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Introduction

The original notion of trace is, of course, the trace of a square matrix with
entries in a field. An important and far-reaching categorical generalization of this
notion applies to any endomorphism of a dualizable object in a symmetric monoidal
category; see [11, 23].

This generalization has a number of applications, which are often closely con-
nected with the study of fixed points. One application of particular importance
is the Lefschetz fixed point theorem and its variants and generalizations, many of
which can be deduced directly from the naturality and functoriality of the canonical
symmetric monoidal trace.

The purpose of this expository note is to describe this notion of trace in a sym-
metric monoidal category, along with its important properties (including natural-
ity and functoriality), and to give as many examples as possible. Among other
things, this note is intended as background for [35] and [34], in which the sym-
metric monoidal trace is generalized to the context of bicategories and indexed
monoidal categories.

In §1 we describe one way to understand the connection between traces and
fixed points. This provides motivation for the formal definitions in §2. In §3 we
give many examples of the trace. These include topological examples connected
to the Lefschetz fixed point theorem and its generalizations as well as examples
arising in other contexts. In §4 we define a generalization of the trace from §2. This
trace arises in many applications and is a generalization of the classical transfer.
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Then in §5 we describe “coherence” properties of the trace, while in §6 we describe
its functoriality and naturality, including the Lefschetz fixed point theorem as an
application. Finally, in §7 we remark on some generalizations.

1. Traces and fixed points

A common feature of all the examples we will consider is that traces give infor-
mation about fixed points. Thus, before embarking on formalities, in this section
we will attempt to give some intuition for why this should be so.

Suppose we are working in a monoidal category, and consider a morphism whose
source and target are tensor products, such as f : A⊗ B ⊗ C → D ⊗B. We think
of such an f as a “process” which takes three inputs, of types A, B, and C, and
produces two outputs, of types D and B. In keeping with this intuition, we draw
f as follows:

f

BD

CA B

This is an example of string diagram notation for monoidal categories, which is
“Poincaré dual” to the usual sort of diagrams: instead of drawing objects as vertices
and morphisms as arrows connecting these vertices, we draw objects as arrows and
morphisms as vertices, often with boxes around them. See [19, 21, 32, 37] for more
about string diagram calculus. In particular, we note that Joyal and Street [19]
proved that the “value” of a string diagram is invariant under deformations of dia-
grams, so that we can prove theorems by topological reasoning; see Proposition 2.4
for an example.

If the source and target of the morphism f above are the same, then a fixed
point of f is a morphism f † : ∗ → X (where ∗ denotes the unit for the monoidal
structure) such that

f

X

f †

X

∗

= f †

X

∗

We will be interested in traces of more general morphisms. For these we will
need to be able to duplicate inputs and outputs, which we draw as follows:

A

A A

This is only possible if our monoidal category is cartesian monoidal, in which case
the above duplication process is the diagonal ∆: A → A×A.

Now suppose only one of the inputs of f matches its output:
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f

X

A X

An (A-parametrized) fixed point of f is a morphism f † : A → X such that

f

X

A

f †

X

A

= f †

X

A

i.e. “f(a, f †(a)) = f †(a) for any a ∈ A” or “f †(a) ∈ X is a fixed point of f(a,−)
for any a ∈ A.”

A common way to look for fixed points in concrete situations is by iteration: we
start with some x0 ∈ X and compute x1 = f(a, x0), x2 = f(a, x1), and so on. If
ever xn+1 = xn, we’ve found a fixed point. But even if not, we can hope that the
sequence (x0, x1, x2, . . . ) will “converge” to a fixed point. Two contexts where this
works are the contraction mapping theorem in topology and the least-fixed-point
combinator in domain semantics.

In order to mimic this in abstract language, we need a notion of feedback, i.e. a
way to plug the output of a given morphism into its input. In diagrammatic terms,
given a morphism one of whose inputs matches one of its outputs:

g

B X

A X

we want to construct a new morphism in which the X input and output have been
“fed back into each other” somehow:

g

B

A

X

This is called a trace of the morphism f . In fact, Hyland [4] and Hasegawa [16]
have independently observed the following.

