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Abstract: We explore various aspects of the correspondence between dimer models

and integrable systems recently introduced by Goncharov and Kenyon. Dimer models

give rise to relativistic integrable systems that match those arising from 5dN = 1 gauge

theories studied by Nekrasov. We apply the correspondence to dimer models associated

to the Y p,0 geometries, showing that they give rise to the relativistic generalization

of the periodic Toda chain originally studied by Ruijsenaars. The correspondence

reduces the calculation of all conserved charges to a straightforward combinatorial

problem of enumerating non-intersecting paths in the dimer model. We show how

the usual periodic Toda chain emerges in the non-relativistic limit and how the Lax

operator corresponds to the Kasteleyn matrix of the dimer model. We discuss how

the dimer models for general Y p,q manifolds give rise to other relativistic integrable

systems, generalizing the periodic Toda chain and construct the integrable systems for

general Y p,p explicitly. The impurities introduced in the construction of Y p,q quivers

are identified with impurities in twisted sl(2) XXZ spin chains. Finally we discuss

how the physical concept of higgsing a dimer model provides an efficient method for

producing new integrable systems starting from known ones. We illustrate this idea by

constructing the integrable systems for higgsings of Y 4,0.
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1. Introduction

Integrable systems have a dense web of connections with gauge theories and string

theory. Integrable systems appear in a variety of contexts including Seiberg-Witten

theory [1], recent connections to the vacua of supersymmetric theories [2], and the

calculation of the spectrum of anomalous dimensions [3] and scattering amplitudes [4]

in super-Yang-Mills, to name a few.

Recently, Goncharov and Kenyon discovered an exciting correspondence between

integrable systems and dimer models [5]. According to their correspondence, every

dimer model defines an integrable system, whose conserved charges can be systemati-

cally calculated from perfect matchings.
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The correspondence sheds new light on integrable systems, with applications and

implications yet to be investigated. It provides new perspectives on integrable systems

that are naturally related to dimer models, such as 4d quiver gauge theories, D3-branes

probing toric Calabi-Yau 3-folds [6], mirror symmetry [7] and quantum Teichmüller

space [5, 8].

In this paper, we investigate various aspects of the correspondence from a physical

perspective. This work is organized as follows. Section 2 briefly reviews the relation

between dimer models and quiver theories, toric Calabi-Yaus and integrable systems.

Section 3 discusses the connection between integrable systems and 5d N = 1 and 4d

N = 2 gauge theories. In Section 4, we apply the correspondence, constructing a

relativistic generalization of the periodic Toda chain from the dimer models associated

to Y p,0 manifolds. We study the relation between the Kasteleyn and Lax operators, the

non-relativistic limit of the integrable system and how dimer models for general Y p,q

geometries produce alternative relativistic generalizations of the periodic Toda chain.

We also discuss the connection to twisted sl(2) XXZ spin chains with impurities. In

Section 5, we introduce a practical method for generating new integrable systems based

in higgsing and illustrate the method with explicit examples. We conclude and mention

future directions in Section 6.

2. Some Background

In this section we provide a lightning review of various concepts used throughout this

paper. When necessary, we indicate references for more thorough explanations.

Dimers and Quivers

Brane tilings, to which we will also refer to as dimer models, are bipartite graphs

embedded in a two-torus. The dual of a brane tiling is a planar, periodic quiver. There

is a one-to-one correspondence between brane tilings and periodic quivers [6] that is

summarized in the following dictionary:

Gauge Theory Brane Tiling

gauge group ↔ face

chiral superfield ↔ edge

superpotential term ↔ node

Every term in the superpotential of the gauge theory is encoded in an oriented

plaquette of the periodic quiver. Figure 1 exemplifies the correspondence for phase I

of F0 [9].
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Figure 1: Correspondence between the brane tiling and the periodic quiver for phase I of

F0.

Dimers and Calabi-Yau 3-folds

Quiver gauge theories that are described by brane tilings arise on the worldvolume of

stacks of D3-branes probing singular, toric Calabi-Yau (CY) 3-folds. The CY geome-

try emerges as the moduli space of vacua of the quiver gauge theory. The connection

between dimer models and quivers has trivialized the determination of the correspond-

ing CY geometry. GLSM fields in the toric description of the CY are in one-to-one

correspondence with perfect matchings of the dimer model. As a result, points in the

toric diagram correspond to (sets of) perfect matchings. This correspondence reduces

the task of finding the CY geometry to computing the determinant of the Kasteleyn

matrix [6].

Dimers and Integrable Systems

The dynamical variables of the integrable system correpond to oriented loops in the

brane tiling. One basis for such loops is given by the cycles going clockwise around

each face wi (i = 1, . . . , Ng, with Ng the number of gauge groups in the quiver) and

the cycles z1 and z2 wrapping the two directions of the 2-torus.1,2

1Since
∏Ng

i=1
wi = 1, one of the wi’s is redundant. This identity can also be exploited for simplifying

expressions.
2The analysis of some models, such as the ones in Section 4, can be considerably simplified by

choosing a different basis.
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The Poisson brackets between basis cycles are

{wi, wj} = ǫwi,wj
wiwj

{z1, z2} = 1 + ǫz1,z2
{za, wi} = ǫza,wi

(2.1)

where ǫx,y is the number of edges on which the loops x and y overlap, counted with

orientation. Then, ǫwi,wj
is simply the antisymmetric oriented incidence matrix of the

quiver.

