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Abstract

We have proceeded the analogy, represented in our previous works, of the Einstein tensor and
the alternative form of the Einstein field equations for the generic coeflicients of the eight terms in
the third order of the Lovelock Lagrangian. We have found the constraint between the coeflicients
into two forms, an independent and a dimensional dependent versions. Each form has three
degrees of freedom, and not only the coefficients of the third order Lovelock Lagrangian do satisfy
the two forms of the constraints, but also the two independent cubic of the Weyl tensor satisfy the
independent constraint in six dimensions and yield the dimensional dependent version identically
independent of the dimension. Then, we have introduced the most general effective expression
for a total third order type Lagrangian with the homogeneity degree number three consisted of
the previous eight terms plus the new three ones among the all seventeen independent terms. We
have proceeded the analogy for this combination, and have achieved the relevant constraint. We
have shown that a few expressions given in the literature as the third Weyl-invariant combination
in six dimensions do satisfy this constraint. Thus, we suggest that these constraint relations to
be considered as the necessary consistency conditions on the numerical coefficients that a Weyl-
invariant should satisfy. Finally, we have calculated the classical trace anomaly (an approach
that was presented in our previous works) for the introduced total third order type Lagrangian
as a general expression with four degrees of freedom (in more than six dimensions, and three in
six dimensions). Then, we have demonstrated that the obtained expression contains exactly the
relevant coefficient of the Schwinger-DeWitt proper time method (that linked with the relevant
heat kernel coefficient) in six dimensions, as a particular case. Of course this result is a necessary
consistency test, but our approach may be regarded as allowing an alternative (perhaps simpler)
classical derivation of the trace anomaly that gives a general expression with the relevant degrees
of freedom.

PACS number: 04.20. — ¢ ; 04.50. + h ; 04.20.C'v ; 04.90. + ¢
Keywords: Higher Order Gravities; Non—Linear Lagrangians; Weyl Invariants; Heat Kernel Coefficients; Love-
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1 Introduction

In our previous work [1], we have highlighted that the splitting feature of the Einstein tensor
(as the first term of the Lovelock tensor [2]) into two parts — namely the Ricci tensor and the term
proportional to the curvature scalar — with the trace relation between them is a common feature of
each homogeneous term in the Lovelock tensor. We have emphasized that, indeed, this property can
been resulted through the variation procedure. Then, motivated by the principle of general covariance,
we have shown that this property can be generalized, via a generalized trace operator which we have
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defined and denoted by Trace notation (instead of the trace one), for any inhomogeneous Euler—
Lagrange expression that can be spanned linearly in terms of homogeneous tensors. And, as an
immediate application, we have demonstrated that the (whole) Lovelock tensor (which is constructed
of terms with a mixture of different orders) analogizes the mathematical feature of the Einstein tensor,
and hence, we have classified the Lovelock gravity as a generalized Einstein gravity.

Still motivated by the principle of general covariance, we have proceeded [3] further the analogy
and enforced the mathematical form of the alternative form of the Einstein field equations (as a
covariant form for gravitational field equations) for the relevant alternative form of the Lovelock field
equations. From this, we have found that the price for this analogy is to accept the existence of the
trace anomaly of the energy—momentum tensor even in classical treatments. Thus, we have actually
denoted [3] a classical view of gravitation which explicitly shows the presence of an extra anomalous
trace for the energy-momentum tensor with an indication of the constitution of the higher order
gravities towards it, exactly as what has been verified [4, 5, 6] in the quantum aspects of gravity.
Indeed, in the quantum theory, one relates and justifies the presence of the trace anomaly, classically,
to higher order gravities [7]. We have interpreted [8] that this classical procedure also indicates
compatibility with the Mach idea.

Then, we have employed [3] this procedure for any generic coefficients of the second order term
of the Lovelock Lagrangian. And thus we have gotten the resulted trace anomaly relation exactly
the same as the trace anomaly consistency constraint which had been suggested by Duff [9] in any
dimension. In addition to the second term of the Lovelock Lagrangian, the action constructed by
the square of the Weyl conformal tensor! which is the only local geometrical conformal invariant
in four dimensions, also satisfies this constraint relation (only) in four dimensions (note that, the
Weyl tensor is itself identically zero in three dimensions). This exact equality, between the trace
anomaly relation suggested by Duff and the constraint relation that the constant coefficients of any
generic second order Lagrangian must satisfy in order to hold the desired analogy, indicates that
there may exist an intriguing interplay here. Indeed, one may speculate that an intrinsic reason for
the existence of such a relation should perhaps be, classically, somehow related to the covariance?
of the form of Einstein’s equations [3]. That is, by employing the generalized trace relation, the
appearance of the trace anomaly may be interpreted as the Lovelock modification of gravity even
in the classical treatments. Though it is somehow a naive conjecture, nevertheless, it gives almost
an easy classical procedure to grasp the desired result which, besides what have been already given
in the literature [11, 13, 14, 15], may indicate of an intrinsic property behind it. Hence, as a main
advantage of this procedure, we have suggested [8] that this analogous of the Einstein tensor can even
be employed as a criteria in order to distinguish correct/legitimate metric theories of gravity which
are either homogeneous functions, or linear combinations of different homogeneous functions, of the
metric and its derivatives.

The analogy is also capable to provide dimensional dependent relations. Actually, we have derived
a dimensional dependent version of the Duff trace anomaly relation in Ref. [8], in where we have also
summarized the important achievements of the procedure. The Gauss—Bonnet term and the Weyl
squared do satisfy this dimensional dependent constraint relation in any dimension. This dimensional
dependent version of the Duff trace anomaly relation has also been re-derived in Ref. [16] (their
relation (7)) by classifying higher derivative theories of gravity whose the traced field equations have
a reduced order.

Now, in this work, we propose to probe further the analogy for the field tensor of the corresponding
generic coefficients of the third order term of the Lovelock Lagrangian, and then for any type of third

! According to the classification of Ref. [5, 10], based on the dimensional regularization and power counting, this
constraint indicates that in four dimensions (and indeed, in even dimensions), the anomaly can have two contributions,
a type A anomaly (the Euler density invariants) and a type B anomaly (built from the conformal invariants). Also,
a purely algebraic classification (independent of any regularization scheme) of the structure of the Weyl anomalies in
arbitrary space—time dimensions has been presented in Ref. [11].

2In the semi-classical approach of quantum gravity theory, which has been employed to deduce the trace anomalies,
the conformal invariance is sacrificed [12] to the needs of the general covariance (though, in contrary, see Ref. [13]).



order Lagrangian. For this purpose, we give a brief review on the trace idea, particularly on the
definition of the generalized trace tool in the following section. In Sect. 3, we provide the necessary
relations for the generic third order Lagrangian terms and their Euler-Lagrange expressions. Also,
in addition to the eight linearly independent terms, which appear in the third order of the Lovelock
Lagrangian, we specify the other linearly independent types of third order Lagrangian terms. Then,
in Sect. 4, based on the desired analogy, we derive the constraint relations among the constituent
coefficients of the generic third order Lagrangians in two forms, an independent and a dimensional
dependent versions. Hence, we match these relations for the two linearly independent scalars formed
by the cubic of the Weyl tensor. The other Weyl-invariants are investigated when we incorporate all
types of third order Lagrangian terms in Sect. 5. Actually, we first probe the trace analogy for the most
general effective expression that we will introduce as a total third order Lagrangian, and then examine
the resulted constraint relations for the numerical coefficients of the Weyl-invariants. We indicate the
classical view of the trace anomaly in six dimensions in Sect. 6, in where we also demonstrate that it
has an interesting similarity with the appropriate heat kernel coefficients. Conclusions are presented
in the last section, and some necessary formulations for the metric variation of a few Lagrangian
terms plus a few useful relations are furnished in the Appendix.

2 The Trace Idea Review

We follow the sign conventions of Wald [17] and, analogous to the Einstein field equations,
we assume geometry is proportional to matter in a way that the gravitational field equations are
Gg{gﬁrm') = K2 T,p/2, where the gravitational tensor, Gggﬁra“'), represents geometry, k2 = 167G /c? is
the constant of the proportionality and the lower case Greek indices run from zero to D — 1 in a
D-dimensional space-time. Actually, the gravitational tensor is the Euler—Lagrange expression given

in the process of the metric variation of the action, [ L(gravi) /= gdPr, ie.

ravi 6L(gravi.) 1 ravi a 1 ravi. a
5Lt -k/—ﬂ:[—agaﬁ — S9as L | =g ag7 = S GEM =gagt (1)

Also, analogous to the Einstein tensor, we demand
. . 1 .
G5 = RE™) = Sgap RE), (2)

with the trace relation between its two parts, exactly the same as the one yields between the Ricci
tensor and the Ricci scalar.

