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Primordial black hole formation and hybrid inflation

David H. Lyth
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

We calculate the contribution to the curvature perturbation, that is generated while the waterfall
field grows exponentially (which can occur only if the waterfall field mass is m ≫ H). We consider
the upper bound on its spectrum coming from constraints on the abundance of primordial black
holes, taking account of possible non-gaussianity. The constraint is satisfied, but extrapolation of
our result to the regime m ∼ H suggests that the constraint might not be satisfied there.

I. INTRODUCTION

On cosmological scales, the primordial curvature perturbation ζ is very small with spec-
trum Pζ(k) ≃ (5 × 10−5)2. But Pζ(k) may rise as the wavenumber k increases, to some
much bigger peak value Pζ(kpeak). If that happens, primordial black holes may form as
kpeak enters the horizon, and cosmological bounds on their abundance translate to an upper
bound on Pζ(kpeak).
The bound is usually discussed under the assumption that ζ is nearly gaussian, giving

very roughly Pζ(kpeak) <∼ 10−2. In the first part of this paper we discuss the bound assuming
instead that on scales around kpeak

ζ(x) = ±
(

g2(x) − 〈g2〉
)

, (1)

with g gaussian. We show that the bound becomes very roughly Pζ(kpeak) <∼ 10−3 for the
positive sign and Pζ(kpeak) <∼ 1 for the negative sign.
It is known [1] that the form (1) can hold if the rise in Pζ(k) is generated after inflation

by a curvaton-type mechanism. For the curvaton mechanism itself the sign is positive but
it could be negative more generally. With a curvaton-type mechanism, kpeak corresponds to
the horizon scale when the mechanism ceases to operate and black hole formation follows
immediately.
A different possibility is for the rise to be generated by the waterfall field of hybrid

inflation. A calculation has been done for a particular case [2], where simple expressions
were found for ζ and Pζ . In that case ζ is gaussian and the black hole bound is well satisfied.
The main purpose of this paper is to generalise the calculation of [2], to cover essentially
any hybrid inflation model permitting exponential growth of the waterfall field.

II. BLACK HOLE BOUND

The bound that we are going to consider rests on the validity of the following statement:
if, at any epoch after inflation, there are roughly spherical and horizon-sized regions with
ζ significantly bigger than 1, a significant fraction of them will collapse to form roughly
horizon-sized black holes.#1 The validity is suggested by the following argument: the over-
density at horizon entry is δρ/ρ ∼ ζ, and if it is of order 1 then δρ ∼ ρ = 3M2

PH
2. The

excess energy within the Hubble distance H−1 is then M ∼ H−3ρ ∼ M2
P/H , which means

that the Hubble distance corresponds roughly to the Schwarzchild radius of a black hole with
mass M . The validity is confirmed by detailed calculation using several different approaces,
as summarised for instance in [3].
Before continuing we mention the following caveat. Practically all of the literature, as

well as the simple argument just given, assumes that ζ within the region is not very much

bigger than 1. Then the spatial geometry within the region is not too strongly distorted and
the size of the black hole is indeed roughly that of the horizon. In the opposite case, the

#1 As in Eq. (1) we are choosing the background scale factor a(t) so that the perturbation ζ = δ(ln a(x, t))
has zero spatial average.
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background geometry is strongly distorted and the wavenumber k defined in the background
no longer specifies the physical size of the region at the epoch aH = k of horizon entry [4].
An entirely different discussion would then be necessary, which has not been given in the
literature. As the opposite case does not arise in typical early-universe scenarios we ignore
it.
We are interested in the case that Pζ(k) has a peak at some value kpeak, and we assume

that the width of the peak in ln k is roughly of order 1 so that 〈ζ2〉 ∼ Pζ(kpeak). We will
focus on the case that ζ is generated by the waterfall field perturbation. Then Pζ(k) ∝ k3

below the peak with an exponential fall-off above the peak, giving#2

〈ζ2〉 ≃
∫

∞

0

Pζ(k)dk/k =
1

3
Pζ(kpeak), (2)

but the numerical factor is not very important. What matters is that regions with ζ >∼ 1
that might form black holes will be rare if Pζ(kpeak) is sufficiently far below 1,
Observation demands that the regions must indeed be rare, because it places a strong

upper bound on the fraction of β of space that can collapse to form black holes, on the
assumption that the collapse takes place at a single epoch as is the case in our scenario. A
recent investigation of the bound is given in [3], with extensive references to the literature.
The bound can arise from many different physical effects, depending on the epoch of collapse,
and is subject to many uncertainties. Typical bounds are roughly in the range

10−20 < βmax < 10−5, (3)

and we shall take that to be the range in what follows. To bound Pζ(kpeak), we shall require
f < βmax, where f is the fraction of space with ζ > 1.
That fraction can be calculated from 〈ζ2〉 if we know the probability distribution of ζ(x).

