the fraction of neutral hydrogen of the optically thick medium. Radiation transfer of
Lyα photons in an optically thick medium is fundamentally important.

The radiative transfer of Lyα photons in a medium consisting of neutral hydrogen atoms has
been extensively studied either analytically or numerically. Yet, there have been relatively few
results which are directly based on the solutions of the integro-differential equation of the resonant
radiative transfer. Besides the Field solution (Field 1959, Rybicki & Dell’Antonio 1994), analyt-
ical solutions with and without dust mostly are based on the Fokker-Planck (P-F) approximation
(Harrington 1973, Neufeld 1990, Dijkstra et al. 2006). The P-F equation might miss the detailed
balance relationship of resonant scattering (Rybicki 2006), and therefore, the analytical solutions
cannot describe the formation and evolution of the Wouthuysen-Field (W-F) local thermalization
of the Lyα photon frequency distribution (Wouthuysen 1952, Field 1958), which is important for
the emission and absorption of the hydrogen 21 cm line (e.g. Fang 2009). The features of the Lyα
photon transfer related to the W-F local thermalization arealso missed. An early effort (Adams et
al. 1971) trying to directly solve the integro-differential equation of the resonant radiative transfer
with numerical method. It still is, however, of a time-independent approximation.

Recently, a state-of-the-art numerical method has been introduced to solve the integro-differential
equation of the radiative transfer with resonant scattering (Qiu et al. 2006, 2007, 2008, Roy et al.
2009a). The solver is based on the weighted essentially non-oscillatory (WENO) scheme (Jiang &
Shu 1996). With the WENO solver, many physical features of the transfer of Lyα photons in an
optically thick medium (Roy et al. 2009b, 2009c, 2010), which are missed in the Fokker-Planck
equation approximations, have been revealed. For instance, the WENO solution shows that the
time scale of the formation of the W-F local thermal equilibrium actually is only about a few hun-
dred times of the resonant scattering. It also shows that thedouble peaked frequency profile of the
Lyα photon emergent from an optically thick medium does not follow the time-independent solu-
tions of the P-F equation. These results directly indicate the needs of re-visiting problems which
have been studied only via the F-P time-independent approximation.
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We will investigate, in this paper, the effects of the dust on the Lyα photons transfer in an
optically thick medium. Dust can be produced at epochs of lowand moderate redshifts, and even
at redshift as high as 6 (Stratta et al. 2007). Absorption andscattering of dust have been used
to explain the observations on Lyα emission and absorption (Hummer & Kunasz 1980), such as
the escaping fraction of Lyα photons (Hayes et al. 2010, 2011, Blanc et al. 2010); the redshift-
dependence of the ratio between Lyα emitters and Lyman Break galaxies (Verhamme et al. 2008);
and the “evolution” of the double-peaked profile (Laursen etal. 2009).

Nevertheless, it is still unclear whether the time scale of photon escaping from optically thick
halo will be increasing (or decreasing) when the halo is dusty. It is also unclear whether the effects
of dust absorption can be estimated by the random walk picture (Hansen & Oh 2006). As for the
dust effect on the double-peaked profile, the current results given by different studies seem to be
contradictory: some claims that the dust absorption leads to the narrowing of the double-peaked
profile (Lauresen et al 2009), while others result that the width between the two peaks apparently
should be increasing due to the dust absorption (Verhamme etal. 2006). We will focus on these
basic problems, and examine them with the solution of the integro-differential equation of radiative
transfer.

This paper is organized in the following way: section 2 presents the theory of the Lyα photon
transfer in an optically thick medium with dust. The equations of the intensity and flux of resonant
photons in a dusty medium are given. We will study three models of the interaction between dust
and photons: (1) dust causes only scattering with photons; (2) dust causes both scattering and
absorption; and (3) dust causes only absorption of photons.Section 3 gives the solutions of Lyα
photons escaping from an optically thick spherical halos with dust. The dusty effect on the double-
peaked profile will be studied in Section 4. The discussion and conclusion are given in Section 5.
Some mathematical derivations of the equations and numerical implementation details are given in
the Appendix.

2. Basic theory

2.1. Radiative transfer equation of dusty halo

We study the transfer of Lyα photons in a spherical halo with radiusR around an optical
source. The halo is assumed to consist of uniformly distributed HI gas and dust. The optical depth
of HI scattering over a light pathdl is dτ = σ(ν)nHIdl, wherenHI is the number density of HI, and
σ(ν) is the cross section of the resonant scattering of Lyα photons by neutral hydrogen, which is
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given by

σ(x) = σ0φ(x, a) = σ0
a
π3/2

∫ ∞

−∞
dy

e−y2

(x − y)2 + a2
(1)

whereφ(x, a) is the normalized Voigt profile (Hummer 1965). As usual, thephoton frequencyν
in eq.(1) is described by the dimensionless frequencyx ≡ (ν − ν0)/∆νD, with ν0 = 2.46× 1015 s−1

being the resonant frequency,∆νD = ν0(vT/c) = 1.06×1011(T/104)1/2 Hz the Doppler broadening,
vT =

√
2kBT/m the thermal velocity, andT the gas temperature of the halo.σ0/π

1/2 is the cross
section of scattering at the the resonant frequencyν0. The parametera in eq.(1) is the ratio of
the natural to the Doppler broadening. For the Lyα line, a = 4.7 × 10−4(T/104)−1/2. The optical
depth of Lyα photons with respect to HI resonant scattering isτs(x) = nHIRσ(x) = τ0φ(x, a), where
τ0 = nHIσ0R.