In addition to the Einstein tensor, the Lovelock tensor has also been employed as a gravitational
tensor. For example, the superstring theory, in its low energy limit, suggests that the Einstein—
Hilbert action should be enlarged by the inclusion of higher order curvature terms, and in order to
be ghost—free it has been shown [18] that it must be in the form of dimensionally continued Gauss—
Bonnet densities (i.e., the Lovelock Lagrangian terms). An important aspect of this suggestion is [19]
that it does not arise in attempts to quantize gravity. The ghost—free property and the fact that
the Lovelock Lagrangian is the most general Lagrangian which (the same as the Einstein—Hilbert
Lagrangian) yields the field equations as second order equations, have stimulated interests in the
Lovelock gravity and its applications in the literature? The Lovelock Lagrangian is [2]

L(Lovelock) _ i Z i cn 5211;22: Ra1a25152 . Ra%il a2n62n71 Bon — Z Cn L(n)7 (3)

2 n
K 2
0<n<®2 0<n<®

where we set ¢; = 1 and the other ¢, constants are of the order of the Planck length, ¢p = \/hG/c3,
to the power 2(n — 1), for making the dimension of L{ovelok) t6 be the same as L) = L, . = R/k%.

3For review on the inclusion of higher order Lagrangians see, e.g., Refs. [8, 20] and references therein.



The 5;11;‘;’ is the generalized Kronecker delta symbol, which is identically zero if p > D, and in
relation (3), the extremum value of n is related to the dimension of space-time by

%—1 even D
M, = (4)

£=l odd D.

Hence, the L(Lovelok) reduces to the Einstein-Hilbert Lagrangian in four dimensions, and its second
term is the Gauss—Bonnet invariant. The Lovelock tensor, as dimensionally reduction Euler-Lagrange
terms, is [2]
Lovelock 1 o 1 Bon
G( ovelock) _ Z ot Cn Gop 5!52!11.“5; Ra1a25152 - Ra%kla%ﬁz 1820 — Z cn G((I"B) , (5)
0<n<Z 0<n<Z

)

where the cosmological term has been neglected and the G, 5= Gag, i.e. the Einstein tensor. Relation

(5) can also be written as G(LOVdOCk) Rg“ﬁovebd{) — GapRIveI0N) /2 yhere [1]

Lovolock Z cn R aﬁ and R(Lovelock) _ I{2L(Lovelock) = Z cn R(n)’ (6)
0<n< g 0<n<Z

with R((xnﬁ) defined as

R(”) = n §orQ2...am BaBa .
n

O Ralaﬁ@ Rosay Ban—1 ﬁQn’ (7)

’ Ra2n71 a2p
where also Rg}g = R,p and R = R. With the usual definition of trace (i.e., the standard contraction

of any two indices), we obtain [1] traceR /n = R™ hence one cannot achieve a similar trace

relation for the two parts of the whole Lovelock tensor. However, we have showed [1] that with the
generalized trace (denoted by Trace, as distinct from the trace) operator, defined as follows, one

can modify the original form of the trace relation adequately, and achieves Trace fong) = R hence
Trace R(Lovelock) R(Lovelock) )

For a general ( ]\]\/[[) tensor which is a homogeneous function of degree h with respect to the metric
and its derivatives (denoted in brackets attached to the upper left—hand side of the tensor), we have
defined [1]

Trace [h]Aal,,,aN . { m trace M Ao OCNB B when h — % I % # 0
Bi..Bm =
1B trace M gor-an ;o when h — & + & =0,

(8)

where, without loss of generality, the homogeneity degree number (HDN) conventions of ¢g"” and
g o are taken to be one. The HDN of a term consisted of cross functions is obviously found by
adding the HDN of each of the cross functions. Hence, for example, when h' + h # —1 and b/ # 0,
one gets

htl (W10 Trace [h}AW for h # —1

Trace ([h/}c [h}AW) _ { W +h+1

: 9
% ("1 C Trace [h}AW for h = — ©)

and when h/ +h = —1 and I/ # 0, one has
Trace ([hl]C’ [h}Auy) = (h+1)WCTrace ™A, . (10)

Note that, as a homogeneous Euler—Lagrange expression has a uniform HDN, then one can work
with the usual trace instead of the generalized trace operator. However, the notion of the gener-
alized trace operator has been introduced to be effective when one considers the Einstein—Hilbert
Lagrangian plus higher order terms as a complete gravitational Lagrangian, i.e. when one works with
an inhomogeneous Lagrangian constructed linearly in terms of homogeneous terms.



3 Third Order Lagrangian Terms

The third order Lagrangian of the Lovelock Lagrangian is [21, 22, 23]

1
LB) = — (Ky — 12K + 3K3 + 16K, + 24K5 — 24K + 2K7 — 8K), (11)
K
where?
K, = R3, K> = RR,,,R", K3 = RR,,,, RP™,
K4 = RHVRMVRVPY ) KS = RpTRuVRM”V: Kﬁ = R)\pR)\T'LWRpTW/ )
K7 = R, R \,R 5 Kg = R ,,,R", ,R"’ ;. (13)

These third order terms are the only linearly independent scalar terms, and the corresponding third
order generic Lagrangian can be written as

7

generic

1
= p (blKl + by K9 + b3 K3 + by Ky + bs K5 + bg K¢ + by K7 + bgKg) R (14)

where the b;’s are arbitrary dimensionless constants, and obviously, in six dimensions, only seven of
these eight terms are effective (see identity (37)). From definition (5), the third term of the Lovelock
tensor is [21, 23]

%) = 3{ R? Ry — 4( R Ray Rg" + R Rapsy R* + R Ry R
+(2R Rapps Rg™" + R Rprpas R ) + 8( Ray, Ry R
~Reps R*R,) = 8 | (Rap Bor Rg"" + @ > B) = Ryar R Ry |
—4[(Bap Rovpr B*" + 04> B) + Raypr Rp”™ R
+2Ropru Ry R + Ropso RHPTA RVpT)\:| + 2Rou RBAPT RHveT
+8Ruyur Rppr” R‘”””} — %gag K2 LB, (15)

After some rather bulky calculations, the full appearance for the Euler—Lagrange expression of the
third order generic Lagrangian can be written either as

(generic)af generic

G = 3(Nag + Hap) — %gaﬁ (K L oric + M), (16)

or, inspired from the Euler-Lagrange expression (1) and assumptions

5 (eravi) /5 gaﬁ — R&gﬁmi') / ;2 and [ (eravi) — pgravi) / K2, (17)
as
nggzmic)aﬁ = 3(Noc6 + Hap — égaﬁ M(s)) - %“2 Jap Léso)noric ) (18)
where® [23]

M® = (—3b4 + 2b5)(K4 — K5) + (b5 + b6) (K6 — K7 — 2K8)

4 Any other relevant term can easily be written in terms of these eight terms, e.g.
R R* R »," = K7 /4 + Kg. (12)

Actually, according to Ref. [24], the dimension of the basis of local cubic invariants with the Riemann tensor (without
derivatives) is eight for D > 5 dimensions.
% Also, see relation (A.19).



—(12b1 + bg)Kg — (4b2 + 2b5)K10 — (4b3 + %b5 + bG)KH
—(2b2 + 3by — b5)K12 — (3b4 — 4bg — 2b6)K13 — (12b1 + 2by + Zb4) K5
— (4b2 + 4bs + 2b6)K16 — (4b3 + %bﬁ)Kl?, (19)

Nog = b1 R*Rop — %bgRRapRgp + g(b2 + 2b3 ) RR* Ry + %bgRagRWRW
+§b3RRaApoRBW + %bgRagR)‘p‘”RApM - %(55 + 2bg ) Ray R R
—(§b5 - %bﬁ — bs) Ropus R RY, — (%b4 - %bg—; - %b6)<Ra“RApR5’\p“
fae 5) + (—%bﬁ + bg)R,\ang)‘“”pRW — 9, (RwRWURMW

2 2
+ae 5) (b0 + 6b7) Ragurs R B 4 (b — bs ) R R R

1 1 oo o 2 3 , VA
+(§4b6 — 508) R R R s (=506 = by + 508 Raryus RT3y BRI
+(§b6 + 4b’? - 4b8)RauuTRﬁ)\pTRup)\y (20)

and
1,1 1 1,1
= | — _ - _ _ _ P
Haﬁ_{ (b1 + sbot 2705 ) RiaRys + 3(b2+4b3+ S0+ 5b6) R R,
1,1 1 1, 1

—_ — - Z [ - p
(b1+ 652+3b3)3}2a5+ ?(bg—i—;lbg)RRaﬁ;p + 6(b21+ 7bs) (R;p Rag
—2RWRW;,IB) — (5bs + gbo — 3bs) (R% " R + §RA,W;QBR*P”)