Theorem 1.1. In a cartesian monoidal category, to give a notion of trace is pre-
cisely the same as to give a fixed-point operator, which assigns to every morphism
A×X → X a fixed point A → X in a coherent way.
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This relationship is especially important in computer science. However, in topol-
ogy, we are interested in maps which may have zero, one, or many fixed points.
Thus, we can’t expect to have a fixed-point operator acting on the whole category,
since there is no way to specify a fixed point for a map which has no fixed points.
Instead, we would like to know, given a map, does it have any fixed points, and if
so, how many and what are they? Thus, we need an operation which produces, in-
stead of a fixed point, some sort of “invariant” carrying information about whatever
fixed points a map may have. A fruitful approach to this is to map our cartesian
monoidal category C into a larger category D in which morphisms can be “super-
imposed” or “added.” Then we may hope for a trace or a fixed-point operator in D

which computes the “sum” of all the fixed points that a map may have (or “zero”
if it has none).

Often our functor Z : C → D will be like the “free abelian group” functor, and
the “fixed point” of Z(f) will be something like

∑

f(a)=a a. And just as the “free

abelian group” functor maps cartesian products not to cartesian products, but to
tensor products, if we want Z to be a monoidal functor, we usually cannot expect
D to be cartesian monoidal, only symmetric monoidal. Therefore, a trace in D no
longer implies a fixed point operator. However, since C is cartesian, we still have
diagonal morphisms for objects in the image of Z, and this is all we really need.

In fact, if we can find a category D which is suitably “additive,” then it often
comes with a canonical notion of trace for free. The idea is to split the “feedback”
diagram into a composition of three pieces:

g

B

A

M = g

B

A

M

The morphism

M M

(from the unit object to M ⊗M) is called a “coevaluation” or “unit.” If M is of
the form Z(X) for some X ∈ C, then the coevaluation is supposed to pick out a
formal sum such as

∑

x∈X x ⊗ x. (To be precise, the second string labeled M is

actually its “dual” M⋆, and so the sum is actually
∑

x∈X x ⊗ x⋆.) Similarly, the
morphism

M M
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is called an “evaluation” or “counit.” For M = Z(X), the evaluation is supposed
to be supported on pairs of the form x⊗x (or, more precisely, x⋆ ⊗x), and to give
zero when applied to a pair x⊗x′ for x 6= x′. If this is the case, then the composite

f

A

X

X

will act as follows:

a 7→
∑

x∈X

a⊗ x⊗ x 7→
∑

x∈X

f(a, x)⊗ x 7→
∑

x∈X

f(a, x)⊗ f(a, x)⊗ x 7→
∑

x∈X

f(a,x)=x

f(a, x)

Thus, as desired, it picks out the sum of all the fixed points of f .
Traces constructed in this way from evaluation and coevaluation maps we call

canonical traces. In [21], Joyal and Street showed that any traced monoidal cat-
egory D can be embedded in a larger one Int(D), in such a way that the given
traces in D are identified with canonical traces in Int(D). Therefore, for the pur-
poses of finding fixed-point invariants, there is no loss in restricting our attention
to canonical traces.

However, the choice of a particular D does restrict the maps for which we can
calculate our fixed-point invariant, since the resulting objects in D must admit eval-
uations and coevaluations. This property is called being dualizable. For instance,
in the free abelian group on X , the sum

∑

x∈X x ⊗ x is only defined when X is
finite. A given functor C → D thus induces a notion of “finiteness” on objects of
C. We will see in §3 that different choices of D can drastically affect the notion of
finiteness, as well as the utility and computability of traces. However, in most ap-
plications the choice of D is straightforward, and the resulting finiteness restriction
not onerous.