The standard assumption is that it is gaussian. Then

f = erfc (1/
√
2〈ζ2〉1/2), (4)

and using the large-x approximation erfc (x) ≃ e−x2/2 we find 〈ζ2〉 ≃ 1/2 ln(1/f). For the
range (3) this gives (with Eq. (2)) Pζ(kpeak) <∼ 0.01 to 0.04.
If instead ζ has the non-gaussian form (1) with the plus sign we have

〈ζ2〉 = 2〈g2〉2 ≃ 2

[

1

2 ln(1/f)

]2

, (5)

which with Eq. (2) gives Pζ(kpeak) <∼ 6× 10−4 to 5× 10−3.
The situation when ζ has the form (1) with the minus sign is quite different. There is

now no region of space where ζ > 〈g2〉, and f ≪ 1 now implies some bound 〈g2〉 − 1 ≪ 1
which is practically equivalent to 〈g2〉 < 1. With Eq. (2) this corresponds to Pζ(kpeak) < 6.

III. EVOLUTION OF THE WATERFALL FIELD

We adopt the notation and basic approach of [2]. In the first two subsections these are
summarised, and then we present our new calculation of evolution of the waterfall field χ.

A. Standard hybrid inflation

We consider the usual hybrid inflation potential,

V (φ, χ) = V0 + V (φ) +
1

2
m2(φ)χ2 +

1

4
λχ4 (6)

m2(φ(t)) ≡ g2φ2(t)−m2 ≡ g2
(

φ2(t)− φ2
c

)

, (7)

#2 If the integral fails to converge at small k we impose a cutoff corresponding to the size of the observable
universe. The contribution from small k then has a negligible effect.
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with 0 < λ ≪ 1 and 0 < g ≪ 1. We consider the standard case m ≫ H . The effective
mass-squared m2(φ(t)) of the waterfall field goes negative when the inflaton φ falls below
φc ≡ m/g. Then χ moves towards its vev, marking the beginning of what is called the
waterfall. The waterfall is deemed to end when χ approaches its vev, which usually marks
the end of inflation.
At least after the observable universe leaves the horizon, the inflaton potential V (φ(t))

is supposed to have positive slope, and the inflaton is supposed to have zero vev so that
V (0) = 0. Also, it is assumed that V (φ) ≪ V0.
The requirements that V and ∂V/∂χ vanish in the vacuum give the vev χ0 and the

inflation scale V0 ≃ 3M2
PH

2:

χ2
0 =

m2

λ
≃ 12M2

PH
2/m2, V0 =

m4

4λ
≃ 3M2

PH
2. (8)

The waterfall is supposed to begin with an era during which the evolution of χ is linear.
Choosing a gauge whose slicing corresponds to uniform φ,

χ̈k + 3Hχ̇k +
[

(k/a)2 +m2(φ(t))
]

χk = 0. (9)

The energy density and pressure of χ are

ρχ = m2(φ)χ2 +
1

2
χ̇2 +

1

2
|∇χ|2 (10)

pχ = −m2(φ)χ2 +
1

2
χ̇2 +

1

6
|∇χ|2. (11)

In [2] we considered a regime of parameter space is which (i) the waterfall takes much less
than a Hubble time, (ii) m2(t) ∝ t during the linear era and (iii) χ is growing exponentially
by the end of the linear era. We found simple formulas for the contribution ζχ of χ to the
curvature perturbation to at the end of the linear era, and for its spectrum Pζχ . In this
paper show that very similar formulas hold if we assume only exponential growth.

B. Exponential growth

Since inflation by definition continues during the the waterfall, H will not vary much
and we set it equal to a constant to simplify the presentation. Then conformal time is
η = −1/aH and (9) can be written

d2(aχk)

dη2
+ ω2

kaχk = 0, (12)

with

ω2
k(η) ≡ k2 + a2m̃2(t), m̃2 ≡ m2(t)− 2H2, m2(t) ≡ g2φ2(t)−m2. (13)

For sufficientlly small k, we can set ω2
k ≃ ω2

k=0 = a2m̃2. Then ω2
k switches from positive

to negative before φ = φc, but presumably not long before since m ≫ H . For k2 > 0 the
switch is later. For the scales that we need to consider, we assume that there are eras both
before and after the switch when ω2

k satisfies the adiabaticity condition d|ω2
k|/dη ≪ |ω2

k|.
During the adiabaticity era before the switch we take the mode function to be

aχk ≃ (2ωk(η))
−1/2 exp

(

−i

∫ η

ωk(η)dη

)