If the absorption and scattering of dust are described by effective cross-section per hydrogen
atomσd(x), the total optical depth is given by

τ(x) = τ0φ(x, a) + τd(x) (2)

where the dust optical depthτd(x) = nHIσd(x)R. This is equal to assume that dust is uniformly
distributed in IGM. The effects of inhomogeneous density distributions of dust (Neufeld 1991;
Haiman & Spaans 1999) will not be studied in this paper.

The radiative transfer equation of Lyα photons in a spherical halo with dust is given by

∂I
∂η
+ µ
∂I
∂r
+

(1− µ2)
r

∂I
∂µ
− γ ∂I
∂x
=

−φ(x; a)I +
∫

R(x, x′; a)I(η, r, x′, µ′)dx′dµ′/2 (3)

−κ(x)I + Aκ(x)
∫

Rd(x, x′; µ, µ′; a)I(η, r, x′, µ′)dx′dµ′ + S

where I(t, rp, x, µ) is the specific intensity, which is a function of timet, radial coordinaterp,
frequencyx and the direction angle,µ = cosθ, with respect to the radial vectorr .

In eq.(3), we use the dimensionless timeη defined asη = cnHIσ0t and the dimensionless radial
coordinater defined asr = nHIσ0rp. That is,η andr are, respectively, in the units of mean free
flight-time and mean free path of photonν0 with respect to the resonant scattering without dust
scattering and absorption. Without resonant scattering, asignal propagates in the radial direction
with the speed of light, the orbit of the signal is thenr = η + const. With dimensionless variable,
the size of the haloR is equal toτ0.

The re-distribution functionR(x, x′; a) gives the probability of a photon absorbed at the fre-
quencyx′, and re-emitted at the frequencyx. It depends on the details of the scattering (Henyey &
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Greestein 1941; Hummer 1962; Hummer 1969). If we consider coherent scattering without recoil,
the re-distribution function with the Voigt profile can be written as,

R(x, x′; a) = (4)
1
π3/2

∫ ∞

|x−x′ |/2
e−u2

[

tan−1
( xmin + u

a

)

− tan−1
( xmax− u

a

)]

du

wherexmin = min(x, x′) and xmax = max(x, x′). In the case ofa = 0, i.e. considering only the
Doppler broadening, the re-distribution function is

R(x, x′) =
1
2

erfc[max(|x|, |x′|)]. (5)

The re-distribution function of equation (5) is normalizedas
∫ ∞
−∞ R(x, x′)dx′ = φ(x, 0) = π−1/2e−x2

.
With this normalization, the total number of photons is conserved in the evolution described by
equation (3). That is, the destruction processes of Lyα photons, such as the two-photon process
(Spitzer & Greenstein 1951; Osterbrock 1962), are ignored in equation (3). The recoil of atoms is
also not considered in equation (4) or (5). The effect of recoil actually is under control (Roy et al.
2009c, 2010). We will address it in next section.

The absorption and scattering of dust are described by the term κ(x)I of eq.(3), whereκ(x) =
σd/σ0, which is of the order of 10−8(T/104)1/2 (Draine & Lee 1984; Draine 2003). The term with
A of eq.(3) describes albedo, i.e.A ≡ σs/σd, whereσs is the cross section of dust scattering.
Generally,A lies approximately between 0.3 and 0.4 (Pei 1992; Weingartner & Draine 2001).

Since dust generally is much heavier than a single atoms, therecoil of dust particles can be
neglected when colliding with a photon. Under this “heavy dust” approximation, photons do not
change their frequency during the collision with dust. The redistribution function of dustRd is
independent ofx andx′, and is simply given by a phase function as

Rd(µ, µ′) =
1
4π

∫ 2π

0
dφ′

1− g2

(1+ g2 − 2gµ̄)3/2
=

∞
∑

l=0

(2l + 1)
2

glPl(µ)Pl(µ
′), (6)

whereµ̄ = µµ′ +
√

(1− µ2)(1− µ′2)cosφ′ andPl is the Legendre function. The factorg in eq.(6) is
the asymmetry parameter. For isotropic scattering,g = 0. The cases ofg = +1 and -1 correspond
to complete forward and backward scattering, respectively. Generally, the factorg is a function
of the wavelength. For the Lyα photon, we will takeg = 0.73 for realistic dust scattering (Li &
Draine 2001). The integral of eq.(6) is performed in Appendix A.

In eq. (3), the term with the parameterγ is due to the expansion of the universe. IfnH is
equal to the mean of the number density of cosmic hydrogen, wehaveγ = τ−1

GP, andτGP is the
Gunn-Peterson optical depth. Since the Gunn-Peterson optical depth is of the order of 106 at high
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redshift (e.g. Roy et al. 2009c), the parameterγ is of the order of 10−5 − 10−6. Therefore, if the
optical depth of halos is equal to or less than 106, the term withγ of eq.(3) can be ignored.

In eq.(3) we neglect the effect of collision transition fromH(2p) state toH(2s) state, which
can significantly affect on the escape of Lyα photons when HI column density is higher than 1021

cm−2 and dust absorption is very small (Neufeld, 1990). This generally is out of the parameter
range used below. We are also not considering the effects of bulk motion of the medium of halos
(e.g. Spaans & Silk 2006, Xu & Wu, 2010).