3°76

11, 1 1 2 1

(= _ _ Il _ —_ _ = wv
(3b2+3b5+2b8)RW;aR ;5+(2b4+ bg +2b7 2bg)ROWRB

3

—(%bs + éba + 2b7)RaMVR5”W — (%bg + éb8)R>\p0T;aR>\pUT;ﬁ

1 14 vV, 1 1 14
—f—g (b5 + bﬁ)<R‘u RQB;MV — RH ’pRaupg;V) — (555 + bg)(gR“,,;ppRa‘u 8
1 1 )
—R,W;apRﬁwjp> + (656 +b7 — Zbg)(R)\poa;q—RApTg’U — 4Rap; M,,ngjp)
1 1 4 1 1
_ _ uvs p _ (= _ - - 3P
+(%b6 blg)R 1 Rawlp;ﬁ (352 + 3b31+ 4b41+ 6%23 Rap: s
(= 2 b 2 p _(Zp, _ = Zhe —
(3b2 + 454 + ?bs + ?b6)R,a Rg, (254 3b5 + 3b6 bs)x
Rau; VRW;B + (5174 + gbG) (RapRﬁp; uu - RWROW; ﬁ”)] + as B (21)

As seen, in contrast to the GS’B), the G B is up to the fourth order jet—prolongation of the

(generic)
metric, as expected® The third and fourth order terms are due to the H,g and M () terms, which
will vanish if and only if the constant coefficients satisfy the ratios

by = —12by, by = 3by,  by=16b;,  bs = 24by,
bg = —24 by, by = 2b1,  bs = —8by. (22)

These conditions are exactly the ratios of the constituent coefficients of the special case of L®) that
leads to the Gfg Also, with the above ratios, the N,g term will be equal to its counterpart of the

®3)
GO{B'

SFor a few solutions (mainly the black hole solutions) to the curvature-cubed (sometimes also called the six derivative)
interactions, see, e.g., Refs. [25].



To amend the Lagrangian of sixth order gravity [26], Berkin and et al. [27] discussed that the
Lagrangian term of R[OR is a third order Lagrangian based on the dimensionality scale;” however,
it can be better justified on account of its HDN three. Indeed, to classify different gravitational
Lagrangian terms, it is straightforward to relate [1, 8] the order n in any Lagrangian (as in the
L(”)) to represent its HDN and referring to Lagrangians with their HDNs rather than their orders.
Hence, by gathering terms with the same HDN under one Lagrangian label, in addition to the eight
linearly independent terms, in D > 5 dimensions, which appear in the third order of the Lovelock
Lagrangian (and are up to the second order jet—prolongation of the metric), there are [23], in general,
another nine linearly independent scalar terms, constructed from the Riemann—Christoffel tensor and
its contractions, with the HDN three which are up to the third or even higher order jet—prolongation
of the metric. They all also satisfy the dimensionality scale, and are®

K9 = ROR K = R“,, OR* K = RHVPT OR*PT
Kio ERMVR;MV KlgEij;pR‘up;y K14E|:|2R
K15 = R; pR;p Kl(j = ij; pR,ul/;p Kl? = Ruupr;aRuym—;a7 (23)

where 00 =, ,”. Each of the K;’s gives a dimensionless action in six dimensions. Any other relevant
term, e.g. Ry, ,»RP*T, can be written in terms of these terms, see, e.g. the last relation of (A.1).
Besides, not all of their corresponding Euler—Lagrange expressions are independent; however, see the
Appendix A for the effects of these nine terms as scalar Lagrangians.

4 [P . With The Trace Property

generic

In this section, we investigate the analogy for the field tensor of the ng)ncric, and then, in the

next section, for any type of third order Lagrangian including those mentioned in (23). The relevant
23) . has been written as relations (16) and (18); however, we also
generic)a3

demand to have them as in (2), i.e. Ggineric)aﬁ = EZineric)aB

out whether, and for what conditions, the relation

Euler-Lagrange expression G

— oB Rg:’}noric /2, but propose to find

Trace R(s)

(generic)a

5 =R (24)

generic

(3)

can be valid. We carry out this investigation for both appearances of G( generic)ad

parts.

in the following two

Part (a): The Case ngzr)loric)aﬁ

In this case, from (16), we have Rgzzr)loric) = K2 L,S))noric + M®) and
Trace REZZB}eriC)aﬁ = 3(Trace Nqp + Trace Hag) . (25)

Using the definition of generalized trace and the fact that each of the N,g and H,g, and hence the
R has the HDN two [1], we get

(generic)aB?
1 1 2
Trace Naﬁ = g [blKl + bo Ko + b3K3 + (§b5 — bg)K4 + (b4 + §b5 + bg)K5
) 3 2 3 4
+(§b6 + 2b7 — §b8)K6 + (_gbﬁ — by + §b8)K7 + (—gbﬁ —4b7 + 4b8)K8] (26)
and

Trace Hop = % {(%z% - gbﬁ — Aby + 2bg ) (Kg — K7 — 2 Kg ) — (2b1 — %@ - gbg

"Since two derivatives are dimensionally equivalent to one Riemann-Christoffel tensor or any one of its contractions.
8See also Refs. [14, 24, 28].




1 2 2 2 1 1
—ébs)Kg + (—552 +bs+ b6 + b8)K10 + (—gbs - 6b5 + ébﬁ

3
3 2 4 1 1 1
2b7 — —bg | K11 — (=by — =b3 + by — =bs — =bg + =bg | K
+207 48) 11 (32 33-1-4 30 36+28) 12

4 1 1 1
—(b4 — by + 4b7)K13 + (—2[)1 + gbg — 11)4 + st + 656)K15

—(gbg by + 2

2 2 1 1
— Zbg — 4b7) K16+ (—=bs3 + — — ~bg) K1) . 2
. 305 — gbo — 4br) Kig+ (= 5ba + Zbo + by — 5bs) 17} (27)

6

Then, after all the necessary substitutions have been made, we find that the equality of (24) holds if
and only if the following conditions between those eight non-—zero constituent coefficients of ng)noric

are satisfied. That is, the constant coefficients are not all independent but obey the constraint

by = 2(—b2 + 4[)3)/3, bs = —60by — 8by — 4 b3,
bg = 30b1 +2by — 10 b3, b7:30b1—|—14b2/3—|—28b3/3,
bs = 100 by + 12by + 12 bs. (28)

These conditions are satisfied for (as must be the case) the non—generic Lagrangian LB ie. for
the coefficients given by relation (22)? Though, it is not only this Lagrangian that has the analogy

of the Einstein tensor and, using constraint (28), there are more combinations for Lg)e)?neric with three

degrees of freedom (out of its eight coefficients) that have the required trace property (see below for
other examples).

As mentioned, the ng)neric is a Lagrangian which gives Gggericm as in relation (16) with
Réiﬁlric = K2 Léi)noric + M®): however, one can define!”
27/ _ 2703 3
K Lgeneric =K Lgeneric + M( )’ (29)

where, as is shown in the Appendix A, the term M®) is a complete divergence (see relation (A.19))

and will give no contribution to the variation of the relevant action. Therefore, this new Lagrangian,
1(3) (3a)
Lgeneric7 G(generic)aﬁ
of the case L), the complete Lovelock Lagrangian (relation (6)) and the assumption (17).
®3)

generic

with R = 21/ which is analogous to the appearances

gives the same generic generic

for which more than three of the constituent coefficients are

zero (as, for example, not all of the terms in Lg)e)?neric have been given by the superstring theory!'!),

then the trace condition (28) cannot be satisfied. This is because the maximum number of coefficients
it permits at a time to be equal to zero (otherwise all of them will be zero) are generally two, and for
the following special cases, three. Therefore, those cases of Lg?nmc missing more than the permitted
terms cannot provide the trace relation. The following two cases are the only cases in which three
coefficients of the L,S))noric can simultaneously be made zero, in which we still have one degree of
freedom remaining to satisfy the trace condition. If one chooses by = 0 = b3, then constraint (28) will

give

If one wants to use cases of L

by =0, bs = —60bq, be = 3001, b7 = 3001, bs =100b1, (30)
and if one sets by = —20b; /3 and bs = —5b; /3, it then will read

by = 0, bs = 0, bg = 10001 /3, by = —50b, /3, bs = 0. (31)

9Just by choosing by = —12b1 and by = 3b; (as in (22)), constraint (28) then gives the remaining coefficients with
the same ratios as those of (22).

ONote that, although this L’ 3 s again up to the fourth order (and not up to the second order) jet—prolongation

generic

of the metric, its HDN is still three, identical to the Lgileric, in agreement with our demand by gathering terms with

the same HDN under one Lagrangian label.
"Gee, for example, Ref. [29)].