The classical integrable system can be quantized replacing the Poisson brackets by

a q-deformed algebra of the form

XiXj = q{xi,xj}XjXi , (2.2)

where Xi = exi and q = e−i2π~.

Every perfect matching corresponds to a point in the toric diagram and defines

a closed loop by subtraction of a reference perfect matching. This loop can then be

expressed in terms of the basic cycles. When multiple perfect matchings correspond to

a given toric diagram point, their contributions must be added. Goncharov and Kenyon

showed that the commutators defined by (2.2) and (2.1) result in a (0+1)-dimensional

quantum integrable system in which the conserved charges are given by:

• Casimirs: they commute with everything. They are defined as the ratio between

contributions of consecutive points on the boundary of the toric diagram.

• Hamiltonians: they commute with each other and correspond to internal points

in the toric diagram.

In this paper we will not discuss the choice of reference perfect matching in detail,

we instead refer the interested reader to [5]. Different choices of the reference perfect

matching correspond to shifts in the toric diagram. These overall shifts do not affect

Casimirs (since they are defined as ratios of points in the toric diagram) but they

modify the Hamiltonian(s). Models with zero or one internal point are insensitive to

this choice, since they have zero or one Hamiltonians. The choice of reference perfect

matching becomes important for models with more than one internal point and can be

straightforwardly determined by demanding the Hamiltonians to commute.

Following [10] (see also [11] for applications), we define the magnetic flux through

a loop, γ, in terms of edges in the tiling as
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v(γ) =
k−1
∏

i=1

X(wi, bi)

X(wi+1, bi)
, (2.3)

where the product runs over the contour γ and bi and wj denote black and white

nodes. With this definition, the elements in our basis are wj ≡ v(γwj
), z1 ≡ v(γz1),

and z2 ≡ v(γz2). Another brief but more complete summary of the work in [5] can be

found in [8].

3. Integrable Systems from Dimers, 5d and 4d

5d Gauge Theories and Dimers

The integrable systems we are discussing can be derived from either dimer models or

5d gauge theories. The main object underlying all constructions is the spectral curve

Σ.

Dimer models encode the quiver gauge theory (and also the geometry) on D3-branes

probing a singular, toric Calabi-Yau 3-fold X. The toric singularity has a characteristic

polynomial P (z1, z2) =
∑

an1,n2 z
n1

1 zn2

2 , where (n1, n2) runs over points in the toric

diagram. The mirror Calabi-Yau is given by P (z1, z2) = W , W = uv. In this case, Σ

corresponds to the Riemann surface sitting at W = 0 in the mirror.

Nekrasov [12] proposed a non-perturbative solution for 5d gauge theories compact-

ified on a circle using relativistic integrable systems. From the Seiberg-Witten solution

[13, 14] a connection to integrable systems was proposed in [1]. In particular, the

spectral curve of the integrable system matches the Seiberg-Witten curve. Nekrasov’s

insight was to generalize the integrable system to a relativistic integrable system in

order to determine the corresponding Seiberg-Witten curve for the 5d gauge theory.

There are two possible ways to engineer such compactified 5d theories and Σ plays a

prominent role in both of them. First, we can construct them by wrapping an M5-

brane on Σ. This M5-brane is a de-singularization of a web of (p, q) 5-branes in Type

IIB, obtained after compactifying in a circle of radius β to pass to Type IIA and then

lifting to M-theory [15]. Alternatively, these theories can be obtained in the low energy

limit of M-theory on a Calabi-Yau 3-fold with vanishing cycles to decouple gravity

[16, 17, 18, 19]. The Calabi-Yau is the same X of the dimer construction, so we see

that Σ is also relevant from this perspective. Particle-like states arise from M2-branes

wrapped around SUSY 2-cycles.
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4d Gauge Theories and the Non-Relativistic Limit

The integrable systems constructed using dimer models (equivalently 5d gauge theories

compactified on a circle) are naturally relativistic. This is reflected, for example, in the

exponential dependence on momenta of the conserved charges. This fact is manifest in

the form of Poisson brackets (2.1).

The radius, β, of the circle on which the 5d gauge theory is compactified plays

the role of the inverse speed of light. The non-relativistic limit corresponds to taking

β → 0.3 In this limit, we obtain a 4d, N = 2 gauge theory whose Seiberg-Witten

curve is the spectral curve of the non-relativistic integrable system, which we denote

σ.4 Figure 2 summarizes the connection between 5d gauge theories, dimer models,

integrable systems and their non-relativistic (4d) limits.

Seiberg−Witten curveσ

β     0

Integrable System

Non−Relativistic
4d N=2 gauge theory

ΣM5−brane wrapped on

5d N=1 gauge theory

on S1

M−theory on CY3
ΣSpectral curve 

Relativistic

Integrable System
Σ inside the mirror

Dimer Model

ip      0

Spectral curve σ

Figure 2: Dimer models and 5d, N = 1 gauge theories compactified on an S1 correspond

to different perspectives on the spectral curve Σ. The 4d, N = 2 limit of the gauge theory

corresponds to a non-relativistic limit of the integrable system.