2.2. Eddington approximation

Eq.(6) indicates that the transfer equation (3) can be solved with the Legendre expansion
I(η, r, x, µ) =

∑

l Il(η, r, x)Pl(µ). If we take only the first two terms,l = 0 and 1, it is the Eddington
approximation as

I(η, r, x, µ) ≃ J(η, r, x) + 3µF(η, r, x) (7)

where

J(η, r, x) =
1
2

∫ +1

−1
I(η, r, x, µ)dµ, F(η, r, x) =

1
2

∫ +1

−1
µI(η, r, x, µ)dµ. (8)

They are, respectively, the angularly averaged specific intensity and flux. Definingj = r2J and
f = r2F, Eq.(3) yields the equations ofj and f as

∂ j
∂η
+
∂ f
∂r
= −(1− A)κ j − φ(x; a) j +

∫

R(x, x′; a) jdx′ + γ
∂ j
∂x
+ r2S , (9)

∂ f
∂η
+

1
3
∂ j
∂r
− 2

3
j
r
= −(1− Ag)κ f + γ

∂ f
∂x
− φ(x; a) f . (10)

The mean intensityj(η, r, x) describes thex photons trapped in the positionr at timeη by the
resonant scattering, while the fluxf (η, r, x) describes the photons in transit.

The source termS in the equations (3) and (9) can be described by a boundary condition of j
and f at r = r0. We can taker0 = 0. Thus, the boundary condition is

j(η, 0, x) = 0, f (η, 0, x) = S 0φs(x), (11)

whereS 0, andφs(x) are, respectively, the intensity and normalized frequency profile of the sources.
Since equation (3) is linear, the solutions ofj(x) and f (x) for given S 0 = S are equal toS j1(x)
andS f1(x), where j1(x) and f1(x) are the solutions ofS 0 = 1. On the other hand, the equation (3)
is not linear with respect to the functionφs(x). The solutionf (x) for a givenφs(x) is not equal to
φs(x) f1(x), where f1(x) is the solution ofφs(x) = 1.
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In the range outside the halo,r > R, no photons propagate in the directionµ < 0. The
boundary condition atr = R given by

∫ −1

0
µJ(η,R, x, µ)dµ = 0 is then (Unno 1955)

j(η,R, x) = 2 f (η,R, x). (12)

There is no photon in the field beforet = 0. Therefore, the initial condition is

j(0, r, x) = f (0, r, x) = 0. (13)

We will solve equations (9) and (10) with boundary and initial conditions eqs.(11) - (13) by using
the WENO solver (Roy et al. 2009a, b, c, 2010). Some details ofthis method is given in Appendix
B.

2.3. Dust models

We consider three models of the dust as follows:

I. pure scattering,A = 1, g = 0.73: dust causes only anisotropic scattering, but no absorption;

II. scattering and absorption.A = 0.32, g = 0.73: dust causes both absorption and anisotropic
scattering.

III. pure absorption.A = 0: dust causes only absorption, but no scattering;

Models I and III do not occur in reality. They are, however, helpful to reveal the effects of pure
scattering and absorption on the radiative transfer.

Sinceκ(x) is on the order of 10−8, its effect will be significant only for halos with halos with
optical depthτ0 ≥ 106, and ignorable forτ0 ≤ 105. To illustrate the dust effect, we use halos
of R = τ0 ≤ 104, and take largerκ to be≃ 10−4 − 10−2. We also assume thatκ is frequency-
independent. We consider below only the case of grey dust, i.e. κ is independent of frequencyx.
This certainly is not realistic dust. Yet, the frequency range given in solution below mostly are in
the range|x| < 4. Therefore, the approximation of grey dust would be properif cross section of
dust is not significantly frequency dependent in the range|x| < 4.

2.4. Numerical example: Wouthuysen-Field thermalization

As the first example of numerical solutions, we show the Wouthuysen-Field (W-F) effect,
which requires that the distribution of Lyα photons in the frequency space should be thermalized



– 8 –

near the resonant frequencyν0. The W-F effect illustrates the difference between the analytical
solutions of the Fokker-Planck approximation and that of eqs. (9) and (10). The former can not
show the local thermalization (Neufeld 1990), while the latter can (Roy et al. 2009b). All problems
related to the W-F local thermal equilibrium should be studied with the integro-differential equation
(3).
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Fig. 1.— The mean intensityj(η, r, x) at η = 500 andr = 100 for dust models I (left panel), II
(middle panel) and III (right panel). The source isS 0 = 1 andφs(x) = (1/

√
π)e−x2

. The parameter
a = 10−3. In each panel,κ is taken to be 0, 10−4, 10−3 and 10−2.

Figure 1 presents a solution of mean intensityj(η, r, x) at time radialη = 500 coordinate
r = 102 for halo with sizeR ≫ r = 102. The three panels correspond to dust models I (left
panel), II (middle panel) and III (right panel). The source is taken to have a Gaussian profile
φs(x) = (1/

√
π)e−x2

and unit intensityS 0 = 1. The solutions of Figure 1 actually are independent
of R, if R ≫ 102. The intensity of j is decreasing from left to right in Figure 1, because the
absorption is increasing with the models from I to III.

A remarkable feature shown in Figure 1 is that allj(η, r, x) have a flat plateau in the range
|x| ≤ 2. This gives the frequency range of the W-F local thermalization (Roy et al, 2009b, c). The
range of the flat plateau|x| ≤ 2 is almost dust-independent, either for model I or for models II and
III. This is expected, as neither the absorption nor scattering given by theκ term of eq.(3) changes
the frequency distribution of photons. The redistributionfunction (6) also does not change the
frequency distribution of photons. This point can also be seen from eqs.(9) and (10), in which the
κ terms are frequency-independent. The evolution of the frequency distribution of photons is due
only to the resonant scattering.