, (14)

which defines the vacuum state. During the adiabaticy era after the switch

aχk ∼ (2|ωk(η)|)−1/2 exp

(

∫ η

η1(k)

|ωk(η)|dη
)

, (15)
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where the subscript 1 denotes the beginning of the adiabatic era. The displayed prefactor
holds [2] only if m2(t) ∝ t and H(t − t1) ≪ 1 but its precise form doesn’t matter. All we
need is for it to vary sufficiently slowly that the growth is dominated by the exponential.
We call the era during which that is true the growth era.
During the growth era, the adiabaticity condition is equivalent to the three conditions

m̃(t) ≃ m(t), (16)

2H

|m(t)| ≪
[

1−
(

k

a(t)|m(t)|

)2
]3/2

(17)

1

|m(t)|2
d|m(t)|

dt
, ≪

[

1−
(

k

a(t)|m(t)|

)2
]3/2

. (18)

The adiabatic era begins when all three conditions are first satisfied.
By virtue of Eqs. (16) and (17), we have from Eq. (15) χ̇k ≃ |m(t)|χk. Except near places

where χ(x, t) vanishes, this implies

χ̇(x, t) ≃ |m(t)|χ(x, t).. (19)

In the regime k ≪ a|m(t)| we have

|ωk| ≃ a|m(t)|
(

1− 1

2

k2

a2|m(t)|2
)

(20)

giving

χk(t) ≃ χk=0(t)e
−k2/2k2

∗
(t), χk=0(t) ≃ (2a3|m(t)|)−1/2 exp

(
∫ t

t1

dt|m(t)|
)

, (21)

where

k2
∗
(t) ≡

(
∫ t

t1

dt

a2|m(t)|

)−1

. (22)

During the growth era, χk(t) is classical and proportional to the mode function χk(t).
The same holds for χ(x, t), except near places where it vanishes. The spectrum is Pχ = χ2

k.
Also,

〈χ2(t〉 = 4π

(2π)3
Pχ(0, τ)

∫

∞

0

dkk2e−(k2/k2

∗
(t)) = (2π)−3/2Pχ(0, τ)k

3
∗
(t), (23)

and using the convolution theorem we have [2] for k ≪ k∗
#3

Pδχ2(t, k) =
1√
π
〈χ2(t)〉2[k/k∗(τ)]3, (24)

with Pδχ2(τ, k) falling exponentially at k ≫ k∗.
By virtue of Eq. (18), the change in |m(t)| in time |m(t)|−1 is negligible and so is the

change in a. Setting t = t1 + |m(t)|−1 we get k2
∗
(t) ≃ a2(t)|m(t)|2. But at this epoch the

growth era has hardly begun, and subsequently k∗(t) decreases while a|m(t)| increases. So
we really have k2

∗
(t) ≪ a2|m(t)|2 during the growth era, and χk falls exponentially in the

regime k∗(t) < k < a|m(t)| which means that k∗(t) is the dominant mode.
We are mostly interested in an epoch just before the end of the linear era, which we

denote by a subscript nl. We denote k∗(tnl) simply by k∗. Let us define Nnl ≡ H(tnl − t1).
If Nnl

<∼ 1,

1 <∼
|m(t1)|

H
<∼
(

k∗
a(tnl)H

)2

<∼
|m(tnl)|

H
≤ m

H
(Nnl

<∼ 1). (25)

#3 As usual Pχ ≡ (2π2/k3)Pχ, with both P and P referred to as the spectrum.
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If instead Nnl
>∼ 1, k∗(t) levels out after H(t − t1) ∼ 1. We therefore have, whatever the

value of Nnl,

e−Nnl <∼
(

k∗
aH

)2

<∼
m

H
e−Nnl . (26)

Since |m(t)| ≫ H , the upper bound on k∗ imples (k∗/a)χk ≪ χ̇k = |m(t)|χk. The spatial
gradient of χ(x, t) will therefore be small compared with the time-derivative, except near
places where χ = 0. Hence

ρχ ≃ −1

2
|m(t)|2χ2 +

1

2
χ̇2 ≃ 0 (27)

pχ ≃ 1

2
|m(t)|2χ2 +

1

2
χ̇2 ≃ |m(t)|2χ2 ≃ χ̇2. (28)

To evaluate ρχ we can use the local continuity equation (valid because the spatial gradient
is negligible),

ρ̇χ = −3H(ρχ + pχ) ≃ −3Hpχ, (29)

giving

ρχ ≃ −(3H/2|m(t)|)pχ. (30)

