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We investigate the general properties of expanding cosmological models which generate scale-
invariant curvature perturbations in the presence of a variable speed of sound. We show that in an
expanding universe, generation of a super-Hubble, nearly scale-invariant spectrum of perturbations
over a range of wavelengths consistent with observation requires at least one of three conditions: (1)
accelerating expansion, (2) a speed of sound faster than the speed of light, or (3) super-Planckian
energy density.

I. INTRODUCTION

Observations of both the Cosmic Microwave Back-
ground (CMB) and large-scale structure (LSS) are com-
patible with a spectrum of nearly scale-invariant and
Gaussian primordial perturbations with correlations on
super-Hubble length scales [1], in agreement with the
predictions of the simplest inflationary models. How-
ever, inflation is not the only way to generate cosmolog-
ical perturbations. Alternatives that have been put for-
ward range from contracting scenarios where the universe
needs to go through a singular or non-singular bounce
(see [2] and references there), string gas cosmology, in
which the universe is initially static [3], varying funda-
mental speed of light [4], or a rapidly varying speed of
sound [5–9]. All of the alternatives so far suggest that
to produce the observed primordial power spectrum, any
route but inflation requires an understanding of gravity
beyond general relativity. This is either due to viola-
tion of the Null Energy Condition, a singular bounce,
or the breaking of Lorentz invariance due to a preferred
frame of reference to explain varying speed of light or
super-luminal sound speed [10]. (It is worth noting that
inflation itself, while more successful than its alternatives
on many fronts, still has its own challenges to overcome,
ranging from setting the correct initial conditions [11] to
relying on the existence of a scalar field which has not yet
been confirmed by any fundamental theory.) It is inter-
esting to ask: what is the most general conclusion that
can be drawn from the observed spectrum of primordial
perturbations in the universe?

In this paper, we study general properties of the pro-
duction of a scale-invariant two point function. We use
the simple framework put forward in Ref. [12] and later
used in Ref. [13] that makes it simple to study scenar-
ios that have different background evolution but result in
the same second-order gravitational action for quantum
perturbations. The format of the paper is the following:
In Section II we review the framework developed in Ref.
[12]. In Section III we prove that to produce enough scale
invariant modes on super-Hubble scales in an expanding
universe one of the following conditions must be met: (1)
accelerating expansion, (2) superluminal sound speed, or
(3) super-Planckian energy density. Section IV contains
discussion and conclusions.

II. ACTION AND SOLUTIONS FOR

SCALE-INVARIANT CURVATURE

PERTURBATIONS

The quadratic action for curvature perturbation ζ
around a flat Friedmann-Robertson-Walker (FRW) back-
ground with a time dependent sound speed cs(τ) in gen-
eral can be written as [14, 15] :

S2 =
M2

pl

2

∫

dx3dτ z2

[

(

dζ

dτ

)2

− cs(τ)
2(∇ζ)2

]

, (1)

where

z ≡ a
√
2ǫ

cs
, . (2)

Here a and τ are the scale factor and conformal time,
respectively, while ǫ is defined through Hubble parameter
ǫ ≡ −Ḣ/H2.
Note that for ǫ < 0, which corresponds to phantom

matter, we will have z2 < 0. The overall sign of the action
does not change the equation of motion and it leads to
the same two-point function for ζ. However a problem
arises, since in the presence of other fields, the kinetic
term of ζ has an opposite sign. By quantizing those, we
will end up with Hamiltonians which are unbounded in
opposite directions, with ghost instabilities.
As was pointed out in [12], through a time transforma-

tion dy = csdτ one can re-express the action (1) in the
new form:

S2 =
M2

pl

2

∫

dx3dy q2

[

(

dζ

dy

)2

− (∇ζ)2

]

, (3)

where

q ≡ a
√
2ǫ√
cs

. (4)

Now introducing the canonically normalized scalar
variable v = Mpl q ζ, the equation of motion for v in
Fourier space is given by

v′′k + (k2 − q′′

q
)vk = 0, (5)
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where prime represents d/dy.
A scale-invariant spectrum is obtained if

q′′

q
∼ 2

y2
, (6)

in analogy with canonical inflation where z,ττ/z ∼ 2/τ2.
Eq. (6) has a general solution of the form

q =
α

y
+ βy2, (7)

for arbitrary α and β.
Production of superhorizon perturbations requires the

following conditions: At early time, a mode with given
comoving wavenumber k starts in an approximately
Minkowski vacuum state with k2 ≫ 2/y2, such that the
WKB approximation is valid. At late time, the mode
evolves such that k2 ≪ 2/y2 and WKB breaks down, re-
sulting in particle production. Since for increasing time
dτ > 0, dy > 0, we see that for particle production
we must have y ∈ [−∞, 0]. Therefore, at early times
ω2

k ∼ k2 and is almost constant, so that |ω′

k/ω
2

k| ≪ 1 and
WKB is correct. However, at late times ω2

k ∼ −2/y2,
|ω′

k/ω
2

k| ∼ O(1) and WKB is no longer valid. This argu-
ment already enables us to see that at late time the α/y
term is always an attractor solution and dominates over
βy2.
Applying the standard method of quantization for v

and setting the adiabatic initial condition at early times,
the familiar mode function [12] is obtained:

vk(y) =
1√
2k

(

1− i

ky

)

e−iky. (8)