Since thermalization will erase all frequency features within the range|x| ≤ 2, the double-
peaked structure does not retain information of the photon frequency distribution within|x| < 2 at
the source. That is, the results in Figure 1 will hold for any sourceS 0φs(x) with arbitraryφs(x)
which is non-zero within|x| < 2 (Roy et al. 2009b, c). This property can also be used as a testof
the simulation code. It requires that simulation results offlat plateau should be hold, regardless of
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the source to be monochromatic or with finite width aroundν0.

3. Dust effects on photon escape

3.1. Model I: scattering of dust

To study the effects of dust scattering on the Lyα photon escape, we show in Figure 2 the flux
f (η, r, x) of Lyα photons emergent from halos at the boundaryr = R = 102 for Model I. The three
panels of Figure 2 correspond toκ = 10−4, 10−3, and 10−2 from left to right, respectively. The
source starts to emit photons atη = 0 with a stable luminosityS 0 = 1, and with a Gaussian profile
φs(x) = (1/

√
π)e−x2

.
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Fig. 2.— Flux f (η, r, x) of Lyα photons emergent from halos at the boundaryR = 102, and for the
dust model IA = 1, g = 0.73. The parameterκ is taken to be 10−4 (left), 10−3(middle) and 10−2

(right). The source isS 0 = 1 andφs(x) = (1/
√
π)e−x2

. The parametera = 10−3.

Figure 2 clearly shows that the time-evolution off (η, r, x) is κ-independent. Although the
cross section of dust scattering increases about 100 times from κ = 10−4 to κ = 10−2, the curves of
the left and right panels in Figure 2 actually are almost identical.

According to the scenario of “single longest excursion”, photon escape is not a process of
Brownian random walk in the spatial space, but a transfer in the frequency space (Osterbrock
1962; Avery & House 1968; Adams, 1972, 1975; Harrington 1973; Bonilha et al. 1979). Photon
will escape, once its frequency is transferred from|x| < 2 to |x| > 2, on which the medium is
transparent. On the other hand, dust scattering given by theredistribution function eq.(6) does not
change photon frequency. Dust scattering has no effect on the transfer in the frequency space.

Moreover, photons with frequency|x| < 2 are quickly thermalized after a few hundred res-
onant scattering. In the local thermal equilibrium state, the angular distribution of photons is
isotropic. Thus, even if the dust scattering is anisotropicg , 0 with respect to the direction of the
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incident particle, the angular distribution will keep isotropic undergoing ag , 0 scattering. Hence,
dust scattering also has no effect on the angular distribution.

3.2. Model III: absorption of dust

Similar to Figure 2, we present in Figure 3 the flux of Model III, i.e. dust causes only ab-
sorption without scattering. All other parameters of Figure 3 are the same as in Figure 2. In the
left panel of Figure 3, the curves at the timeη = 2000 and 3000 are the same. It means the flux
f (η,R, x) at the boundaryR is already stable, or saturated at the timeη ≥ 2000. The small dif-
ference between the curves ofη = 1000 andη ≥ 2000 of the left panel indicates that the flux is
still not yet completely saturated at the timeη = 1000. However, comparing the middle and right
panels of Figure 3, we see that forκ = 10−3, the flux has already saturated atη = 1600, while it
has saturated atη = 800 for κ = 10−2. That is, the stronger the dust absorption, the shorter the
saturation time scale. The time scales of escape or saturation do not increase by dust absorption,
and even decrease with respect to the medium without dust. Stronger absorption leads to shorter
time scale of saturation.
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Fig. 3.— Flux f (η, r, x) of Lyα photons emergent from halos at the boundaryr = R = 102.
The parameters of the dust areA = 0 andκ = 10−4 (left), 10−3 (middle) and 10−2 (right). Other
parameters are the same as in Figure 2.

Obviously, dust absorption does not help in producing photons for the “single longest excur-
sion”. Therefore, dust absorption can not make the time scale of producing photons for “single
longest excursion” to be smaller. However, dust absorptions are effective in reducing the number
of photons trapped in the state of local thermalized equilibrium |x| < 2 (see also§4.2). This leads
to the fact that the higher the value ofκ, shorter the time scale of saturation.
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3.3. Effective absorption optical depth

Since Lyα photons underwent a large number of resonant scattering before escaping from
halo with optical depthτ0 ≫ 1, it is generally believed that a small absorption of dust will lead to a
significant decrease of the flux. However, it is still unclearwhat the exact relationship between the
dust absorption and the resonant scattering is. This problem should be measured by the effective
optical depth of dust absorption of Lyα photons inR = τ0 ≫ 1 halos.