IV. CURVATURE PERTURBATION

Now we calculate the contribution of χ to the curvature perturbation, following closely the
procedure of [2]. The curvature perturbation is given by ζ(x, t) = δN(x, t), where N is the
number of e-folds of expansion from any initial slice with a(x, t) = a(t) (flat slice) to a slice
of uniform ρ at time t. The contribution of χ during the linear era is ζχ(x) = δN(x, tnl, t1),
where N(x, t, t1) is the expansion from a slice of uniform ρ just after the beginning of the
linear era, to a slice of uniform ρ just before its end. We are working in a gauge where
δφ = 0 so that ρ(x, t) = ρχ(x, t) + ρφ(t). Since |δρχ(x, t1)| ≪ |δρχ(x, tnl)| we have

ζχ(x, t) = −H
δρχ(x, tnl)

ρ̇(t)
=

1

3

δρχ(x, tnl)

〈χ̇2(tnl)〉+ φ̇2(t)
, (31)

where ρ(t) is the spatial average of ρ(x, t).
Using the equations of the previous section this gives for k ≪ k∗

ζχ(x) = − H

2|m(tnl)|
〈χ̇2(tnl)〉

〈χ̇2(tnl)〉+ φ̇2(tnl)

δχ2(x, tnl)

〈χ2(tnl)〉
, (32)

and

Pζχ(k) ≃
[

H

2|m(tnl)|
〈χ̇2(tnl)〉

〈χ̇2(tnl)〉+ φ̇2(tnl)

]2(
k

k∗

)3

. (33)

At k ≫ k∗, Pζχ is negligible because χk is. The spectrum therefore peaks at k ∼ k∗.

If 〈χ̇2(tnl)〉 ≫ φ̇2(tnl) we have ρ̇ ≃ ρ̇χ, which means that the slice of uniform ρ is practically
the same as the one of uniform ρχ. In turn, that is the same as the slice of uniform χ.
In general the formula ζ = δN holds only after smoothing ρ and p on a scale big enough

that the local continuity equation is satisfied. In our case though, that equation is satisfied
on all of the scales k ≫ k∗ on which ζχ is significant. Therefore, the formula ζχ(x) =
δN(x, tnl, t1) makes sense on all of these scales. In the opposite regime k ≪ k∗, ζχ will be
negligible simply because δχ2 is, its exponential growth not having begun. Thefore, Pζχ

peaks at k∗ whether that scale is super-horizon or sub-horizon.
We want to see whether the black hole bound of Section II is satisfied by Eq. (33). The

situation is simple if k∗ is super-horizon. Then, ζ is of the form Eq. (1) with the minus sign,
and the black hole bound is Pζχ(k∗) < 6 which is well satisfied.
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If instead k∗ is sub-horizon, we have to remember that the black hole bound refers to
horizon-sized regions. To apply it, we must drop sub-horizon modes of ζχ. Estimating the
bispectrum, trispectrum as in [2], one sees that this makes ζχ nearly gaussian. The black
hole bound is therefore roughly Pζχ(H) <∼ 10−2. Since k∗ ≫ kend and |m(t)| ≫ H , it too is
presumably satisfied.
Earlier calculations of ζχ are reviewed in [2], including the one in [5]. A continuation of [5]

has since appeared [6]. These papers consider the potential V (φ) ∝ φ2, for which m2(t) ∝ t
is a good approximation. Their expression for ζχ (Eq. A(10) of [5] and Eq. (6.15) of [6]) is
the same as our Eq. (32), except that the middle factor is missing. However, the meaning
of δχ and 〈χ2〉 in the final factor is different in their expression from that in Eq. (32); χ in
their case is smoothed on the horizon scale whereas in our case it is not.

V. CONCLUSION

We have calculated the contribution to ζ generated during the linear era of the waterfall,
assuming that such an era exists and that exponential growth takes place during that era.
Such growth can occur only if the tachyonic mass of the waterfall field is m ≫ H (standard
hybrid inflation) which we therefore demand.
The calculation generalises [2], to the case of an arbitrary time-dependence of m2(t)

subject to it being slow enough to allow exponential growth. Because the dependence is
arbitrary, we cannot repeat the detailed investigation given in [2], of the parameter space
within which our calculation will apply. That could only be done with a specific inflaton
potential V (φ), which among other things would determine m2(t).
We have, as usual, considered only super-horizon modes of the curvature perturbation

ζ. The usual super-horizon treatment of ζ, based on the local energy continuity equation
does still hold for sub-horizon modes during the waterfall. But we have not used these
modes, and to do so would require evolution of the cosmological perturbations through to
the post-inflation era. In particular, that would be necessary if we were to discuss the
possible formation of black holes whose size is much smaller than the horizon scale at the
end of inflation.
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