In long wavelength limit vk behaves as

vk ∼ −1√
2k

(

i

ky
+

1

2
k2y2

)

ky ≪ 1. (9)

Note that mode freezing occurs when ky = 1, which is
not the same as when the mode crosses the Hubble hori-
zon, k = aH . There are three horizons with independent
dynamics: the Hubble horizon, RH ≡ 1/(aH), the sound
horizon, Rs ≡ cs/(aH), and the “freezeout horizon”[20]

Rζ ≡ −y. (10)

All three horizons are expressed in comoving units. As
long as the freezeout horizon is shrinking, generation of
perturbations occurs. Furthermore, modes can be gen-
erated on super-Hubble scales even if the Hubble hori-
zon is growing, as long as the freezeout horizon is larger
than the Hubble horizon [21]. We can now calculate the

power spectrum Pζ
k ≡ k3ζ2k for different choices of α and

β. First, taking β = 0 is the case very similar to inflation
since for superhorizon modes we obtain:

k3ζ2k ∼ k3
(

νk
Mpq

)2

∼ 1

2M2
pα

2
, (11)

which is the exact scale-invariant power spectrum. The
amplitude of ζ is constant outside freezeout horizon,
Rζ ≡

√

q/q′′ ∼ y. This solution leads to a stable so-
lution for the background spacetime, since at k → 0, a
constant metric perturbation does not change the time
evolution of the scale factor.
Next we consider α = 0. Substituting for the power

spectrum leads to:

k3ζ2k ∼ k3
(

νk
Mpq

)2

∼ 1

M2
pβ

2y6
. (12)

While this spectrum is scale invariant, the amplitude of
ζ grows outside Rζ which signals instability or a non-
attractor behavior for the background.
Last, if neither of α or β are zero then

k3ζ2k ∼ k3
(

νk
q

)2

∼ 1

2M2
p

(

1

α+ βy3

)2

. (13)

At late times, y3 ≪ α/β, the α/y term will win over
βy2, and we regain the conserved ζ solution. Since we
also have ky ≪ 1 this condition is automatically satisfied
if k3 > β/α. So in this case the amplitude is also well
behaved and not divergent as y → 0.
It is also worth noting that all these solutions corre-

spond to exact scale invariance. In other words , even
though applying the naive slow-roll result ns − 1 ∼
2(ǫ + d ln ǫ/Hdt + d ln cs/Hdt) may suggest otherwise,
calculating the spectral index ns would result in

ns − 1 = 0. (14)

In practice, to obtain non-zero tilt, q must have devia-
tions from these solutions. For example taking β = 0 and
allowing for α to have small time dependence can lead to
a small tilt [16].

III. GENERAL CONDITIONS FOR SCALE

INVARIANCE

This section contains the main result of the paper:
In an expanding universe, in order to generate a scale-
invariant spectrum of curvature perturbations on a range
of scales compatible with observations, one of three con-
ditions must be met: (1) accelerating expansion (i.e. in-
flation), (2) speed of sound faster than the speed of light,
or (3) super-Planckian energy density. Current obser-
vations of CMB and LSS indicate that the spectrum of
curvature perturbations must be nearly scale-invariant
over at least three decades in wavelength, and we will
take this to be the lower bound.
We first consider the simple case of cs = 1 in an ex-

panding background. Non-accelerating expansion implies
that Hubble horizon measured in comoving units is al-
ways growing, since ǫ > 1:

dRH

dτ
= ǫ− 1 > 0. (15)
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Following the framework described in Sec. II, production
of scale invariant modes for cs = 1 leads to the freezeout
horizon shrinking as Rζ ≡

√

z/zττ ∼ −τ . Note that the
same argument that we used in that section for the range
of y applies here to the range of conformal time τ such
that τ ∈ [−∞, 0].
Consider modes with comoving wavelengths λf < λ <

λi corresponding to the scale-invariant modes that we
observe today in CMB and LSS. Observations of CMB
and LSS require scale invariance over about three decades
in wavelength,

λi & 1000 λf . (16)

Since the horizon is always growing, for the modes to be
larger than the Hubble horizon at late time, they must
also be superhorizon at early time, so that

λf (τf ) > RH (τf ) . (17)

Here the conformal time τ is taken to be the time when
a given mode crosses the freezeout horizon, λi ∼ |τi|,
λf ∼ |τf |. Then the conditions (16) and (17) become:

|τi| & 1000 |τf |, (18)

|τf | > RH(τf ), (19)

which implies

τf − τi
RH(τf )

> 1000. (20)