2. Traces

We now move on to the abstract study of canonical traces in symmetric monoidal
categories; in the next section we will specialize to a number of examples and see
how we obtain information about fixed points. We begin with the formal definition
of dualizability.
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Coevaluation
η : I → M ⊗M⋆ M M⋆

Evaluation
ε : M⋆ ⊗M → I M⋆ M

Figure 1. Coevaluation and evaluation

M

M M⋆

M⋆ M

M

= M M⋆ =

M⋆

M⋆ M

M M⋆

M⋆

Figure 2. The triangle identities

Let C be a symmetric monoidal category with product ⊗ and unit object I. We
will omit the associativity and unit isomorphisms ofC from the notation (effectively
pretending that C is strict, as is allowable by the coherence theorem), and we write
s for any instance or composite of instances of the symmetry isomorphism of C.

Definition 2.1. An object M of C is dualizable if there exists an object M⋆,
called its dual, and maps

I
η

−→ M ⊗M⋆ M⋆ ⊗M
ε

−→ I

satisfying the triangle identities

(idM ⊗ε)(η ⊗ idM ) = idM and (ε⊗ idM⋆)(idM⋆ ⊗η) = idM⋆ .

We call ε the evaluation and η the coevaluation; some authors call them the
counit and the unit. We say that C is compact closed if every object is dualizable.

As suggested in §1, dual pairs are represented graphically by turning around the
direction of arrows; see Figure 1. Note that the unit object I is represented by the
lack of any strings, in the input to η and in the output of ε. Strictly speaking,
there should be boxes at the ends of these “caps” and “cups” labeled by η and
ε respectively, but these labels are almost universally omitted in string diagram
notation (this is also justified by a theorem of Joyal and Street). The triangle
identities for a dual pair translate graphically as “bent strings can be straightened;”
see Figure 2.

Any two duals of an objectM are isomorphic; an isomorphism can be constructed
from η and ε. If M⋆ is a dual of M , then M is a dual of M⋆. And if M and N
are dualizable, any map f : Q⊗M → N ⊗ P has a dual or mate

f⋆ : N⋆ ⊗Q → P ⊗M⋆,

given by the composite

N⋆⊗Q
id⊗ id⊗η
−−−−−−→ N⋆⊗Q⊗M⊗M⋆ id⊗f⊗id

−−−−−−→ N⋆⊗N⊗P⊗M⋆ ε⊗id⊗ id
−−−−−−→ P⊗M⋆.
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f
M

M⋆M

=

I

η

��

M ⊗M⋆

f⊗id

��

M ⊗M⋆

∼=

��

M⋆ ⊗M

ε

��

I

or
just f M⋆

Figure 3. The trace

In particular, if M is dualizable, any endomorphism f : M → M has a dual
f⋆ : M⋆ → M⋆.

There are various equivalent characterizations of dualizable objects. For exam-
ple, when C is closed, M is dualizable if and only if the canonical map

M ⊗Hom(M, I) → Hom(M,M)

is an isomorphism. However, for us the above definition is most appropriate.
We now move on to the simplest form of trace.

Definition 2.2. Let C be a symmetric monoidal category, M a dualizable object
of C and f : M → M an endomorphism of M . The trace of f , denoted tr(f), is
the following composite:

(2.3) I
η

−→ M ⊗M⋆ f⊗id
−→ M ⊗M⋆ s

−→∼ M⋆ ⊗M
ε

−→ I.

The Euler characteristic of a dualizable M is the trace of its identity map.

The trace of a morphism translates as graphically as “feeding its output into its
input;” see Figure 3.

References for this notion of trace include [11, 14, 20, 21, 23]. It is an endomor-
phism of the unit object I, and does not depend on the choice of dual for M or on
the choice of the maps η and ε. It also has the following fundamental property.

Proposition 2.4 (Cyclicity). For any f : M → N and g : N → M with M,N both
dualizable, we have tr(fg) = tr(gf).