4. The Periodic Toda Chain

In this section we show the correspondence from [5] at work in explicit examples, using

3Also interesting is the decompactification limit β → ∞, in which the 5d perturbative solution [20]

is recovered
4As explained in Section 2, dimer models are in one-to-one correspondence with 4d (generically

N = 1) quiver theories. These quivers thus provide other 4d gauge theories naturally associated to

the integrable systems. In what follows, whether we refer to the 4d N = 2 or quiver gauge theories

should be clear from the context.
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dimer models to construct (relativistic generalizations) of the periodic Toda chain. The

relativistic, periodic Toda chain was first introduced in [21] and studied in connection

with 5d gauge theories in [12]. These integrable systems arise from dimer models,

equivalently quiver gauge theories, associated to Y p,q manifolds [22]. The associated

spectral curves, Σ, correspond to 5d, N = 1, SU(p) gauge theory with no flavors

and different values of a quantized parameter controlling the cubic couplings in the

prepotential.

4.1 Y p,0 Integrable Systems

Integrable system

Let us now consider general Y p,0 geometries. Our goal is to make contact with the

relativistic Toda chain for arbitrary p. For concreteness, let us focus on the case in

which p is even. The shape of the unit cell depends on whether p is even (rectangle)

or odd (rhombus). The dimer model for the conifold corresponds to a square lattice

[23]. The cone over Y p,0 is a Zp orbifold of the conifold. As a result, its dimer model

is given by a square lattice with an enlarged unit cell, given by p copies of the one for

the conifold, as shown in Figure 3.

The reference perfect matching and z1 and z2 paths for Y
p,0 are shown in Figure 4.

Figure 5 shows the toric diagram for Y p,0, with even p. The system has a Z2 symmetry

corresponding to choosing the opposite corner of the toric diagram as the reference

perfect matching. The Z2 symmetry interchanges the Hamiltonian with its dual [26].

The construction of the associated integrable system is considerably simplified by

an appropriate choice of basis of 2p+2 cycles, instead of wi and zj . Figure 6 shows 2p

of the loops. There are two additional cycles, with winding numbers (−p/2− 1, 1) and

(−p/2 − 1,−1) around the z1 and z2 directions, which correspond to the green points

in Figure 5. They are mapped to two Casimirs and are hence fixed.

The non-vanishing Poisson brackets are

{ck, dk} = ckdk {ck, dk+1} = −ckdk {ck, ck+1} = −ckck+1 (4.1)

The Hamiltonian corresponds to the (−1, 0) point in the toric diagram and is given by

H1 =

p
∑

i=1

(ci + di) . (4.2)

Equations (4.1) and (4.2) precisely agree with the Poisson brackets and Hamiltonian

for the general periodic relativistic Toda chain [25, 26]. The ci and di variables can be

expressed in terms of position and momentum variables with canonical commutation

relations as follows
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2p−1

2p

p−1
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p+4
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1

2

3

4

2

i

p+2

p+3

p
2p−1

p+1
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Figure 3: Brane tiling for Y p,0 with even p. We indicate the numbering of nodes in blue.

ci = exp(pi − qi + qi+1)

di = exp pi . (4.3)

Using the ci and di cycles, determining the additional (p− 2) higher Hamiltonians

reduces to a straightforward combinatorial problem. The Hn Hamiltonian, associated

with the (−n, 0) point in the toric diagram, corresponds to the sum of all possible

combinations of n of these cycles with the condition that they do not overlap or touch

at any vertex of the tiling. For example, for Y 4,0 we have:

H2 = (c1c3 + c2c4) + (c1(d3 + d4) + c2(d4 + d1) + c3(d1 + d2) + c4(d2 + d3)) (4.4)

+ (d1d2 + d1d3 + d1d4 + d2d3 + d3d4) ,

H3 = (d2d3d4 + d1d3d4 + d1d2d4 + d1d2d3) + (c1d3d4 + c2d4d1 + c3d1d2 + c4d2d3) .
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ref. p.m. 2zz1

Figure 4: Reference perfect matching and z1 and z2 paths for Y p,0.

p/2+1

Figure 5: Toric diagram for Y p,0 (shown in the figure for p = 6). The reference perfect

matching is circled in red. By construction, its position in the (z1, z2) plane is (0, 0). The

green dots correspond to cycles with windings (−p/2− 1, 1) and (−p/2− 1,−1).

4.2 Kasteleyn matrix

Let us construct the Kasteleyn matrix for the dimer model in Figure 3. It is convenient

to label edges according to whether they are horizontal (H and H̃) or vertical (V and

Ṽ ). H edges are those at the center of the tiling and H̃ are those crossing the edge of

the unit cell. In addition:

V : vertical with black node at top endpoint

Ṽ : vertical with white node at top endpoint

Finally, let us call Hi and H̃i the edges connecting nodes i and n+ i, Vi ≡ Vi+1,p+i

and Ṽi ≡ Ṽi,p+i+1. Subindices indicate nodes on the tiling and are identified mod(2p).

In these variables, the Kasteleyn matrix is

9



even ieven ii=1,...,p

cc i−1d i i

iii

Figure 6: 2p of the cycles in a convenient basis for Y p,0. Notice that the c cycles only exist

for even i.

Kp =



























p+ 1 p+ 2 p+ 3 · · · 2p− 1 2p

1 −H1 − H̃1 z1 Ṽ1 Vp z2
2 V1 H2 + H̃2 z

−1
1 Ṽ2

3 V2
. . .

...
. . .

p− 1
. . . Ṽp−1

p Ṽp z
−1
2 Vp−1 Hp + H̃p z

−1
1



























(4.5)

Notice the alternating overall sign of the terms on the diagonal.