To calculate the effective optical depth, we first give the total flux of Lyα photons emergent
from halo of radiusR, which is defined asF(η) =

∫

f (η,R, x)dx. Figure 4 plotsF(η) as a function
of timeη for halo with sizesR = τ0 = 102 and 104. The curves typically are the time-evolution of
growing and then saturating. The three panels correspond tothe dust models I, II and III from left
to right. The upper panels are ofR = 102, and lower panels forR = 104. In each panel ofR = 102,
we have three curves corresponding toκ = 10−4, 10−3 and 10−2, respectively. In cases ofR = 104,
we takeκ = 10−4 and 10−3.
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Fig. 4.— The time evolution of the total fluxF(η) at the boundary of halos withR = τ0 = 102

(upper panels), andR = τ0 = 104 (lower Panels). The source ofS 0 = 1 andφs(x) = (1/
√
π)e−x2

starts to emit photons at timeη = 0. The parameters of dust are (A = 1, g = 0.73) (left); (A =
0.32, g = 0.73) (middle) andA = 0 (right). In each panel ofR = 102, κ is taken to be 10−4, 10−3

and 10−2. In the cases ofR = 104, κ is taken to be 10−4, 10−3.
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The left panel of Figure 4 shows that the three curves ofκ = 10−4, 10−3 and 10−2 are almost the
same. This is consistent with Figure 2 that for Model I, the time-evolution off areκ-independent
for the pure scattering dust. For the pure absorption dust (the right panel of Figure 4), the saturated
flux is smaller for largerκ. We can also see from Figure 4 that the time scale of approaching
saturation is smaller for largerκ. The result of model II is in between that for models I and III.

With the saturated flux of Figure 4, one can define the effective absorption optical depth by
τeffect ≡ −(1/κ) ln fS . The results are shown in Table 1, in whichτa is the dust absorption depth. It
is interested to see that the effective absorption optical depth is always equal to about a few times
of the optical depth of resonant scatteringτ0, regardless whetherτa is less than 1. Namely, the
effective absorption depthτeffect of dust is roughly proportional toτ0.

Table 1. Effective absorption optical depthτeffect

Model II Model III
R = τ0 κ τa fS τeffect τa fS τeffect

102 10−4 0.0068 0.978 2.2× 102 0.01 0.963 3.8× 102

102 10−3 0.068 0.760 2.7× 102 0.10 0.670 4.0× 102

102 10−2 0.68 0.116 2.2× 102 1.00 0.057 2.9× 102

104 10−4 0.68 6.28× 10−2 2.8× 104 1.00 3.02× 10−2 3.5× 104

104 10−3 6.8 4.07× 10−7 1.5× 104 10.0 2.87× 10−9 1.97× 104

According to the random walk scenario, if a medium has optical depths of absorptionτa and
scatteringτs, the effective absorption optical depth should be equal toτeffect =

√
τa(τa + τs) (Ry-

bicki & Lightman 1979). However, the results of the last lineof Table 1 show that the random walk
scenario does not work for the dust effect on resonant photon transfer. This result is consistent with
Figures 2 and 3. When optical depth of dust is lower than the optical depth of resonant scattering
τ0, the time scale of photon escaping basically is not affected by the dust, but is proportional toτ0,
and therefore, the absorption is also proportional toτ0.

3.4. Escape coefficient

With the total flux, we can define the escaping coefficient of Lyα photon asfesc(η, τ0) ≡
F(η)/F0, whereF0 is the flux of the center source. Figure 5 showsfesc(η, τ0) at three timesη =
5×103, 104 and 3.2×104 for Model II andκ = 10−3. At η = 5×103, the flux of halos withτ0 ≤ 103

is saturated. Atη = 104, halos withτ0 ≤ 3 × 103 are saturated, and all halos ofτ0 ≤ 104 are
saturated atη = 3.2× 104.
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Fig. 5.— Escaping coefficient fesc(η) as a function of the optical depthτ0 of halo at timeη = 5×103,
104, and 3.2×104 from bottom to up. Dust is modeled by II,A = 0.32, g = 0.73, andκ = 10−3.

4. Dust effects on double-peaked profile

4.1. Dust and the frequency of double peaks

A remarkable feature of Lyα photon emergent from optically thick medium is the double-
peaked profile. Figures 1, 2 and 3 have shown that the double peak frequenciesx+ = |x−| are
almost independent of either the scattering or the absorption of dust. In this section, we consider
halos with sizeR or τ0 larger than 102. Figure 6 presents the double peak frequency|x±| as a
function ofaτ0, where the parametera is taken to be 10−2 (left) and 5× 10−3 (right). Comparing
the curves with dust and without dust in Figure 6 we can say that the dust effect on|x±| is very
small till aτ0 = aR = 102.

In the rangeaτ0 < 20, the|x±|-τ0 relation is almost flat with|x±| ≃ 2. It is because the double-
peaked profile is given by the frequency range of the locally thermal equilibrium. The positions
of the two peaks,x+ andx−, basically are at the maximum and minimum frequencies of thelocal
thermalization. The frequency range of the local thermal equilibrium state is mainly determined by
the Doppler broadening, and weakly dependent onτ0. Thus, we always havex± ≃ ±2. When the
optical depth is larger,aτ0 ∼ 102, more and more photons of the flux are attributed to the resonant
scattering by the Lorentzian wing of the Voigt profile. In this phase,|x±| will increase withτ0.

Figure 6 shows also a linex± = ±(aτ0)1/3, which is given by the analytical solution of the
Fokker-Planck approximation, in which the Doppler broadening core in the Voigt profile is ignored
(Harrington 1973, Neufeld 1990, Dijkstra 2006). The numerical solutions of eqs (3) or (9) and
(10) deviate from the (aτ0)1/3-law at all parameter range of Figure 6. The deviation ataτ0 < 20
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Fig. 6.— The two-peak frequenciesx+ = |x−| as a function ofaτ0. The parametera is taken to be
10−2 (left) and 5× 10−3 (right). Dust model III (pure absorption) is used, andκ is taken to be 10−3.
The dashed straight line gives logx±-logaτ with slope 1/3, which is to show the (aτ)1/3-law of x±.

is due to that the Doppler broadening core in the Voigt profileis ignored in the Fokker-Planck
approximation, and then, no locally thermal equilibrium can be reached. Therefore, in the range
aτ0 < 20, |x±| of the WENO solution is larger than the (aτ0)1/3-law. In the range ofaτ0 > 20,
the Fokker-Planck approximation yields a faster diffusion of photons in the frequency space. This
point can be seen in the comparison between a Fokker-Planck solution with Field’s analytical
solution (Figure 1 in Rybicki & Dell’Antonio 1994). In this range, the numerical results of|x±| is
less than the (aτ0)1/3-law.