Proof. The following proof is really only rendered comprehensible by string diagram
notation (see Figure 4).

tr(fg)=εs(fg⊗id)η=εs(f⊗id)(g⊗id)η=εs(f⊗id)(id⊗ε⊗id)(η⊗id⊗ id)(g⊗id)η=

εs(id⊗ε⊗id)(f⊗id⊗ id⊗ id)(id⊗ id⊗g⊗id)(η⊗η)=(ε⊗ε)s(id⊗ id⊗g⊗id)(f⊗id⊗ id⊗ id)(η⊗η)=

(ε⊗ε)s(id⊗ id⊗g⊗id)(id⊗ id⊗η)(f⊗id)η=εs(id⊗ε⊗id)(g⊗id⊗ id⊗ id)(η⊗id⊗ id)(f⊗id)η=

εs(g⊗id)(id⊗ε⊗id)(η⊗id⊗ id)(f⊗id)η=εs(g⊗id)(f⊗id)η=εs(gf⊗id)η=tr(gf) �

We will consider additional properties of the trace in §5.
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f

g

N

M⋆M

=

f

g

N

N⋆N

M

M⋆M

=
f

g

N

N⋆N

M
M⋆M

=

f

g

N

N⋆N

M
M⋆M

=

f

g

N⋆N

M

Figure 4. Cyclicity of the trace

3. Examples of traces

Example 3.1. Let C = Vectk be the category of vector spaces over a field k. A
vector space is dualizable if and only if it is finite-dimensional, and its dual is the
usual dual vector space. We have I = k and C(I, I) ∼= k by multiplication. Using
this identification, Definition 2.2 recovers the usual trace of a matrix. The Euler
characteristic of a vector space is its dimension.

Example 3.2. Let C = ModR be the category of modules over a commutative
ring R. The dualizable objects are the finitely generated projectives. As in Vectk,
we have I = R and C(R,R) ∼= R, so every endomorphism of a finitely generated
projective module has a trace which is an element of R. The Euler characteristic
of such a module is its rank, regarded as an element of R (so that, for instance, the
Euler characteristic of a rank-p free (Z/p)-module is zero).

Example 3.3. Again, let R be a commutative ring and consider the categoryChR of
chain complexes of R-modules, with its symmetric monoidal tensor product. The
“correct” symmetry isomorphism M ⊗ N ∼= N ⊗ M introduces a sign: a ⊗ b 7→
(−1)|a||b|(b⊗a). The dualizable objects are again the finitely generated projectives,
the unit is again R itself (in degree 0), and endomorphisms of the unit can again be
identified with elements of R. The trace of an endomorphism of a finitely generated
projective chain complex, called its Lefschetz number, is the alternating sum of its
degreewise traces. Likewise, the Euler characteristic of such a chain complex is the
alternating sum of its ranks. This generalizes straightforwardly to modules over a
DGA.

Example 3.4. There is also a symmetric monoidal category Ho(ChR), also called
the derived category of R, obtained from ChR by formally inverting the quasi-
isomorphisms (morphisms which induce isomorphisms on all homology groups).
The dualizable objects in Ho(ChR) are those that are quasi-isomorphic to an object
that is dualizable in ChR, and the two kinds of traces also agree.

Example 3.5. Let nCob be the category whose objects are closed (n−1)-dimensional
manifolds, and whose morphisms are diffeomorphism classes of cobordisms. Com-
position is by gluing, cylinders M × [0, 1] give identities, and disjoint union supplies
a symmetric monoidal structure. The unit object is the empty set ∅, and an endo-
morphism of ∅ is just a closed n-manifold.
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Every object of nCob is dualizable: the evaluation and coevaluation are both
M×[0, 1], regarded either as a cobordism from ∅ to M⊔M or fromM⊔M to ∅. The
trace of a cobordism from M to M is the closed n-manifold obtained by gluing the
two components of its boundary together. In particular, the Euler characteristic of
a closed (n− 1)-manifold M is M × S1, regarded as a cobordism from ∅ to itself.

Example 3.6. In a cartesian monoidal category, the only dualizable object is the
terminal object. Thus, in this case there are no interesting traces. However, as
suggested in §1, often we can obtain useful dualities and traces by applying a
functor from such a category to a non-cartesian monoidal category. Such a functor
F induces a notion of “finiteness” on its domain in the evident way: X is “finite”
if F (X) is dualizable. For an endomorphism f of such an X , we can then compute
the trace of F (f).