4.2.1 Non-Relativistic Limit

The Kasteleyn matrix (4.5) and the Lax operator of the non-relativistic periodic Toda

chain [27, 28] are strikingly similar. We now make this connection explicit by first

expressing the edge variables in terms of coordinates and momenta and then taking the

non-relativistic (i.e. small momentum) limit.5 We define

5The definitions in (4.6) are reasonable, rather symmetric and simple. We later check that they

are indeed consistent with the wi commutation relations.
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Vi = Ṽi ≡ eqi−qi+1

Hi = −H̃i
−1

≡ e(−1)ipi/2
(4.6)

and

z1 ≡ e−z z2 ≡ w (4.7)

In the next section, we explain how these definitions and canonical Poisson brackets

{pi, qj} = δij are in agreement with the Goncharov-Kenyon Poisson brackets.6

Taking the small momenta limit (i.e. linear order in pi and z) of the Kasteleyn

matrix (4.5), we conclude that

detKp = det(Lp(w)− z) (4.8)

with

Lp(w) =























p1 eq1−q2 eqp−q1 w

eq1−q2 p2 eq2−q3

eq2−q3 . . .
. . .

. . . eqp−1−qp

eqp−q1 w−1 eqp−1−qp pp























(4.9)

which is precisely the Lax operator of the non-relativistic periodic Toda chain. Notice

that the previous analysis nicely associates coordinates and momenta with the vertical

and horizontal directions of the square lattice, respectively.

4.2.2 Loop Poisson Brackets from Edges

In the previous section we have expressed edges of the brane tiling in term of coordinates

and momenta in such a way that the Lax operator of the periodic Toda chain is obtained

from the Kasteleyn matrix of the dimer model by taking the non-relativistic limit. We

now show how the commutation relations among loop variables given by the Goncharov-

Kenyon rules are recovered from our edge definitions and the {pi, qj} Poisson brackets.

Consider Y p,0 with even p. Using equation (2.3), we have

odd i: wi = Hi V −1
i Hi+1 Ṽ −1

i wp+i = H̃−1
i Ṽi H̃−1

i+1 Vi

even i: wi = H−1
i Vi H−1

i+1 Ṽi wp+i = H̃i Ṽ −1
i H̃i+1 V −1

i

(4.10)

i = 1, . . . , p. From (4.10) and the canonical Poisson brackets {pi, qj} = δij (which

become [pi, qj] = −i~ δij in the quantum theory) we can calculate

6Changing from the basis of coordinates and momenta in (4.6) to the one in (4.3) is straightforward.
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{A,B}

AB
=





















































w1 w2 · · · · · · · · · wp wp+1 wp+2 · · · · · · · · · w2p

w1 2 2 −4

w2 −2 −2 4

w3 2 2 −4
...

. . .
. . .

. . .

wp−1 2 2 −4

wp −2 −2 4

wp+1 4 −2 −2

wp+2 −4 2 2

wp+3 4 −2 −2
...

. . .
. . .

. . .

w2p−1 4 −2 −2

w2p −4 2 2





















































(4.11)

which, modulo an unimportant overall scaling, are exactly the Poisson brackets that

follow from Goncharov-Kenyon prescription! This scaling can be absorbed in the value

of ~ in the quantum theory. It is important to notice that the final result depends

crucially on the details of (4.6), such as the sign of the exponents, which are also vital

for obtaining the correct non-relativistic limit. An interesting example that depends

on these details is {wi, wp+i+1} = 0.7

4.3 More Relativistic Generalizations of Toda from Y p,q

The integrable models based on Y p,0 are not the only possible relativistic generalizations

of the periodic Toda chain. In fact, as we now discuss, all Y p,q geometries give rise to

valid generalizations. The corresponding toric diagram is shown Figure 7.8

M-theory on the CY cones over Y p,q geometries gives rise to 5d, N = 1, pure SU(p)

gauge theories. The theories differ in the value of ccl, which is a quantized parameter of

the theory that controls the cubic couplings in the exact quantum prepotential, related

to a five dimensional Chern-Simons term [19]. For Y p,q, we have ccl = q.

The distinction between theories with different values of ccl disappears when taking

the non-relativistic limit. This fact is clearly manifest at the level of the spectral curve.

7Of course, the variables in (4.6) also reproduce the Poisson brackets (4.1) for the basis of cycles

we considered in Section 4.1. Those cycles are typically written in terms of coordinates and momenta

such that horizontal lines are equal to ep
′

i and squares are equal to eq
′

i−q′i+1 . The pi and qi considered

in this section are the ones in which the Lax operator takes the form (4.9), but can be mapped to p′i
and q′i by an appropriate change of variables.

8The toric diagram in Figure 5 can be put into this form by an SL(2,Z) transformation.

12



(0,0)

(−1,p−q)

(p,p)

(1,0)

Figure 7: Toric diagram for the cone over Y p,q.