4.2. No narrowing and no widening

The dust effect has been used to explain the narrowing of the width between the two peaks
(Laursen et al. 2009). Oppositely, it is also used to explainthe widening of the width between the
two peaks (Verhamme et al. 2006). However, Figures 1, 2, 3 and6 already show that the width
between the two peaks of the profile is very weakly dependent on dust scattering and absorption.
This result supports, at least in the parameter range considered in Figures 1, 2, 3, neither the
narrowing nor the widening of the two peaks.

If dust absorption can cause narrowing, the absorption should be weaker at|x| ∼ 0, and
stronger at|x| ≥ 2. Similarly, if dust absorption can cause widening, the absorption should be
weaker at|x| ∼ 2, and stronger at|x| ∼ 0. To test these assumptions, Figure 7 plots ln[f (η, r, x, κ =
0)/ f (η, r, x, κ)] as a function ofx. It measures thex(frequency)-dependence of the flux ratio with
and without dust absorption. We take largeη, and then the fluxes in Figure 7 are saturated. Figure
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Fig. 7.— ln[f (η, r, x, κ = 0)/ f (η, r, x, κ)] as function ofx for model II (up), and III (bottom), and
κ = 10−3 (left) and 10−2 (right). Other parameters are the same as in Figure 2.

7 shows that the absorption in the range|x| < 2 is much stronger than that of|x| > 2, and therefore,
the assumption of the narrowing is ruled out. Figure 7 shows also that the curves of ln[f (η, r, x, κ =
0)/ f (η, r, x, κ = 10−3)] are almost flat in the range|x| < 2. Therefore, the assumption of widening
of the two peaks can also be ruled out.

Since the cross sections of dust absorption and scattering are assumed to be frequency-
independent. Eqs. (9) and (10) do not contain any frequency scales other than that from resonant
scattering. However, either narrowing or widening would require to have frequency scales different
from that of resonant scattering. This is occurence is not possible if the dust is gray.

4.3. Profile of absorption spectrum

If the radiation from the sources has a continuum spectrum, the effect of neutral hydrogen
halos is to produce an absorption line atν = ν0. The profile of the absorption line can also be
found by solving equations (9) and (10), but replacing the boundary equation (11) by

j(η, 0, x) = 0, f (η, 0, x) = S 0. (14)
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That is, we assume that the original spectrum is flat in the frequency space. The spectrum of the
flux emergent from halo ofR = 102 and 104 with central source of eq.(14) for dust models I, II and
III are shown in Figure 8. All curves are for largeη, i.e. they are saturated.
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Fig. 8.— The spectrum of the flux emergent from halo ofR = 102 (upper panels) and 104 (lower
panels) with central source of eq.(14) for the dust model I (left), II (middle) and III (right). Other
parameters are the same as in Figure 2.

The optical depths at the frequency|x| > 4 are small, and therefore, the Eddington approx-
imation might no longer be proper. However, those photons donot strongly involve the resonant
scattering, and hence they do not significantly affect the solution aroundx = 0. The solutions of
Figure 8 is still useful to study the profiles off aroundx = 0.

The flux profile of Figure 8 typically are absorption lines with width given by the double
peaks similar to the double peaked structure of the emissionline. The flux at the double peaks
is even higher than the flat wing. It is because more photons are stored in the frequency range
|x| < 2. According to the redistribution function eq.(4), the probability of transferring ax′ photon
to a |x| < |x′| photon is larger than that from|x′| to |x| > |x′|. Therefore, if the original spectrum
is flat, the net effect of resonant scattering is to bring photons with frequency |x| > 2 to |x| < 2.
Photons stored|x| < 2 are thermalized, and therefore, in the range|x| < 2, the profile will be the
same as the emission line, and the double peaks can be higher than the wing. It makes the shoulder
at |x| ∼ 2.



– 17 –

As expected, for model I (left panels of Figure 8), the doubleprofile is completelyκ-independent.
Dusty scattering does not change the flux and its profile. For models II and III, the higher theκ, the
lower the flux of the wing, because the dust absorption is assumed to be frequency-independent.
The positions of the double peaks,x, in the absorption spectrum are alsoκ-independent. This
once again shows that dust absorption and scattering causesneither narrowing nor widening of the
double-peaked profile. However, for higherκ the flux of the peaks is lower. When the absorption is
very strong, the double-peaked structure might disappear,but will never be narrowed or widened.

5. Discussions and conclusions

The study of dust effects on radiative transfer has had a long history related to extinction.
However, dust effects on radiative transfer of resonant photons actually have not been carefully
investigated. Existing works are mostly based on the solutions of the Fokker-Planck approxima-
tion, or Monte Carlo simulation. These results are important. We revisited these problems with the
WENO solver of the integro-differential equation of the resonant radiative transfer, and have found
some features which have not been addressed in previous works. These features are summarized
as follows.