Probably the easiest such functor is the “free abelian group” functor Z[−] : Set →
Ab. Of course, Z[X ] is dualizable inAb if and only if X is a finite set. If f : X → X
is an endomorphism of a finite set, then the trace of Z[f ] : Z[X ] → Z[X ] is easily
seen to be simply the number of fixed points of f . This justifies the hope expressed
in §1 that by mapping a cartesian monoidal category into an “additive” one, we
could extract information about fixed points which may or may not be present.
The next few examples can also be viewed in this light.

Example 3.7. Suppose that instead of a set we start with a topological space. The
category Top is, of course, cartesian monoidal, so in order to obtain interesting du-
alities we need to apply a functor landing in some non-cartesian monoidal category.
One obvious guess, by analogy with Example 3.6, would be the category of abelian
topological groups and the free abelian topological group functor. It usually turns
out to be better, however, to use a more refined notion: the category Sp of spectra.

For the reader unfamiliar with spectra some intuition can be gained as follows.
A connective spectrum can be thought of as analogous to an abelian topological
group, except that its group structure is only associative, unital, and commutative
up to homotopy and all higher homotopies. The passage from connective spectra
to arbitrary spectra is then analogous to the passage from bounded-below chain
complexes to arbitrary ones. There is a symmetric monoidal category Sp of spec-
tra and a “free” functor Σ∞

+ : Top → Sp, usually called the suspension spectrum
functor. (Actually, there are many such categories Sp, all equivalent up to ho-
motopy, but each having different technical advantages and disadvantages; see for
instance [13, 28, 29]. We will generally gloss over such distinctions.) The monoidal
structure of Sp is called the “smash product” ∧, and its unit object is the sphere
spectrum S (which can be identified with Σ∞

+ of a point).
Since Sp is not cartesian monoidal, we can hope for it to have an interesting

duality theory. However, it turns out that in Sp it is only reasonable to ask for
duality up to homotopy. Thus, instead of Sp we usually work with the category
Ho(Sp) obtained from it by inverting the “stable equivalences;” this is called the
stable homotopy category. We still have a functor Σ∞

+ : Top → Ho(Sp) which
factors through Ho(Top) (in which we invert the weak homotopy equivalences).
The reason for the use of “stable” is that for compact spaces M and N , the homset
Ho(Sp)(Σ∞

+ (M),Σ∞
+ (N)) can be identified with the set of stable homotopy classes

of maps from M to N , i.e. the colimit over n of the sets of homotopy classes of
maps Σn(M+) → Σn(N+).
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One can now show that if M is a closed smooth manifold, or more generally
a compact ENR (Euclidean Neighborhood Retract), then Σ∞

+ (M) is dualizable in
Ho(Sp); its dual is the Thom spectrum Tν of its stable normal bundle. This
is proven in [1, 11, 25]. The set of endomorphisms of the sphere spectrum S is
colimn πn(S

n), which is isomorphic to Z; thus traces in Ho(Sp) can be identified
with integers.

Using this identification, the trace of an endomorphism can be identified with its
fixed point index. The fixed point index is an integer which is defined classically, for a
map with isolated fixed points, as the sum over all fixed points x of the degree of the
self-map induced by the “difference” of the identity map and the endomorphism on
a sufficiently small sphere surrounding x. This turns out to be homotopy invariant,
and so for an arbitrary map it can be defined by homotoping to a map with isolated
fixed points. In particular, this is necessary for the identity map, whose fixed point
index is the Euler characteristic of the manifold (this is, of course, the origin of the
term “Euler characteristic” for traces of identity maps in general). See [5,7] for the
classical approach to the index and [8,9,11] for the identification of this trace with
the classical fixed point index and Euler characteristic.

For compact spaces the induced notions of duality and trace can also be formu-
lated without using the stable homotopy category, by replacing S with the n-sphere
Sn for some large enough finite n. In this guise it is called n-duality; references
include [11, 25].

Sp and ChR are two instances of a general phenomenon: a symmetric monoidal
category that has an associated symmetric monoidal homotopy category. A gen-
eral theory of when and how symmetric monoidal structures descend to homotopy
categories is given by the study of monoidal model categories, as in [17, Ch. 4].