The spectral curve associated with Y p,q and the manipulations for taking its non-

relativistic limit have repeatedly appeared in the literature (see for example [30], which

we now follow).9 The spectral curve, Σ, can be written as

z1 + α
zp−q
2

z1
+ Pp(z2) = 0 (4.12)

with Pp(z2) a degree p polynomial. We can rewrite Σ as

y2 =

p
∏

i=1

(z2 − eφi)2 − 4e−tBzp−q
2 (4.13)

In order to take the non-relativistic (4d) limit, we define

z2 = eβx , eφi = eβai,i+1 , e−tB =

(

βΛ

2

)2p

(4.14)

with ai,i+1 = ai−ai+1. From our perspective, it is clear that not only z2 but also the φi

variables and tB must be rescaled when taking the non-relativistic limit since they are

controlled by the wi variables, which are momentum dependent. In the β → 0 limit, Σ

becomes

y2 =

p
∏

i=1

(x− ai,i+1)
2 − 4

(

λ

2

)2p

, (4.15)

which is the Seiberg-Witten curve for the pure N = 2 SU(N) gauge theory. As we

have anticipated, the dependence on q has disappeared. Reversing the reasoning, we

conclude that all Y p,q manifolds (i.e. for arbitrary values of q) give rise to integrable

systems that can be considered relativistic generalizations of the periodic Toda chain. In

the next section we discuss the Y p,p geometry and its corresponding integrable system.

9In fact, this correspondence of the spectral curve is the original reason why we identify Y p,q dimer

models as giving rise to relativistic generalizations of the periodic Toda chain.
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4.4 Y p,p Integrable Systems

We now construct a new infinite family of relativistic integrable systems associated

with Y p,p. From the discussion in section 4.3, we know that these systems also reduce

to the periodic Toda chain in the non-relativistic limit.

The cone over Y p,p is the C3/Z2p orbifold. Its brane tiling consist of two columns

of p hexagons [6] as shown in Figure 8.

2p

i=1,...,p

2p

p+3

p+2

p+1

p

3

2

11

2

3

p

p+1

p+2

p+3

i=1,...,p

u i id

ii

Figure 8: Brane tiling for Y p,p. A convenient basis for Y p,p is given by the ui (up) and di
(down) cycles, i = 1, . . . , p.

Figure 9 shows the toric diagram for Y p,p, where the reference perfect matching is

indicated with a red circle. As for Y p,0, the analysis of these models is simplified by

a convenient choice of basis for closed cycles. Figure 8 shows 2p of them. There are

two additional cycles with windings (−p, 1) and (−p,−1) along the (z1, z2) directions.

They correspond to the green points in Figure 9 and are fixed by the Casimirs.

The Hamiltonian associated to the (−1, 0) point in the toric diagram takes the

simple form

H1 =

p
∑

i=1

(ui + di) . (4.16)

Similar to our analysis of Y p,0, determining the Hamiltonians for the (−n, 0) points is

very simple in the ui and di basis. Finding the nth Hamiltonian reduces to determining
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p

Figure 9: Toric diagram for Y p,p (shown in the figure, p = 3). The reference perfect matching

is circled in red. By construction, its position in the (z1, z2) plane is (0, 0). The green dots

correspond to cycles with windings (−p, 1) and (−p,−1).

all possible combinations of n cycles that do not overlap or intersect at nodes of the

tiling. For example, the higher Hamiltonians for Y 4,4 are

H2 = u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4

+ d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4

+ u1d3 + u1d4 + u2d4 + u2d1 + u3d1 + u3d2 + u4d2 + u4d3 ,

H3 = u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4

+ u1d3d4 + u2d4d1 + u3d1d2 + u4d2d3

+ d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4

+ d1u2u3 + d2u3u4 + d3u4u1 + d4u1u2 ,

H4 = u1u2u3u4 + d1d2d3d4 . (4.17)

4.5 Y p,q Integrable Systems as Spin Chains

We have identified the family of integrable systems associated to the Y p,q dimer models

in the previous section. Previously the integrable systems identified with the Y p,q

spectral curves were described as twisted sl(2) XXZ spin chains with impurities [31].

We will now explain the equivalence of these apparently different descriptions.

The sl(2) spin chains are described by N “spins” Ψi where i = 1, . . . , N. The spin

operators satisfy the commutation relations

{S±, S0} = ±S±, {S+, S−} = sinh 2S0

where the raising and lowering operators S± = S1 ± iS2 are defined as usual. Integra-

bility of the spin chain can be shown starting from the auxiliary linear problem for the
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Lax matrix

Li(µ)Ψi(µ) = Ψi+1(µ)

with twisted boundary conditions implemented by the identification

Ψi+N(µ) = −wΨi(µ).

The spectral curve of the spin chain is given by the determinant of the transfer matrix,

det(T (λ) + w 1) = 0,

where the transfer matrix is defined by the product of the two-by-two Lax matrices

T (λ) ≡ LN (λ) . . . L1(λ).

Impurities are added to the spin chain by performing a site-dependent shift of

variables for the Lax matrices Lj(µ). Y
p,q quiver gauge theories can be constructed

by starting from Y p,p and adding (p − q) impurities [22]. Amusingly, the spin chain

and quiver impurities are precisely the same. This reflects the well-known phenomena

that the same integrable system can have different Lax representations. Since the Lax

matrices for all of the Y p,q quiver gauge theories are tridiagonal [6], we can re-write the

determinant of the Lax matrix in spin-chain form using the following identity

det













a1 b1 c0

c1
. . .