Similar to the Lagrangian constructed from the square of the Weyl tensor, relation (A.9), there
are only two'? linearly independent scalars formed by the cubic of the Weyl tensor. We choose the
CUTWC‘“’APC’\”JT and C"TWC“AJPC”PTA (with the indices similar to the ones of the K7 and Ky
terms, respectively). Their expressions in D > 3 dimensions (also, see the end of the Useful Relations
in the Appendix A) are

8(2D — 3) 24(2D - 3) 6
— oT v )\p — —
Al_C MVC )\pC oT (D—2)3(D—1)2 1 (D_2)3(D_1)K2+(D—2)(D—1)K3
16(D — 1) 24 12
(D —2)3 fat (D —2)2 fa = (D-2) Rot i )
and
D? +5D — 10 3(D? + 5D — 10) 3
A, =C°7 v p)\o’ Vp‘l' = - K Ky - K
2 =C7 W CH 5, C7P 10 (D —2)3(D — 1)2 1+(D—2)3(D—1) 2 (D—-2)(D—-1) 5
2(56D — 6 3(D+2
_25D-6) Ky — (D+2) K¢ + Ks. (33)

(D —2)? D-22 " D=y

The coefficients of the above expressions can satisfy constraint (28) only if D = 6. Their values in

this dimension respectively are'3
by = 9/200, by = —27/40, bs = 3/10, by =5/4,
bs = 3/2, bg = —3, by =1, bs =0 (34)
and
by = —7/200, by = 21/40, bs = —3/20, by = —3/4,
bs = —3/2, bg = 3/2, by =0, bg = 1. (35)

Alternatively, one can obviously write expression (33), in six dimensions, effectively (using iden-
tity (37)) with the values

by = 9/100, by = —39/40, by =9/40, by =5/4,
by = 3/2, bs = —3/2, by = 1/4, bs = 0. (36)

The Lagrangian densities made by these two cubic constructions of the Weyl tensor are the
only conformal (Weyl) invariant in siz dimensions. However, according to Refs. [10, 33], in general,
there are three linearly independent Weyl-invariant combinations in six dimensions, and two of them
are obviously the above purely algebraic ones. The another one (given by'* relation (47)) contains,
in addition, from the other nine third order Lagrangian terms mentioned in (23), and it is one of
the reasons why we will extend the analogy further to consider any type of third order Lagrangian,
including the terms in (23), in the next section.

In six dimensions, by the generalization of the Gauss—Bonnet theorem, the L(3)\/—_g corresponds
to the Euler densities'® (i.e., it is a complete divergence), and hence one gets one more constraint
among the coefficients by to bg in this dimension. That is, in six dimensions, one has

(G5 — 1260 + 360 +16 G + 246U — 246 + 2607 - 36U5Y) |

&7

6 dim. 0. (37)

12 According to Ref. [30] and the appendix of Ref. [31], the dimension of the basis of local cubic Weyl-invariants is
two for D > 5 dimensions, as, e.g., in four dimensions, one has A; = 4 A since 5C"’T[WC’“”APC’MU]T =A; —4 A,

3 These values already are consistent with when the generalization of the Gauss-Bonnet theorem [32] in six dimensions
has also been considered.

“However, see also relations (49), (50) and (54).

15See, for example, Ref. [14].



Therefore, for the remaining seven linearly independent effective terms, after substituting for one of
the term according to identity (37), constraint (28) for the new coefficients reduces to an effective
one. For example, by substituting for the Kg term, the effective constraint is

by = —3(ba + bg)/25, by = 2(—52 + 4b3)/3,
bs = 4(—bg + 4b3) /5, bg = —4(2by + 17b3)/5,
by = 2(8by + 43b3) /15, (38)

with two degrees of freedom, where here we have chosen the bs and b3 coefficients. Constraint (38)
is satisfied by values (34) and (36), as expected.

. (3b)

Part (b): The Case G (generic)as

Now, we calculate the generalized trace of the first part of relation (18), knowing the fact that
the HDN of the M®) is three. By using relation (9), we get

D

(3b) 5 — 3(Trace Naﬁ + Trace Haﬁ) — E M(?’)’ (39)

(generic)a

Trace R

and again, after all the necessary substitutions and calculations have been performed, we find that
the equality of (24), for non—zero coefficients, holds if and only if

by = 2(—by + 4b3)/3,

b5 == —12(D - 1)b1 - (D + 2)b2 - 4[)3,

be = 6(D — 1)b1 + 2by — 2(D — 1)b3,

by = 3(D —2)(D — 1)b1/2 4 (D — 2)(D + 1)by /6 + (D? + 5D — 10)b3 /6,

by = 4(D — 1)%by + D*by/3 + 4(2.D — 3)b3/3, (40)

where at least'6 D > 3. Though constraint (40) depends on the dimension of space-time, it still gives
three degrees of freedom out of the eight coefficients. It is satisfied by the L®) in any dimension. This
can be obvious after arranging constraint (40) with respect to the dimension, D, and its powers for
each coefficient. Then from these, one can easily find that the only combination which is independent
of the dimension is that of the L(3).

Also, the coefficients of the scalar Lagrangians made by the cubic of the Weyl tensor, relations (32)
and (33), identically satisfy constraint (40) independent of the dimension of space-time D.

As is evident by comparing relations (25) and (39), constraint (40) in six dimensions is exactly
the same as condition (28). The reason beyond it is that, suppose, in general, a P scalar term is the
shifting term by which the two appearances given like part (a) and part (b) (i.e., similar to relations
(16) and (18)) are arranged. Hence, by comparing these two parts, for the relevant part like part (b),
one obtains

(nb) — plna) (nb)  _ p(na)
R(generic)aﬁ - R(ggnoric)aﬁ ~ 9aB P and Raneric = Rgzgeric —2P. (41)
Now, in order to achieve Trace Rggggeric)aﬁ = Rggiric and Trace Rggsr)leric)aﬁ = Rgzlric simultaneously

satisfied, we must have Trace(gos P) = 2P. If P is a homogeneous function of degree h with respect
to the metric!” then, using the generalized trace definition (8), one will get

{D:2h when h # 0

(42)
D=2 when h = 0.

In the case of Lgezleric, we have shown [8] that P o< O R, hence it has h = 2 (as expected), and thus
D = 4. In the case of ngﬂeric, P is proportional to the M(®), therefore it has h = 3 (again, as

expected), and thus D = 6.

5Tn three dimensions, there are other identities, e.g. relations (A.10) and (A.11), that should also be considered; see
the appendix of Ref. [31] too.
Y Though, according to the idea of gathering terms with the same HDN under one Lagrangian label, P must be a

homogeneous function of degree n for the Lé:[)mic.



5 Other Weyl Invariants

In this section, we extend the analogy to include the other nine third order Lagrangian terms
in (23). In addition to the reason mentioned almost at the end of part (a), this extension is needed
because, the conformal anomalies in six dimensions contain the term K4 (see relation (75)) which
appears only when the Lagrangian terms (23) are considered, see, e.g., relations (A.30) and (A.31).
However, as explained in the Appendix A, it should suffice to consider the Lagrangian terms K;
to Kjq (see relation (A.27)) rather than the Kj to Ky7. Though, as will be illustrated below, in order
to be able to apply the trace analogy to an effective total third order Lagrangian, one, in practice,
needs to consider all of the Ky, K19 and K77 terms simultaneously in such a Lagrangian. Hence, by
neglecting identity (A.20), we consider the most general effective expression for the total third order
Lagrangian to be'®

ff
Lt & Lheric + (b Ko + bioK1o + by Kin) /2. (43)
However, we again want to write its corresponding Euler—Lagrange expression as in (2), i.e. Ggfggal)a 5=
(3a) (3a)
R(t(()ltal)aﬁ ~ Yap Rtogal/z where'?
(3a) _ (3a) Ko) (K10) (K11)

G(total)aﬁ - G(generic)aﬁ + by Gaﬁg + b1o Gaﬁlo + b11 Gaﬁll (44)
and similar expressions for Rgfst)al)aﬁ and Rggfgl The ngzr)leric)aﬁ is given by relation (16) and the
Euler-Lagrange expressions of the Kg to K77 Lagrangian terms are given by relations (A.30)—(A.32).
Also, we propose to find out the conditions for which Trace Rgssgal)aﬁ = Rgggl

After all the necessary substitutions and calculations, we find that the trace relation, for non-zero
coefficients, holds if and only if

bs = —60b; — 122b2/15 - 52b3/15 - b4/5, be = 30Dy —4b2/15 - 14b3/15 - 17b4/5,
by =30b; +32b2/5—|— 12b3/5—|—13b4/5, bs = 100 by +40b2/3—|—20b3/3—|—2b4,
by = 62/30 - 2[)3/15 + b4/20, b11 = —b1p = 10 bg. (45)

First of all, as it is evident from constraint (45), if any one of the Ky or K or K17 Lagrangian
terms is missing at the beginning (i.e., any one of the by or by or by coefficients is zero), then the
trace analogy will hold only if all of these terms vanish, and this case will return us to the case of
part (a). This is confirmed once we set by = 0 in constraint (45), whereby it reduces to constraint (28).
Actually, we have checked this point straightforward by omitting one of the Kg to K1 terms just
from the beginning. For example, by considering only the K; to Kjg terms, and carrying out the
similar steps to what we have performed for the K; to Ki; terms, we find that the trace analogy
imposes the constraint

by = 0, by = —2by/3, bs = —60b; — 8by,
bg = 30by + 2bo, by = 30by + 14 bs/3, bg = 100b; + 12 bo,
bg =0= blO, (46)

which satisfies constraint (45). Indeed, it is constraint (28) when its b3 coefficient vanishes, i.e. it is
the corresponding case of (38) when the b3 coefficient is zero instead of the bg one.