Example 3.8. For a compact Lie group G, there is an equivariant stable homotopy
category Ho(G-Sp), which is related to the category G-Top of G-spaces in the
same way that Ho(Sp) is related to Top; see for instance [28]. Now the suspension
and stabilization take place not relative to ordinary spheres Sn, but relative to
representations of G. The category Ho(G-Sp) is also symmetric monoidal and
admits a suspension G-spectrum functor from G-spaces.

The dualizable objects in Ho(G-Sp) include the equivariant suspension spectra
of closed smooth G-manifolds and compact G-ENR’s. Such dual pairs can be also
described using V -duality for a representation V . A reference for equivariant duality
is [25]. Traces in Ho(G-Sp) are again called fixed point indices; see [38].

Example 3.9. Another variation is to consider parametrized duality, which instead
of spaces or G-spaces starts from spaces over a base space B. In [31], May and
Sigurdsson construct a category SpB of parametrized spectra over B, which is sym-
metric monoidal, has a symmetric monoidal homotopy category Ho(SpB), and
admits a suspension functor Σ∞

B,+ from Top/B that is similar to Σ∞
+ .

If M is a fibration over B, then Σ∞
B,+(M) is dualizable in Ho(SpB) if and only if

each of its fibers is dualizable in the usual stable homotopy category. In particular,
a fibration of closed smooth manifolds gives rise to a dualizable parametrized spec-
trum. The trace of a fiberwise endomorphism is once again called its fixed point
index; see [9].

Remark 3.10. For parametrized spaces and spectra it is often more illuminating
to consider a different type of duality called Costenoble-Waner duality, and its
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associated notion of trace. These notions of duality and trace do not take place in
a symmetric monoidal category, but rather in a bicategory arising from an indexed
symmetric monoidal category; see [31, Ch. 18] and [34, 35].

Here are some more “toy” examples.

Example 3.11. LetRel be the category whose objects are sets and whose morphisms
from M to N are relations R ⊂ M × N ; we write R : M −7−→ N to avoid confusion
with functions M → N . If S : N −7−→ P is another relation, their composite is

SR =
{

(m, p)
∣

∣

∣
∃n with (m,n) ∈ R and (n, p) ∈ S

}

.

A symmetric monoidal structure on Rel is induced by the cartesian product of sets
(which is not the cartesian product in Rel).

There is a functor Set → Rel which is the identity on objects and takes a func-
tion f : X → Y to its graph Γf = { (x, f(x)) | x ∈ X }. Moreover, every set is
dualizable in Rel, and moreover is its own dual; the relations η and ε are both the
identity relation on X , considered as a relation ∗ −7−→ X ×X or X ×X −7−→ ∗, respec-
tively. Thus every set is “finite” relative to this functor. However, the tradeoff is
that traces contain correspondingly less information, since the only endomorphisms
of the unit ∗ in Rel are the empty relation and the full one. If we regard these
as the truth values “false” and “true,” respectively, then the trace of a relation
R : M −7−→ M is the truth value of the statement “∃m : (m,m) ∈ R.” In particular,
for a function f : M → M , tr(Γf ) is true if and only if f has a fixed point.

This example can be generalized to internal relations in any suitably well-behaved
category.

Example 3.12. Let Sup denote the category of suplattices : that is, its objects
are posets with all suprema and its morphisms are supremum-preserving maps.
(Of course, a suplattice also has all infima, but suplattice maps need not preserve
infima.) There is a tensor product of suplattices, concisely described by saying
that suplattice maps M ⊗N → P represent functions M ×N → P which preserve
suprema in each variable separately. The unit object is the suplattice I = (0 ≤ 1).

We can see an analogy between Sup and Ab by regarding suprema in a suplat-
tice as similar to sums in an abelian group. For instance, there is a “free suplattice”
functor Set → Sup which simply takes a set A to its power set P(A); the “free gen-
erators” are the singleton sets, and a subset B ⊆ A is the “formal sum”

∑

x∈B{x}.
Every such power set is dualizable, so every set is “finite” relative to the functor

P . Explicitly, we have P(A)
⋆ ∼= P(A) with coevaluation

η(1) =
∨

a∈A

{a} ⊗ {a}

and evaluation

ε(X ⊗ Y ) =

{

1 if X ∩ Y 6= ∅

0 otherwise.