. . .
. . .

. . . bN−1

b0 cN−1 aN













= (−1)N−1

(

∏

j

bj +
∏

j

cj

)

+ TrLNLN−1 . . . L1

where

Lj =

(

aj −bj−1cj−1

1 0

)

.

Thus we can re-write the the spectral curve as

det(T (λ) + w1) = w2 + wTrT (λ) + det T (λ).

Under a suitable change of variables, it should be straightforward to show that this

representation matches the XXZ form proposed in [31]. For the relativistic, periodic

Toda chain this change of variables appears in [29].
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5. Generating New Integrable Systems via Partial Resolution

In this section we explain how to determine the integrable system associated with a

partial resolution, given the one for the parent theory. This is a useful way of obtaining

new integrable systems from known ones. Starting from a relatively complicated ex-

ample, partial resolution provides a practical way of deriving new integrable systems,

much faster in practice that going through the process of expressing the new system in

terms of loop variables. This method is so efficient that it is natural to expect that it

has a counterpart in the integrable system literature.

We will focus on minimal partial resolutions, which correspond to removing ex-

tremal perfect matchings (i.e those located at corners of the toric diagram) one at

a time.10 In addition, it might be necessary to simultaneously remove non-extremal

perfect matchings. The result of this process is a new toric diagram in which the

multiplicity of each new extremal perfect matching is one and some of the internal

multiplicities might also change. From a quiver point of view, partial resolution cor-

responds to turning on non-zero vacuum expectation values (vevs) for bifundamental

fields Xij and then higgsing nodes i and j.11 This operation might result in mass terms

for some fields, which can be integrated out using their equations of motion. From

a dimer model perspective, partial resolution corresponds to removing from the tiling

the edges associated to the fields with non-zero vevs. As a result, some of the adjacent

faces in the tiling are merged into a single new face. The integration of massive fields

maps to the removal of 2-valent vertices that might be generated in the process by

condensing the nodes at the endpoints of the two edges terminating in them.

The standard understanding of partial resolutions using dimer models is that all

perfect matchings containing the edge associated with Xij are removed [6]. Following

the connection between bifundamental fields and perfect matchings given in [6], we see

that all these perfect matchings (which are interpreted as GLSM fields) need to acquire

a non-zero vev in order for the bifundamental to get one.

In the integrable systems context, the fundamental objects are closed loops rather

than individual perfect matchings. In fact, even the reference perfect matching might

disappear when applying the discussion in the previous paragraph. It is straightforward

to adapt the previous reasoning to loops: partial resolution removes all loops that

contain an edge that gets a non-zero vev.

From a brane tiling perspective, the edge associated to Xij is deleted and faces i

and j are combined into a single face. Consequently, we start from two cycles wi and

10The implementation of more general partial resolutions using dimer models has been discussed in

great detail in [32]. We will restrict ourselves to minimal ones in this paper.
11Notice that, given a quiver, not all possible higgsings correspond to consistent partial resolutions.
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wj and end with a combined cycle wi/j = wiwj as shown in Figure 10.

i/jw i jw w

Figure 10: Combination of gauge group cycles when higgsing by a vev associated to the

blue edge.

The following rules produce the integrable system for the partially resolved geom-

etry:

1) Remove loops that contain an edge with a non-zero vev.

2) Re-express the surviving loops with the replacement (wiwj) → wi/j.

More practically, the loops that are removed in rule (1) are those that cannot be

re-written using rule (2).

In some cases, a zi path can involve an edge that is removed when higgsing, as

shown in Figure 11. If so, the path can be redefined by using a wj to make the path

wiggle appropriately, avoiding this edge. Equivalently, we could have chosen a different

set of zi paths in the parent theory such that they do not involve higgsed edges.

jw −1z iw jiz

i
~z

Figure 11: Redefinition of one of the paths that winds around the T2, zi = z̃iwj , after partial

resolution by turning on a vev for the blue edge.
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5.1 Examples: Partial Resolutions of Y 4,0

We now illustrate our ideas in the explicit case of partial resolutions of Y 4,0. Partial

resolution can either preserve or reduce the genus of the spectral curve (i.e. the number

of Hamiltonians). The examples that follow exhibit the latter behavior.

In this section we depart from the notation for edges we used for general Y p,0 in

Section 4.2, which was specially devised for giving the Kasteleyn matrix a nice form.

Here our emphasis is on higgsing, so we explicitly indicate the gauge groups under

which bifundamentals are charged using subindices. Vij and Ṽij indicate vertical edges

in the first and second columns of the brane tiling, respectively. Horizontal edges are

denoted Hij.

1

ij

V ij
~

ijV

84

7

6

5

3

2

H

Figure 12: Brane tiling for Y 4,0.

Figure 13 shows the resolutions we will consider. The number of gauge groups in

the associated quivers is given by twice the area of the toric diagrams. This implies

that the number of bifundamental expectation values that need to be turned on is equal

to twice the decrease in area of the toric diagram.

The starting point is the integrable system for Y 4,0. In the table below, (n1, n2)

gives the (zn1

1 zn2

2 ) contribution. Every term in a given contribution arises from a loop in

the tiling or equivalently from a perfect matching. Hamiltonians correspond to internal

points and Casimirs are given by the ratio of consecutive points on the boundary.