Also, one can easily get the same result by considering the outcomes of Ref. [16] in where they
have also derived almost the dimensional dependent constraint version for the trace relation (through
a proportionality parameter u) via classifying the six derivative Lagrangians of gravity whose the

¥We have dropped the prime sign on the b;’s.

1911 this section, as we intend to apply the results only for six—dimensional case, we consider the analogy only for the
appearance of the Gﬁsgal)ag in accord with part (a) of the previous section. However, we perform the analogy for the
(3b)

appearance of the G\ ) s

in accord with part (b) in the Appendix B.



traced field equations have a reduced order (see the Appendix B). They have employed the K; to Kg
terms plus K15, K16, K17 (that by identities (A.24), (A.25) and (A.26) are equivalent to Kg, K19 and
K1, respectively) and K3 terms, even though they have also mentioned that these terms are not
all linearly independent because of relations (A.20) and (A.22). Now, if one sets the coefficients of
the K1 and K3 terms simultaneously zero in their result (their relation (B15)), then the coefficients
of the K¢ and Kjg terms will vanish as well and the remaining relations (after substituting for their
proportional parameter in terms of the other coefficients, namely u = 6(D — 1)by + 2b3) will reduce
to constraint (40)%°

Yet, one may argue that identity (A.20) can equally be used for one of the other terms Ky to Kg
as well. In this case, and without lost of generality, if one substitutes for, e.g., the Kg Lagrangian
term, then the calculations will give constraint (45) when its bg coefficient is zero. Now, if one also
set bg = 0 in this new constraint, it will reduce to constraint (38) which is an especial case of part (a)
in six dimensions. Thus, in order to have a more general situation, it is more adequate to consider

all the K; to K1 terms simultaneously?!

(3a)
(total)
be four. This confirms an earlier analysis based on the cohomological point of view (see Ref. [14]

relation (4.13)) which also gives consistency conditions (again see the invariance condition (4.10) of
Ref. [14] for numerical linear combinations of the first ten unknowns b;). Also, the maximum number
of permissible missing coefficients of b; to bg is three in constraint (45). However, once again in six
dimensions, due to relation (37), one has one extra constraint.

Let us now examine constraint (45) for the numerical coefficients of a few available Lagrangians.
As mentioned in part (a), Deser et al. [10] (relation (25¢) of their paper) and Karakhanyan et al. [34]
(relation (2.18) of their paper) state that the corresponding Lagrangian density of the expression
(after adapting the sign convention)

Secondly, the trace analogy for the introduced G ap 8ives the number of independent b;’s to

3 27 21
Ay = OO0, — 2CHP2C 05 RP o 4+ 3C 0 RFPRYT + 5 K= Sg Ko+ {55 (47)
is also a Weyl-invariant combination in six dimensions?? After substituting for the Weyl tensor in six
dimensions, it reads

11
Ag = —

15 9 1
= K ——K - K Ks — 2 K, — Kg— K Ki1. 4
100 K1~ 2+2 1+5Ks 6+10 9 10+ K1 (48)

The coefficients of (48) satisfy constraint (45). Another similar expression is given in relation (4.7)
of Ref. [14] as (after adapting the sign convention)

1
Ms=-Ki+8Ky+2K3—10K, — 10 K5 — §K9+5K10 -5 K1, (49)

that also satisfies constraint (45).

Karakhanyan and et al. [34] also claim that there is an additional?® Weyl-invariant action in
six dimensions with the scalar Lagrangian (relation (2.19) of their paper, after adapting the sign
convention )

3 1 1
A=Kig— —Kg+2C,,,RMR"™ — K4+ — Ko + — Kj.
4 T 9+2Cu, R'R 4—1—10 2—|—50 1 (50)

2ONote that, if one sets only the coefficient of the K13 term zero and D = 6 in their result, and substitutes for their
proportional parameter in terms of the other coefficients, one will get constraint (45).

2!The same third order terms (though in different combinations) have also been used in Ref. [34] (its relations (2.12)—
(2.17)) as all six—dimensional dimensionless actions.

22For the Weyl-invariant expressions in arbitrary dimensions see Refs. [16, 30, 35].

23However7 the relations Az and A4 differ [34] from A; and A3 in that they have non—zero Weyl variations and one
can employ them (only) as constraints on local counterterms, but cannot be considered as independent contributions
into the anomaly.




Again, after substituting for the Weyl tensor in six dimensions, it reads

3 3
Ay=—K; — Ky +2K5 — — K9 + K. 1
TR 2 +2 K5 10 9+ 10 (51)
Now, if one properly inserts the K1; term from identity (A.20) into relation (51), then it will read
effectively as?*
A R Rt K K I R4 2Kt K+ = Ky — 2 Ko+ K (52)
4= e 234353637383093103117

that its coefficients satisfy constraint (45).

Arakelyan and et al. [36] give in relation (18) of their preprint, as the third linear cocycle, the
expression (after adapting the sign convention)

S3 = / [ COP O Cap + 4 COP iy R — goawﬂcawpz%
[e7927 5 1 [e7927
+8(C pcﬁuup)ﬁa - §D(C a pCauup)}v —gd’ = /Lgcv —gd%. (53)

Substituting for the Weyl tensor in six dimensions, the used Lagrangian, apart from the complete
divergent terms, is actually
e D e 2k Ok 3Ky ARy 4 AR+ — Ko — Kio+ K (54)
o e TR A 4 5 61 79 9 — 1o 115
that also satisfies constraint (45). Another similar conformal anomaly is given in relation (5) of
Ref. [37] as (after adapting the sign convention and correcting a minor mistype)

1 1 1 1 3 5 2 23
Th=———|[|——Ki+ —=Ky— —K3— K K K —K;— —K
A 540><(47r)3/[ 300 1+10 10 AR TR TR R A TT R
13
K K \/_dG—i/L«/_— d° 55
+42 10+ 11] 0 x (47) AV —gawx, (55)
where, by properly inserting the Ki; term from identity (A.20), the Lagrangian effectively reads
eff 1 1 1 2 2 5 23 11 3 3 3
Ly=—K Ko——Ks+—Ky——Ks—— K¢+—Ki+—Kg+—Kg—— Ko+ — K11 . (56
A= gyt gty K K m g Kot g Kt gy K g Ko g ot g Ko (56)

These coefficients satisfy constraint (45).
Also, two Weyl-invariants (denoted by ¥ and ©) have been introduced in arbitrary dimensions
in Ref. [16] (their relations (B17) and (B18)), which in six dimensions are

@‘6—dim.: —82‘6—21111 9
= -8 <—%K1 +2K4+6K; —8K7;—16 Kg — —0K15 + 3 K16 + total der1vat1ve> (57)

Using identities (A.24) and (A.25), and again properly inserting the Kj; term from identity (A.20),
the conformal anomaly (57) effectively reads

off 4

1
|6—dim._ —%Kl —2K4+10K5+2Kg — 10 K7 — 20 Kg — 1—0K9 + K19 — K11, (58)

that its coefficients satisfy constraint (45).

In the next section, we examine the outcome of our rigorous pursuit of the trace analogy approach
for the leaded trace anomaly (which also indulges into the heat kernel) for the third order terms in
six dimensions.

?4Tndeed, relation (51) should be the effective one.



6 Classical Trace Anomaly

As mentioned in the Introduction, by enforcing the mathematical form of the alternative form of
the Einstein field equations, i.e. R,g = K2 Sap/2 where the source tensor is So3 = Tag—gaps T'/(D—2)
in a D-dimensional space-time with T = Trace T, for the relevant alternative form of the Lovelock
field equations, we have classically justified [3] that one gets

v 1
Rg; elock) _ 51%2 S(g{ggnora.)’ (59)

where the generalized source tensor is

1
S((xgﬁenera-) = Taﬁ — mgag (T + Tanomaly) (60)
and " "
B _g ext. n — 1 (n) _ ext. (n)
Tanomaly = —k D Z n Cn R = Z Tanomaly . (61)
n>1 n>1

This shows that T, érlu))maly = 0, as expected to be for the Einstein gravity, and gives the dimension of

the ¢, to be length to the power of 2(n — 1), as indicated below the Lovelock Lagrangian (3).
Then, we have applied [3] the outcome for the generic cases, i.e. Rgc?leric, with the appropriate
constraint condition on the coefficients and no upper limit for n. Actually, we have examined only

the resulted second order trace anomaly in Ref. [3]. That is

—2
2 kD 2
Tzin())maly == 92 €2 Réezleric ) (62)
where [3, 8]
R®) =2 L? (441 +a3)OR = a1 R? + ag Ry R™ + a3Ropu R*™ — (4a1 + az)OR, (63)
generic — generic 1 2 1 azivyy a3 fiaBuy ap - a2 s

with the constraint
3ai +as+a3=0 (64)

that leaves two degrees of freedom in D > 4 dimensions or, the constraint, e.g., as + ag = 0 with one
degree of freedom in (and up to) four dimensions (due to the Gauss—Bonnet term), where ay and ag
are just the new coefficients for the same relevant terms.