First, the random walk picture in the physical space will no longer be available for estimating
the effective optical depth of dust absorption. For a medium with the optical depth of absorption
and resonant scattering to beτa ≫ 1, τ(ν0) ≫ 1 andτs(ν0) ≫ τa, the effective absorption optical
depth is found to be almost independent ofτa, and to be equal to about a few times ofτs(ν0).

Second, dust absorption will, of course, yield the decreaseof the flux of Lyα photons emer-
gent from optical thick medium. However, if the absorption cross-section of dust is frequency
independent, the double-peaked structure of the frequencyprofile is basically dust-independent.
The double-peaked structure does not get narrowed or widened by the absorption and scattering of
dust.

Third, the time scales of Lyα photon transfer basically are independent of dust scattering and
absorption. It is because those time scales are mainly determined by the kinetics in the frequency
space, while dust does not affect the behavior of the transfer in the frequency space if thecross
section of the dust is wavelength-independent. The local thermal equilibrium makes the anisotropic
scattering to be ineffective on the angular distribution of photons. Dust absorption and scattering
do not lead to the increase or decrease of the time of storing Lyα photons in the halos.

The differences between the time-independent solutions of the Fokker-Planck approximation,
or Monte Carlo simulation and the WENO solution of eq.(3) is mainly related to the W-F effect.
Therefore, all above-mentioned features can already be clearly seen with halos ofτ0 ∼ 102, in
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which the W-F local thermal equilibrium has been well established.

In this context, most calculation in this paper is on holes with τ0 < 105. This range ofτ0
certainly is unable to describe halos with column number density of HI larger than 1017 cm−2 (e.g.
Roy et al. 2010). Nevertheless, the result ofτ0 < 105 would already be useful for studying the
21 cm region around high-redshift sources, of which the optical depth typically is (Liu et al 2007;
Roy, et al. 2009c).

τ0 = 3.9× 105 fHI

( T
104K

)−1/2 (

1+ z
10

)3 (

Ωbh2

0.022

) (

Rph

10kpc

)

, (15)

where fHI is the fraction of HI. All other parameters in eq. (15) is taken from the concordance
ΛCDM mode. For these objects the relation between dimensionlessη and physical timet is given
by

t = 5.4× 10−2 f −1
HI

( T
104K

)1/2 (

1+ z
10

)−3 (

Ωbh2

0.022

)−1

η, yr. (16)

The 21 cm emission rely on the W-F effect. On the other hand, the time-scale of the evolution of
the 21 region is short. The effect of dust on the time-scales of Lyα evolution should be considered.

We have not considered the Lyα photons produced by the recombination in the ionized halo. If
the halo is optical thick, photons from the recombination will also be thermalized. The information
of where the photon comes from will be forgotten during the thermalization. Therefore, photons
from recombination should not show any difference from those emitted from central sources. Only
the photons formed at the place very close to the boundary of the halo will not be thermalized, and
may yield different behavior.

This research is partially supported by ARO grants W911NF-08-1-0520 and W911NF-11-1-
0091.

A. Integral of the phase function [eq.(6)]

Eq.(6) can be rewritten as

Rd(µ, µ′) =
1
4π

∫ 2π

0
dφ′

1− g2

|I − gI ′| 32
(A1)

whereI andI ′ are unit vector on the direction of polar angleθ andθ′, and azimuth angleφ andφ′,
respectively. That isI · I = I ′ · I ′ = 1 andI · I ′ = cosγ = cosθ cosθ′ + sinθ sinθ′ cos(φ − φ′), and
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µ = cosθ, µ′ = cosθ. We have

d
dg

1
|I − gI ′|1/2 =

1− g2

2g|I − gI ′|3/2 −
1

2g|I − gI ′|1/2 , (A2)

and therefore,
1− g2

|I − gI ′|3/2 = 2g
d

dg
1

|I − gI ′|1/2 +
1

|I − gI ′|1/2 . (A3)

The expansion with Legendre functionsPl(cosγ) gives

1
|I − gI ′|1/2 =

∞
∑

l=0

glPl(cosγ), (A4)

and then
1− g2

|I − gI ′|3/2 =
∞
∑

l=1

2lglPl(cosγ) +
∞
∑

l=0

glPl(cosγ). (A5)

Since cosγ = cosθ cosθ′ + sinθ sinθ′ cos(φ − φ′), we have the following identity for the
Legendre functionPl(cosγ) as

Pl(cosγ) = Pl(cosθ)Pl(cosθ′) + 2
m=l
∑

m=1

(l − m)!
(l + m)!

Pm
l (cosθ)Pm

l (cosθ′) cos[m(φ − φ′)]. (A6)

The integral ofφ′ in eq.(A1) kills the second term of eq.(A6), we have then

Rd(µ, µ′) =
1
4π

2π















∞
∑

l=1

2lglPl(cosθ)Pl(cosθ′) +
∞
∑

l=0

glPl(cosθ)Pl(cosθ′)















(A7)

=
1
2















∞
∑

l=1

2lglPl(µ)Pl(µ
′) +

∞
∑

l=0

glPl(µ)Pl(µ
′)















.