Instead of the basis of cycles used in Section 4.1, here we use the wi (which correspond

to gauge groups), z1 and z2 basis, since it makes higgsing more transparent.
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8

Y

7
6

H23, H56, H41, H78

4

H23, H56

2

~~
V15, V37, V62, V84

464

8
16

4,0

(b)

(c)

(a)

Figure 13: Toric diagrams for Y 4,0 and various of its partial resolutions. We indicate the

multiplicity associated with each point and the non-zero vevs that need to be turned on.

Higgsing takes the number of Hamiltonians from 3 in the original theory to a) 2, b) 1 and c)

0.

(n1, n2) Loops

(0, 0) 1

(−1, 0)
w4 + w4w8 + w4w7w8 + w3w4w7w8 + w2w3w4w7w8

+w2w3w4w6w7w8 + w2w3w4w5w6w7w8 + 1

(−2, 0)

w−1
1 w−1

5 w4 + w4w8 + w−1
1 w4w8 + w−1

1 w−1
5 w4w8

+w−1
1 w−1

5 w−1
6 w4w8 + w4w7w8 + w−1

1 w4w7w8 + w−1
1 w−1

5 w4w7w8

+w3w4w7w8 + w−1
1 w3w4w7w8 + w−1

1 w−1
5 w3w4w7w8 + w2w3w4w7w8

+w−1
1 w−1

5 + w3w
2
4w7w8 + w2w3w

2
4w7w8 + w3w

2
4w7w

2
8

(−3, 0)
w−1

1 w−1
5 w4w8 + w−1

1 w−1
5 w−1

6 w4w8 + w−1
1 w−1

5 w4w7w8 + w−1
1 w−1

5 w3w4w7w8

+w−1
1 w−1

5 w3w
2
4w7w8 + w3w

2
4w7w

2
8 + w−1

1 w3w
2
4w7w

2
8 + w−1

1 w−1
5 w3w

2
4w7w

2
8

(−4, 0) w−1
1 w−1

5 w3w
2
4w7w

2
8

(−2, 1) w−1
1 w4w7w8

(−2,−1) w2w3w
2
4w7w8

(5.1)
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Higgsing a

Model (a) in Figure 13 is obtained by giving non-zero vevs to both H23 and H56. There

are other choices of expectation values that lead to the same result. Figure 14 shows

the corresponding brane tiling.

5/6

1

7

4 8

2/3

Figure 14: Brane tiling for model (a) obtained by higgsing Y 4,0.

The resulting integrable model is given by:

(n1, n2) Loops

(0, 0) 1

(−1, 0)
w4 + w4w8 + w4w7w8 + w2/3w4w7w8

+w2/3w4w5/6w7w8 + 1

(−2, 0)
w4w8 + w−1

1 w4w8 + w−1
1 w−1

5/6w4w8 + w4w7w8

+w−1
1 w4w7w8 + w2/3w4w7w8 + w2/3w

2
4w7w8

(−3, 0) w−1
1 w−1

5/6w4w8

(−2, 1) w−1
1 w4w7w8

(−2,−1) w2/3w
2
4w7w8

(5.2)

Higgsing b

Model (b) corresponds to turning on vevs for H23, H56, H78 and H41. The resulting

brane tiling is shown in Figure 15.

The edge associated to H41 is contained in the original z1 path, which thus needs

to be redefined. We can consider a new path z̃1 given by z1 = z̃1w
−1
1 . The inte-

grable system is summarized in (5.3), where now (n1, n2) corresponds to the (z̃n1

1 zn2

2 )

contributions.
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1/4

2/3

5/6

7/8

1/4

Figure 15: Brane tiling for model (b) obtained by higgsing Y 4,0.

(n1, n2) Loops

(0, 0) 1

(−1, 0) w4/1 + w4/1w7/8 + w2/3w4/1w7/8 + w2/3w4/1w5/6w7/8

(−2, 0) w4/1w7/8 + w2/3w
2
4/1w7/8

(−2, 1) w4/1w7/8

(−2,−1) w2/3w
2
4/1w7/8

(5.3)

Higgsing c

Finally, model (c) follows from turning on vevs for V15, V37, Ṽ62 and Ṽ84. The corre-

sponding brane tiling is shown in Figure 16.

This time both V15 and V37 overlap with the original z2 path, which can be re-

defined according to z2 = z̃2w1w3. Denoting (n1, n2) the (zn1

1 z̃n2

2 ) contribution, (5.4)

summarizes the resulting integrable system.

(n1, n2) Loops

(0, 0) 1

(−1, 0) w8/4 + w3/7w8/4 + w6/2w3/7w8/4 + 1

(−2, 0) w8/4 + w−1
1/5w8/4 + w3/7w8/4 + w−1

1/5w3/7w8/4 + w−1
1/5 + w3/7w

2
8/4

(−3, 0) w−1
1/5w8/4 + w−1

1/5w3/7w8/4 + w3/7w
2
8/4 + w−1

1/5w3/7w
2
8/4

(−4, 0) w−1
1/5w3/7w

2
8/4

(−2, 1) w3/7w8/4

(5.4)
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4/8

4/8

1/5

2/6

3/7

Figure 16: Brane tiling for model (c) obtained by higgsing Y 4,0.

From an integrability point of view, this model is trivial, i.e. it only consists of

Casimirs. From a quiver perspective, the reason for this is that, as one can deduce from

Figure 16, the associated quiver is fully non-chiral. This implies that all commutators

vanish.