Now in this work, we investigate the third order trace anomaly resulted from the introduced total
third order Lagrangian (43). The trace anomaly issue for this case is

3 272D 3a
agn())maly == 3 e3 REotzil ’ (65)
with constraint (45) and, as defined in (44),
Rgts):zil = 5’ Légo)noric + M(3) + by R(Kg) + b1o R(Klo) +bu R(KU)' (66)

The explicit expression of (66), after substituting from (14), (19), (A.30), (A.31) and (A.32) when
considering constraint (45), is

" 244 104 12

RUO = b1 K1+ by Ko + b K3 — (120 b+ Toba %b:g + Eb4) K,
122 52 16

+ (60b1 + Eb2 + 1_5b3 + €b4> K5 — (8b2 + 8b3 +6b4)K6

212 142 26 144 104
g il = 1 it g
+(60b1+ 5 by + 5 bs + 5b4)K7+( 60b; + 5 by + 5 b3



36 58 48 3
—b4>K8 — (12 by + bg) Ky + (120 b1 + —b2 + —b3 — —b4) Ky

152 52
—|—(4b2 —|—3b4) K1 — (60b1 + — 15 —by + —5b3 + €b4> Kio
476 316 1 3

— (1800 —b b —bs | K =b =b by | K

(80 1+ é? 2+215 3+ — 3 4) 13+(5 2 — 15373+101142> 14
+5<1—12b1 30b2+ 15b _gb4>1f15 +6<18051+ 5 —by +Tb3

+—bs | K 15b ——b — b by | K 67

104> 16+< 150 53+54> 17 5 (67)

with four degrees of freedom in D > 6 dimensions. By considering identities (A.21), (A.22) and
(A.24)—(A.26), it effectively reads (though, we purposely keep the complete divergent term Ki4)

o e 232 212 31
RO L b Ky 4 by Ky + by K3 + (60 byt by 4 by _b4) Ky

118 88 27 0 o °
<120b1 + —b2 + —b3 + —b4> K5 — (8by +8b3 + 6by) K¢

212 142 144 104 36
+ <60 by + —by + —b3 + b4) K7+ <160 by + —bg + —b3 —b4>K8
15 715 . ; A 5 . 5
1 2 9 6 5
+ (15 b1 + —b2 + —b3 + —b4> Ky — (60[)1 + —bg + —bg + —b4) Ko
9 3
+ (15 by + Eb2 + Ebg + 554) K1+ (gbg — gbg + 10[)4) K. (68)

On the other hand, in the quantum aspects of gravity, it has been shown that for D = 6(= 2 x 3)
dimensions, the finite and renormalized expectation value of the trace of the energy—momentum
tensor, (T,°),.,,,» would have to be [4] cubic in curvature, and so on for D = 2n dimensions?® This effect
is despite the fact that the classical energy—momentum tensors, for the conformally invariant classical
actions, must be traceless. And, it is known as a conformal, or trace, or Weyl anomaly originally
noticed in 1973 [38], which plays an important role in understanding of many phenomena [4, 5, 39].
Actually, the anomalies generally occur in any regularization method as a consequence of introducing
a scale into the theory in order to regularize it, see, e.g., Ref. [40]. The contribution of a divergent
Lagrangian to the trace of the energy—momentum tensor is one of the above consequences. Of course,
when the effective action is itself a conformally invariant action, the expectation value of the trace of
the total energy—momentum tensor is zero.

We have indicated [3] that constraint (64) is exactly the same as the consistency condition on
the numerical coefficients that Duff suggested [9] in the process of re-examining the Weyl anomaly
applications when the dimensional regularization is applied to a classically conformally invariant
theory in arbitrary dimension. Also, relation (62) gives exactly the same result as in Ref. [41] has
been shown for the relevant most general form of the anomalous trace of the energy—momentum
tensor for classically conformally invariant fields of arbitrary spin and dimension being

h
—%)2 (a1R? + 4Ry R + a3 Ry RO +yOR). (69)

TP =
{75 D ren 180(4m

By comparison, it obviously shows that v = —(4 a1 4+ a2) which completes the trace anomaly relations
suggested by Duff [9] and, in four dimensions, reveals cp ox £p2, as expected.

The trace anomalies are [4] precisely the by, coefficients [also referred to as Hamidew (after
Hadamard—Minakshisundaram-DeWitt) [42] or, HMDS (after the same persons plus Seely) [43] or
Minakshisundaram—Pleijel [44] coefﬁcients} of the Schwinger—-DeWitt proper time method, see, e.g.,
Ref. [43] and references therein. These are the t-independent terms in the asymptotic expansion of

Z5For a brief review of this subject see, e.g., Ref. [3] and references therein.



the heat kernel?® with the appropriate differential operator A, see, e.g., Ref. [31, 45], in

m—D

[e.e]
trace e” 4t ~ Z B,,t 2 t—0t, (70)
m=0

even no.

where B, = [ b y/—gdPr are invariants of the differential operator and vanish for odd numbers
of the m. The calculation of these coefficients by the pioneering method of DeWitt [46] is quite
simple but gets very cumbersome at higher orders. Indeed, due to the combinatorial explosion in the
number of terms in the by, and in the auxiliary tensorial quantities, improvement in the higher orders
m has been tedious. Though, new algorithms and computer algebra with improvements in computer
systems have appeared to perform great efficiency, see, e.g., Ref. [24, 47] and references therein.

As the literature does not contain an explicit calculated expression for the trace anomaly in six
dimensions in the semi—classical theory, we examine the third order trace anomaly result (65) by a
straightforward use of the bg coefficient of the Schwinger—-DeWitt proper time method. Though, let
us first apply this comparison as a re—examining for the second order one with the by coefficient.

For this purpose, if the A in (70) being the simplest such operator, e.g., the conformally invariant
Laplacian type opera‘cor27

A=0-¢&D)R, (71)

then the by, when the conformal coupling constant is £(4) = 1/6, will be given by?®

he

bg=-——
47 T 180(47)2

(R,WR’“’ — R RO — DR) , (72)

which is the trace anomaly in the case of massless conformal scalar fields in four dimensions. On the
other hand, the trace anomaly (62), by substituting (63) with constraint (64), gives

—2
T(2) = —R D C9 [

anomaly — 9

1 1
—3 (ag + as) R?>+ CLQR#VR”V + agRaglw RoBrv + 3 (az + 4ag3) DR] , (73)

that, using the Gauss—Bonnet theorem [32] in four dimensions, effectively reads

2 fF _ 1
TE) vy & —267% ¢ [—5 (a2 + 4a3)} (RuR* — Rop R —OR) . (74)
In comparison with (72), this consistently gives the constraint as + 4as = —3 (or, using (64), equiva-

lently 4a; 4+ a2 = 1) with one degree of freedom and the same numerical value for co, as expected.

Now, let us investigate the issue for the third order trace anomaly. By using the relation E3 of
the theorem 4.3 of Ref. [49], when its £ = £(D) R, the conformal coupling constant is £(6) = 1/5, the
Wi; = 0, a minor mistype is corrected?” and adapting the sign convention, we get

1 1 1 1 4 4 8
be=———=( —K; — =K — K3 — —K. — K — K,
6 360(477)3(450 BT TR B R D TR TR
32 40 4 6 2
——K;— —K, —Kip— =K1 — =K -K
633 7 631 8+ 7 1 10~ > 911 35012 + 713
——Kiyy——K —Kig— —K
s K — o Kis + -Kis — 44 17), (75)

which is the trace anomaly in the case of massless conformal scalar fields in six dimensions3? This
issue is also derived, using an alternative method, in Ref. [44]; i.e. from their relation (3.3) with

26Tt is a very powerful tool in the mathematical physics as well as in the quantum field theory.

2TWe have checked the signs with Ref. [48], and (D) = (D — 2)/[4(D — 1)].

28Gee, e.g., the relation E4 of Ref. [45] when its E = R/6 and W;; = 0, and also adapting the sign convention.