Using the orthogonal relation
∫ 1

−1
Pl(µ)Pl′(µ)dµ = 2

2l+1δl,l′ , we have

R0(g) =
1
2

∫ 1

−1
dµ

∫ 1

−1
dµ′Rd(µ, µ′) = 1, (A8)

for which only the terml = 0 in eq.(A7) has contribution. Similarly,

R1(g) =
1
2

∫ 1

−1
dµ

∫ 1

−1
dµ′µRd(µ, µ′) =

1
2

∫ 1

−1
dµ

∫ 1

−1
dµ′µ′Rd(µ, µ′) = 0, (A9)

R2(g) =
1
2

∫ 1

−1
dµ

∫ 1

−1
dµ′µµ′Rd(µ, µ′) =

g
3
. (A10)

These results are used in deriving eqs.(9) and (10).
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B. Numerical algorithm

To solve Equations (9) and (10) as a system, our computational domain is (r, x) ∈ [0, rmax] ×
[xleft, xright], where rmax, xleft and xright are chosen such that the solution vanishes to zero
outside the boundaries. We choose mesh sizes with grid refinement tests to ensure proper numerical
resolution. In the following, we describe numerical techniques involved in our algorithm, including
approximations to spatial derivatives, numerical boundary condition, and time evolution.

B.1. The WENO Algorithm: Approximations to the Spacial Derivatives

The spacial derivative terms in Equation (9) and (10) are approximated by a fifth-order finite
difference WENO scheme.

We first give the WENO reconstruction procedure in approximating ∂ j
∂x ,

∂ j(ηn, ri, x j)

∂x
≈ 1
∆x

(ĥ j+1/2 − ĥ j−1/2)

with fixed η = ηn and r = ri. The numerical fluxĥ j+1/2 is obtained by the fifth-order WENO
approximation in an upwind fashion, because the wind direction is fixed. Denote

h j = j(ηn, ri, x j), j = −2,−1, · · · ,N + 3

with fixed n andi. The numerical flux from the WENO procedure is obtained by

ĥ j+1/2 = ω1ĥ(1)
j+1/2 + ω2ĥ(2)

j+1/2 + ω3ĥ(3)
j+1/2

whereĥ(m)
j+1/2 are the three third-order fluxes on three different stencils given by

ĥ(1)
j+1/2 = −

1
6

h j−1 +
5
6

h j +
1
3

h j+1,

ĥ(2)
j+1/2 =

1
3

h j +
5
6

h j+1 −
1
6

h j+2,

ĥ(3)
j+1/2 =

11
6

h j+1 −
7
6

h j+2 +
1
3

h j+3.

and the nonlinear weightsωm are given by

ωm =
ω̆m

∑3
l=1 ω̆l

, ω̆l =
γl

(ǫ + βl)2

whereǫ is a parameter to avoid the denominator to become zero and is taken asǫ = 10−8. The
linear weightsγl are given by

γ1 =
3
10
, γ2 =

3
5
, γ3 =

1
10
,
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and the smoothness indicatorsβl are given by

β1 =
13
12

(h j−1 − 2h j + h j+1)
2 +

1
4

(h j−1 − 4h j + 3h j+1)
2,

β2 =
13
12

(h j − 2h j+1 + h j+2)
2 +

1
4

(h j − h j+2)
2,

β3 =
13
12

(h j+1 − 2h j+2 + h j+3)
2 +

1
4

(3h j+1 − 4h j+2 + h j+3)
2.

To approximate ther-derivatives in the system of Equations (9) and (10), we needto perform
the WENO procedure based on a characteristic decomposition. We write the left-hand side of
Equations (9) and (10) as

ut + Aur,

whereu = ( j, f )T and

A =

(

0 1
1
3 0

)

is a constant matrix. To perform the characteristic decomposition, we first compute the eigenvalues,
the right eigenvectors and the left eigenvectors of A and denote them byΛ, R andR−1. We then
projectu to the local characteristic fieldsv with v = R−1u. Now ut + Aur of the original system is
decoupled as two independent equations asvt +Λvr.We approximate the derivativevr component
by component, each with the correct upwind direction, with the WENO reconstruction procedure
similar to the procedure described above for∂ j

∂x . In the end, we transformvr back to the physical
space byur = Rvr. We refer the readers to Cockburn et al. 1998 for more implementation details.

B.2. Numerical Boundary Condition

To implement the boundary condition (12), we also need to perform a characteristic decompo-
sition as discussed above. Using the same notation as before, we projectu to the local characteristic
fieldsv with v = R−1u. Denotev = (v1, v2)T , nowut + Aur of the original system is decoupled to
two independent scalar operators given by

∂v1

∂t
+ λ1
∂v1

∂r
;

∂v2

∂t
+ λ2
∂v2

∂r

whereλ1 =
√

3
3 andλ2 = −

√
3

3 . The characteristic line starting from the boundaryr = rmaxfor the
first equation is pointing outside the computational domainwhile the one for the second equation
is pointing inside. For well-posedness of our system, we need to impose the boundary condition
there as

v2 = αv1 + β
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with constantsα andβ. We can calculate the values ofα andβ based on equation (12) and the left
and right eigenvectors ofA. For example, if we take

R =













√
3

2

√
3

2
1
2 −1

2













,

we can compute thatα = 7− 4
√

3 andβ = 0. We use extrapolation to obtain the value ofv1 and
then compute the valuev2. In the end, we transferv back to the physical space byu = Rv.

B.3. Time Evolution

To evolve in time, we use the third-order TVD Runge-Kutta time discretization (Shu & Osher
1988). For system of ODEsut = L(u), the third order Runge-Kutta method is

u(1) = un + ∆τL(un, τn),

u(2) =
3
4

un +
1
4

(u(1) + ∆τL(u(1), τn + ∆τ)),

un+1 =
1
3

un +
2
3

(u(2) + ∆τL(u(2), τn +
1
2
∆τ)).
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