6. Conclusions and Outlook

We have investigated various applications of the correspondence between dimer mod-

els and integrable system introduced by Goncharov and Kenyon in [5]. We used it to

explicitly construct relativistic generalizations of the periodic Toda chain associated

to Y p,0 and Y p,p geometries. In these models, the calculation of commuting Hamilto-

nians reduces to the combinatorics of non-intersecting paths on the brane tiling. We

investigated the connection between the Kasteleyn matrix and the Lax operator, the

non-relativistic limit of the integrable systems, additional relativistic versions of the

periodic Toda chain based dimer models for general Y p,q geometries, and the identifi-

cation of quiver impurities and spin chain impurities. Finally, we introduced a method

for generating new integrable systems based on higgsing. We can envision, and are cur-

rently pursuing, multiple directions in which the correspondence between dimer models

and integrable systems can be exploited. We discuss some of them below.

We have explained how higgsing is an efficient tool for generating new integrable

systems. The characteristic polynomials for the dimer models associated to Zn × Zm

orbifolds of arbitrary geometries, which correspond to n × m arrays of copies of the

original unit cell, can be determined using simple formulas [10]. These expressions have

been used for calculating the multiplicity of perfect matchings associated to points in the

toric diagrams of orbifolds [23]. It would be interesting to investigate whether there are
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analogous expressions for the integrable systems associated to orbifolds starting from

the integrable system for the unorbifolded geometry. New integrable systems could

then be generated by higgsing, using the orbifold theories as starting points.

It would be interesting to study the continuous limit of integrable systems arising

from dimer models. By this, we not only mean the infinite length limit of integrable

chains but also the (1+1)-dimensional field theory limit of fixed length systems. It

is reasonable to conjecture that field theories such as An Toda field theories can be

constructed in this way. Furthermore, it is natural to expect that dimer models are

useful for classifying (0+1)-dimensional, integrability-preserving defects and interfaces

that can be added to such field theories.

The work of [33] investigated the quantization of Riemann surfaces defined by

the vanishing of the A-polynomials of three-manifolds M that are the complement

of (thickened) knots or links. In the case of knots, the boundary of M is a 2-torus.

The decomposition of M into glued tetrahedra with truncated vertices gives rise to

a triangulation of the 2-torus, the developing map, whose dual is reminiscent of a

dimer model. On the other hand, [5] and [8] discussed the relation between dimer

models and quantum Teichmüller space. It is then natural to ask whether the existing

similarities indicate the existence of a true connection that associates dimer models to

three-manifolds that are knot complements.

One clear direction for further research is to explore the connection between quan-

tum integrable systems and gauge theories proposed by Nekrasov and Shatashvili [2].

By considering the 5d gauge theory on an Ω-background with ǫ1 = ǫ and ǫ2 = 0, the

classical integrable systems we have investigated become quantized. We now review

the interpretation of the quantization in terms of a B-brane on the spectral curve using

the refined topological string [34]. The mirror Calabi-Yau geometry takes the form

uv +H(x, p) = 0.

When the Ω-background is turned on, the classical spectral curve, Σ defined byH(x, p) =

0, is promoted to a quantum spectral curve

Ĥ(x, p)Ψ(x) = 0

where Ψ(x) is the wave-function for a B-brane. The quantum spectral curve is the

Baxter equation for the relativistic Toda chain [29]. The coefficients of H(x, p) are

the energy eigenvalues of the Hamiltonians (and Casimirs) of the quantum integrable

system. In the relativistic case, the differential operators ep̂ become shift operators,

acting on Ψ(x) by

ep̂Ψ(x) → Ψ(x+ ~).
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Solutions to this differential equation were obtained from the refined topological string

partition function in [34]. Thus the refined topological string should provide a way to

solve the Baxter equation for quantum integrable systems. We plan to elucidate this

connection in future work.

A graphical representation for the finite non-periodic Toda lattice, similar to dimer

models, was developed [35] using the Poisson geometry of planar directed networks in

an annulus [36]. The geometry of planar directed networks was developed in order

to study the totally nonnegative Grassmannian [42]. Our work suggests an intriguing

connection between the geometry of brane tilings and the totally nonnegative part of

the double loop Grassmannian.

In general, gauge theories arising from brane tilings have sequences of periodic

Seiberg dualities known as duality cascades [37]-[41]. According to [5], Seiberg duali-

ties correspond to canonical transformations of the integrable system. In terms of the

new variables the Hamiltonians will typically take a different functional form. However,

since cascades are periodic, we are interested in special canonical transformations that

preserve the functional form of the commuting Hamiltonians. Such canonical trans-

formations are known as auto-Bäcklund-Darboux transformations. For example, the

transformation [43]

c̃i = ci
di + ci−1

di+1 + ci
, d̃i = di+1

di + ci−1

di+1 + ci

is an auto-Bäcklund-Darboux transformation of the relativistic Toda chain because it

is canonical and the new Hamiltonian

H̃ =
∑

i

(

c̃i + d̃i

)

takes the same functional form as the original Hamiltonian. The theory of auto-

Bäcklund-Darboux transformations is closely related to the theory of separation of

variables and discrete-time integrable systems [44, 45]. Thus we expect a fruitful inter-

play between duality cascades and integrable systems.
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