Now, writing the continuity equation

ρ̇

ρ
= −2ǫH, (21)

integrating from τi to τf leads to the inequality

ln
ρi
ρf

= 2

∫ tf

ti

ǫHdt

= 2

∫ τf

τi

ǫR−1

H (τ) dτ

> 2R−1

H (τf )

∫ τf

τi

ǫ dτ

> 2R−1

H (τf )ǫmin(τf − τi), (22)

where ǫmin is the minimum value of ǫ, and we have
used the fact that non-accelerating expansion requires
RH(τ) < RH(τf ). Since non-accelerating expansion also
means that ǫmin ≥ 1, the relation (20) results in the fol-
lowing inequality for the cosmological density:

ln
ρi
ρf

> 2000, (23)

or

ρi > 10868ρf . (24)

Taking the lower bound on ρf to be given by the lower
bound on the reheat temperature, which is given by Big
Bang nucleosynthesis, ρf > ρr > (100 MeV)4, we have

ρi ≫ M4

Pl. (25)

This is purely the result of our two assumptions, non-
accelerating expansion, and mode generation on a suf-
ficiently large range of scales (16). Therefore, we have
shown that to produce enough super-Hubble modes at
reheating, the initial density of our scenario has to start
larger than the Planck energy for decelerating expansion
(ǫmin ≥ 1). For larger values of ǫ, the problem becomes
more severe. Furthermore, if we want the range of modes
(16) to be one order of magnitude larger we need e10

higher energy density ρi. It is also interesting that this
problem can arise in a different form in contracting sce-
narios as well: even though the density is sub-Planckian
the curvature still becomes exponentially greater than
the Planck curvature [17].
Next, we repeat the same calculation allowing cs to

vary. The modes this time exit the freezeout horizon
when λ ∼ |y|. Therefore, the conditions (16) and (17)
now yield:

|yi| & 1000 |yf | (26)

|yf | > RH(τf ), (27)

which implies

yf − yi
RH(τf )

> 1000. (28)

The inequality (22) is still valid and since

yf − yi =

∫ τf

τi

csdτ = c̄s(τf − τi), (29)

where c̄s is the average sound speed, we obtain:

ln
ρi
ρf

> 2R−1

H (τf )ǫmin

yf − yi
c̄s

. (30)

Combining above condition with (28), ǫmin > 1, we have

2000

c̄s
< ln

ρi
ρf

< ln
M4

Pl

ρr
∼ 80 ln10, (31)

where we take ρr ∼ (100 MeV)4. This results in a lower
bound on the average sound speed,

c̄s > 10. (32)

Therefore, we have shown that in a non-accelerating
expanding universe, if the energy density starts sub-
Planckian, producing the range of scale invariant
modes consistent with observations requires super-
luminal sound speed.
Could a small deviation from scale invariance as fa-

vored by the WMAP 7-year data [1] weaken these
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bounds? For a power-law spectrum P (k) ∝ kn−1, the
freezeout horizon behaves as

R−2

ζ =
q′′

q
=

2+ (3/2) (1− n)

y2
∝ 1

y2
, (33)

so that the bound remains essentially unchanged even
in the case of weakly broken scale invariance. The next
section presents discussion and conclusions.

IV. CONCLUDING REMARKS

The universe is observed to have a spectrum of nearly
scale-invariant density perturbations over about three
decades in wavelength, which were at scales larger than
the Hubble length at early times. In this paper, we have
shown that generating cosmological perturbations consis-
tent with observation in an expanding universe requires
at least one of: (1) accelerated expansion, (2) superlumi-
nal sound speed, or (3) super-Planckian energy density.
We note that this applies to the curvaton mechanism
[18] as well, since the freezeout horizon for a free scalar
“spectator” field shrinks as τ (a ∝ 1/τ) to produce scale-
invariant perturbations. Therefore super-Hubble curva-
ton fluctuations directly require inflation. It is important
to note that scale invariance alone does not require in-
flation or “tachyacoustic” [8] evolution: a key point is
that even with sub-luminal sound speed, super-Hubble
perturbations can be generated with a growing Hubble
horizon, as long as the freezeout horizon is shrinking

and Rζ > RH [13]. However, one cannot generate three
decades of modes in this fashion without super-Planckian
energy densities. Perturbations could also be generated
on sub-Hubble scales by a period of non-inflationary ex-
pansion [2, 13], and only later redshifted to super-Hubble
scales by a subsequent period of inflation. This would
be consistent with our bound. Recent work has, how-
ever, shown why seeding scale-invariant fluctuations with
sub-luminal sound speed is challenged by the breakdown
of weak coupling and therefore perturbation theory [19].
This issue is quite generic and can arise even in non-
expanding scenarios (see [2]). Similarly, string gas cos-
mology requires accelerating expansion to exit from the
initial, static phase, but perturbations are not generated
by the usual inflationary mechanism. Our bound also
does not apply to contracting cosmologies. However, in
the case of an expanding cosmology, we have presented a
simple and general argument showing why either a super-
luminal sound speed or a period of inflation is required
for the successful generation of a scale-invariant, super-
Hubble spectrum of perturbations.
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