Tts term —4R;jik R, j must read —4R;;i1E, jk, see also Ref. [50].

30The coefficient —1/[360(47)?] is given in the natural units, otherwise it reads —h* G//[360(47)* ¢?], for making the
dimension of the bg coefficient to be the same as the trace anomaly.



£(6) = 1/5 and using relation (12), we have

1 1 1 1 4 4 4
b= —————-( —K — —Ky+ —K3— —K; + —K5 — - K,
6 360(47r)3(450 Bt plts gt t gt T ghe
76 176 4 2 2 3
— K+ —Kg+-Kjg— —Kis+=-Ki3— —K
+613 7+ ?3 8+5 10 3254 12 + 7813 = gp i
—— K5+ =K1 — — K17 + — Ry \,RMP
70 15 + 7 16 14 17 + 7 Ruu, )\pR )7 (76)

which is exactly the same as relation (75) once the last relation of (A.1) is substituted.
By considering identities (A.21), (A.22) and (A.24)—(A.26), relation (75) effectively reads

off 1 1 1 1 22 10 8
beL ——— (K| — —Ky+ —K3 — =Ky + —Ks + —K,
6 360(47?)3(450 R T R S S TR TR
32 40 3 3 3 3
K — Ky — S Ko+ SKyg— =Ky — —Ky). 77
637 g3l T gp it T g T i T ey 14) (77)

On the one hand, by setting by = 1/450, by = —1/15, b3 = 1/15 and3! by = —4/63 in relation (68),
we also get, in six dimensions (though, we have not used identity (37) yet),

@  of |, _o 1 1 1 22 10 8
T i) Ky — —Ky+ —Ks— K4+ —Ks + —K,
anomaly w ool ki~ 2+1§ R 4+2§ 5+213 6

K - Ky — S Ko+ K- —Kj — —K 78

637 g3is gl T i T g 14) (78)

As it is evident, relation (78) is exactly the same as relation (77), and we have c3 o £p?, as expected.

7 Conclusions

In our previous works, we have shown that the analogy of the Einstein tensor splitting into two
parts with the trace relation between them can be performed not only for each separate (homogeneous)
term of the Lovelock tensor, but also for the (whole) Lovelock tensor as a complete Lagrangian (and
indeed, for any inhomogeneous Euler-Lagrange expression that can be spanned linearly in terms
of homogeneous tensors), via a generalized trace operator, as well [1]. For the second term of the
Lovelock tensor, we have discovered that it is not only this term, treated as an Euler-Lagrange
expression of a special combination of the second order Lagrangian terms, that possesses this analogy
and satisfies the trace relation, but also the Euler—Lagrange expressions of the other generic cases of
the second order Lagrangian terms whose constant coefficients satisfy a specific constraint, i.e. either
exactly the Duff trace anomaly relation or a dimensional dependent version of it [3, 8]. We have
extended [3] the analogy further, and have manifested that the analogy of the alternative form of
the Einstein field equations for the relevant alternative form of the Lovelock field equations reveals
a classical approach toward the trace anomaly with an indication of the constitution of the higher
order gravities towards it. Indeed, we have explicitly shown [3] that this procedure for any generic
coefficients of the second order term of the Lovelock Lagrangian yields exactly the Duff trace anomaly
relation, and even have achieved [8] a dimensional dependent version of this relation.

In this work, we have probed further the analogy for the generic coefficients of the eight terms in
the third order of the Lovelock Lagrangian, and have found the constraint relations between the non—
zero constituent coefficients into two forms, an independent and a dimensional dependent versions.
Each form has three degrees of freedom, and the dimensional dependent constraint in six dimensions
is exactly the same as the other one. They do not allow simultaneously the missing of more than
three coefficients. The coefficients of the third order term of the Lovelock Lagrangian do satisfy the
two forms of the constraints and, in particular, the dimensional dependent one in any dimension.

31Note that, b1, b2 and bz are evident from relation (77) when it is compared with relation (68), and b4 can be found
from the coefficient of the term K¢ when matching these relations in the case of by = —1/15 = —bs.



The two independent Lagrangian densities made from the cubic of the Weyl tensor (as conformal
invariants in six dimensions) also satisfy the independent constraint only in six dimensions, and yield
the dimensional dependent version identically independent of the dimension.

We have specified the all seventeen independent terms of the third order type Lagrangian with
the HDN three, among which we have justified (by using a few complete divergent terms that lead to
relevant identities) and have introduced the most general effective expression of a total third order
type Lagrangian with arbitrary coefficients for the remaining eleven terms (the previous eight terms
plus the new three ones) denoted as the K to Kj; in the text. Then, we have proceeded the analogy
for the field tensor of this combination, and have achieved the relevant constraint among the non—zero
constituent coefficients. The constraint shows that, if one of these new Lagrangian terms is missed,
then all of the three new ones will vanish (whereby the constraint reduces to the previous case);
and also the maximum number of permissible missing coefficients of the first previous eight ones is
again three. There are, in general, four degrees of freedom, though in six dimensions, there exists
one extra identity among the first eight coefficients. We have shown that a few expressions given
in the literature as the third Weyl-invariant combination in six dimensions do satisfy the obtained
constraint relations. Thus, we suggest that these constraint relations to be considered as the necessary
consistency conditions on the numerical coefficients that a Weyl-invariant should satisfy similar to
the Duff consistency relations for the second order trace anomaly.

We have reviewed the classical approach toward the trace anomaly that was presented in our
previous works, in order to examine it for the introduced total third order type Lagrangian. Though,
as an explicit calculated expression for the trace anomaly in six dimensions in the semi—classical
theory has not been given in the literature, we have compared our result with its precisely equivalent
expression, namely the bg coefficient of the Schwinger—-DeWitt proper time method that linked with
the relevant heat kernel coefficient. For this purpose, we first have achieved our general expressions
for the trace anomaly for the generic second (as a re—examining case) and the total third order types
Lagrangian terms, relations (73) and (68), with two and four degrees of freedom (in D > 6 dimensions,
and three in six dimensions), respectively. Then, we have demonstrated that the obtained expressions
contain exactly the by and bg coefficients, respectively, as a particular case. Of course these results
are necessary consistency tests, but our approach may be regarded as allowing an alternative (perhaps
simpler) classical derivation of the trace anomaly that gives a general expression with the relevant
degrees of freedom.

The results obtained indicate that it is likely that the analogy of the Einstein gravity should also
exist for a class of further generic Lagrangians of order/degree n > 6. However, for each order/degree
to hold the analogy, there would be a set of constraints that the relevant constituent coefficients must
satisfy. Though, extending the analogy to higher orders of generic cases does not seem technically very
easy (even in the third order case considerable algebraic calculations was required). That is, finding
the constraints for generic cases, or for the most general effective expressions as total Lagrangian
terms of each order, must be performed order by order with huge calculations for each one.
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Appendix A: Useful Relations & Variation Of A Few Actions

In this appendix, we furnish a few useful relations and also supply the metric variation of a few
Lagrangian terms.



o The Useful Relations

The following derivative relations can easily be derived from non—commutativity of the covariant
derivatives, and the Bianchi and the contracted Bianchi identities, as [23]

Raﬂ;uﬁ =R, 0!5/2 )

R/wwﬁ;a = Ry 3 — Rug;w s

RMT; VT = R; ul//z - RuauﬁRaﬁ + RuaRua )

Ry pR™YP = K¢/2 — K7/2 — Kg — K11 /4. (A1)

Also
(R*1), ., = (k= 1)R" R,y + (k — 1)(k — 2)R*°R,,R,,, . (A.2)

In the variation process, using the integrating covariantly by parts and the appropriate boundary
conditions, one can effectively write

F6@FR)E @ )R+ kf(u"f) [— (@®179R) g o1, + (@*R)
=0

g, (a3)
\T sap
where the f is any scalar function of the metric and its derivatives.

The Euler-Lagrange expressions of a few scalar Lagrangian density terms?? where £ = F\/—g/x?,
are [23]

1
GS;(R)) = F'Rag — F'ia5 = 5 9as (F - 2DF’), (A.4)
U ) = 9p ! Ry Ry — (F' Ray), o — (' Rgp), o +0(F' Rap)
1
5 9as [F = 2(F'R™),, | (A.5)
TV . . 1
GG ) 2 9F R B + 2F Ryaus) ™ + 2(F" Ryua) ™ ~ Sgas F, - (A6)
(F(SOMR) » X33
k=0 k=0 k=1 z:O
1 . k ra k 1—i P
-5 gaﬁ{F - 2|:|(Z|:| fk) > [ O'f, _Z)R);p} } (A.7)
k=0 k=1 i=0
and
G(RND’R)_ oVl oV = i pN (I—1—i)
ap - aff — ja Z(D R )(;a(D R);ﬁ)
=0
1 -1 i e »
_§gaﬁ{RNDlR _ oVl _ Z[(D RMy@O@-! )R);p} }, (A.8)
=0

where the prime denotes ordinary derivative with respect to the argument, f, = 0F/0O*R and
@[Nl] = NRN—I DIR + DZRN.
The Weyl conformal tensor, for D > 3 dimensions, satisfies

Caﬁ,uu o 2 R2 _ 4

— pv afuy A

32The corresponding Euler-Lagrange expressions of Lagrangians containing the derivatives of the curvature scalar are
firstly due to Buchdahl [51].



where in four dimensions Cam“,Caﬁ“”

i R?/3 — 2R, R*™ + Rug,, RPH. And, its associated

—dalim.

effective Lagrangian, by considering the Gauss—Bonnet theorem, is —2/3 (R2 — 3R, R"). In six
= R%/10— R,y R™ + Ropyu RBrv also Cagud Ccopmv i

Ky/10 — K9 + K11 and Copp ;pC’O‘BW?’"(i = Ki5/10 — K16 + Ki7. In three dimensions, as the
—dim.
Weyl tensor identically vanishes, from relations (32) and (33) we have, respectively,

dimensions, it reads CQBWCO‘B“”

—dim.

(6K — 36Ky + 3K + 32K, + 24K5 — 12K¢ + K7) }3_& =0 (A.10)
and
(—7K1/2 + 21Ky — 3K3/2 — 18K4 — 15K5 + 6Kg + Kg) ’3—d' =0. (All)
In four dimensions, from relations (32) and (33) and their dependence, one has
(gKl 118Ky — 3K3 — 20K — 24K + 18K — K7 + 4K8> ]4_& = 0. (A.12)

Also, see Ref. [30] and the appendix of Ref. [31]. The scalar action I constructed by the cubic
of the Weyl tensor, relations (32) or (33), in a D—dimensional space-time, through the conformal
transformation g, — ng,w, conformally transforms as I — QP~671. Hence, it is a conformal
invariant only in six dimensions.

e The M®) As A Lagrangian Term

In Sect. 4, we need to know the effect of the M®), relation (19), as a Lagrangian term. By using
the relations

OR? = 2(Ky + Ki5), (A.13)
O (RMVRHV) - 2(K10 + K16)7 (A14)
D(RuypTRMVpT) = 2(K11 + K17)7 (A15)

1
RR,) =K+ 555 (A.16)

(7 8e).,
)

1
(RuR™) 7 = Ky~ K5+ Kip + Kig + K5 (A.17)

;P
and
A 1 1 1
(RW;pRP“ ).)\ = §K6 - §K7 — Ks — ZKll + K13 — Kig (A.18)

3

relation (19) reads as

1 1
MG = - {(12(;1+b2)R2+2(2b2+b5)RWR“”+(4b3+EbG)RWATR“””} p
P
A

—(2bs + bs) (R R, “);u — (3by — 2b5)(RWR“P);p” +2(b -+ be) Ry p RO );A .(A.19)
Obviously all of the terms are complete divergences. Therefore, with careful attention about the
appropriate boundary conditions (that need to be applied in the process of the variation when a
function is up to the fourth order jet—prolongation of the metric), one can easily show that these

terms, and hence the M®), give no contribution to the variation of the corresponding action.



e The K9 To K;7 As Lagrangian Terms

In Sect. 5, the effect of each linearly independent term of the Kg up to K7, as a third order
Lagrangian term, is needed. For this purpose, using the null effect of complete divergences (A.13)—
(A.18) in the variation of their corresponding action and that, the term Kj4 is itself a complete
divergence, we obtain®? the following identities, i.e.

GUW = 4600 1460 12600 26U — 46U — ¢ v 4Gl (A.20)
(Ki2) _ L ~(Ky)
oy = 560557 (A.21)
(Kis) _ _ (K2) | ~(Ks) L (k)
GO{BlS = _Gaﬁ4 +Gaﬁ5 - ZGC‘{BQ 9 (A22)
G5 =o, (A.23)
K K
a5 = —al, (A.24)
K K
G5 = gl (A.25)
d
o G(Kn) — G(Ku) (A.26)
af = "YaB :

Relation (A.20) has already been used in Ref. [45] (the last relation on its page number 612, after
adapting the sign convention and substituting the necessary relations) and Ref. [16] (the first relation
of their relation (14)). However, consideration caution has to be exercised in applying identities in
general and identity (A.20) in particular, for there are associated with them some difficulties, but
nonetheless they throw some important effects on the effective actions.

Thus, it appears that among the Kg and K7 Lagrangian terms, it suffices to derive only the
metric variation of the Kg and Ko terms; indeed, we mean that

17 10
5/2@- Ki/=gdPs = 5/21;; Ki/=gd, (A.27)
i=1 i=1

where

blll :bh bl/2 :b27 b;%:b37

b/4 = by — 4b11 — b1z + 4by7, b§ = bs + 4b11 + b1z — 4b17, bﬁ = bg + 2b11 — 2by7,

b; = by — 2b11 + 2b17, by = bg — 4b11 + 4b17, by = by — b11 + b12/2 — b13/4 — bys + b1y,
big = bio +4b11 — big — 4b17. (A28)

Hence, as it is customary to write a Lagrangian in terms of its effective one, one can write
17 50,
SbKi =Y b K, (A.29)
i=1 i=1

where also the word “effective” is often not mentioned. However, as explained in the text, for being
able to apply the trace analogy for an effective total third order Lagrangian, we, in practice, need to
consider the K7 to Kj; terms, and actually neglecting identity (A.20).

The K9, K19 and K7; Lagrangian terms give

1
Gg;g) = [Q(DR)RQB —2(0O R);aﬁ — R..R. g} 3 gag(—4 K4 — K15), (A30)

33Here, one actually means that the identity holds between the functional derivatives, i.e., for example,

3(Ki6v/=9)/09°" = —8(K10v/=g) /89"



1
Gggw — Rff;lo) — 2 Gap (_2 Ko+ 2K; +4Kg+ 2K+ Ky —4K13— K14 +5 Klﬁ) (A.31)

2
and
R %gaﬁ(—Kw), (A.32)
where3?
Trace Rg;w — %(2 K9 — 2Ky — K15)7 (A.33)

1 1
Trace R 3" = g(2K4—2.r<5_2K6+2K7+4K8+4.r<10+K11 2Ky — 5K15+5K16) (A.34)

and

1
Trace R ") = 3 (8 Ko — 8 K7 — 16 Ks — 4 Ko + 16 K13 + 2 K14 — 20 K16 + Kz ). (A.35)

Appendix B: Dimensional Dependent Constraints For ngzal

(3b)

In this appendix, we perform the analogy for the appearance of the G(total

JaB in accord with
part (b), where
G s = O e + b0 G + 10 GO 4 by G5 (B.1)

(generic)

and similar expressions for Rg’szal)aﬁ and R The G JaB is given by relation (18) and the

total” (generic
Euler-Lagrange expressions of the Kg to K17 Lagrangian terms that are given by relations (A.30)—
(A.32) must be rewritten in accord to part (b). By imposing the condition Trace Rg’szal)aﬁ = Réggl,
and performing the bulk calculations, we find that the trace relation, for non—zero coefficients, holds

if and only if

b = |~12(D — 1)%1 — (3D + 3D — 4)by/3 — 4(3D — 5)by /3 — bs /(D — 1),
b = |6(D — 1)%by — (3D? = 19D + 14)by /6 — 2(D + 1)b3/3 — (3D = 7D + 2)bs /4] /(D — 1),
br = (D = 2)|3(D = 1)%by + (5D + 3D — 6)b/12 + (3D* — 7D + 6)bg /3
+(D? +3D — 2)by/8] /[2(D — 1)},
bs = 4(D — 1)%by + (D — 1)(D + 2)ba/3 + 4(D — 1)b3 /3 + (D — 2)by/2,
bg = (b2/6 — 2b3/3 + ba/4) /(D — 1),
bio = —2(D — 1)by,
bin = (D —1)(D —2)by /2 = —(D — 2)bio /4. (B.2)

If one sets one of the by or big or by zero, then constraint (B.2) will reduce to constraint (40).
As mentioned in the text, in Ref. [16], they have also derived almost the same relations through
a proportional parameter u. Indeed, if we set the bj3 = 0 and substitute for their proportional
parameter in terms of the other coefficients, namely u = [6(D — 1)?b; — (D? — 8D + 6)by /3 + 4D (D —
2)b3/3 — D(D — 2)by/2]/(D — 1), in their relation (B15), it will reduce to constraint (B.2).

34As we will not need the exact expressions of the Rff;w) and Rg;ll)7 to reduce the amount of calculations we
have derived their traces almost from the beginning. Implicitly, the appearances of the Euler—Lagrange expressions
(A.4)-(A.8) and (A.30)—(A.32) have been written according to part (a).
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