Note that a suplattice map f : P(A) → P(A) is equivalent to a function A → P(A),
and thereby to a relation Rf ⊂ A × A. The trace of such a map in Sup is easily
verified to be idI if there is an a ∈ A with (a, a) ∈ Rf and 0 otherwise; thus we
essentially recapture Example 3.11.

However, not all dualizable suplattices are power sets. For instance, if A is an
Alexandrov topological space (one where arbitrary intersections of open sets are
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open), then its open-set lattice O(A) is a dualizable suplattice. In this case, for a
continuous map f : A → A, the trace of f−1 : O(A) → O(A) is idI if there is an
a ∈ A such that a ≤ f(a) in the specialization order, and 0 otherwise. (Recall that
the specialization order of a topological space is defined so that x ≤ y if and only
if every open set containing y also contains x.)

Example 3.13. Continuing the analogy between Sup and Ab, it is natural to con-
sider commutative monoid objects in Sup as analogous to commutative rings. A
commutative monoid object in a symmetric monoidal category C is an object R
with morphisms R ⊗ R → R and I → R satisfying evident axioms. In particular,
for any topological space B, the open-set lattice O(B) is a commutative monoid
object in Sup whose “multiplication” map is intersection ∩ : O(B) ⊗ O(B) →
O(B). Likewise, for any continuous f : A → B, we have a monoid homomorphism
f−1 : O(B) → O(A). In this way a category of suitably nice topological spaces can
be identified with the opposite of a subcategory of commutative monoids in Sup;
see [22] and [18, Ch. C1]. This is analogous to how the category of affine schemes
can be identified with the opposite of the category of commutative rings.

If C has coequalizers preserved on both sides by ⊗, then for any commutative
monoid object R the category of R-modules in C is itself symmetric monoidal under
the tensor product given by the usual coequalizer

M ⊗R⊗N ⇒ M ⊗N → M ⊗R N.

In particular, this applies to O(B)-modules in Sup for any space B. And given
any continuous map p : X → B, O(X) becomes a O(B)-algebra (that is, there is
a monoid homomorphism p−1 : O(B) → O(X)) and thus a O(B)-module. If p is
a local homeomorphism (that is, X is the “espace etale” of a sheaf over B), then
O(X) is a dualizable O(B)-module that is its own dual: the evaluation is

O(X)⊗O(B) O(X)
ε

−→ O(B)

(W,W ′) 7→ p(W ∩W ′)

and the coevaluation is

O(B)
η

−→ O(X)⊗O(B) O(X)

U 7→
∨

p(W )⊆U

p|W is a homeomorphism

W ⊗W.

The unit O(B)-module is O(B), and an O(B)-module map O(B) → O(B) is deter-
mined uniquely by where it sends B ∈ O(B) (the unit for ∩). Any map f : X → X
over B gives a map f−1 : O(X) → O(X) of O(B)-modules, whose trace is charac-
terized by

B 7→
{

b ∈ B
∣

∣ ∃x ∈ p−1(b) : f(x) = x
}

;

that is, the set of b ∈ B such that f |p−1(b) has a fixed point. In particular, the
Euler characteristic of a sheaf X is its support p(X) ⊆ B. When B is the one-point
space, X must be discrete, and we recapture power sets in Sup. For more on this
point of view, see [36].

We have so far considered only symmetric monoidal categories, but the defi-
nitions we have given make sense with only a braiding, and there are interesting
examples which are not symmetric.
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Example 3.14. Let Tang be the category of tangles : its objects are natural num-
bers 0, 1, 2, . . . , and its morphisms from n to m are tangles from n points to m
points. A tangle is like a braid, except that strings can be turned around, so that
n need not equal m; see [14]. Tang is braided but not symmetric monoidal; its
product is disjoint union and its unit object is 0. Every object is its own dual, the
endomorphisms of the unit are links, and the trace of an endo-tangle is its “tangle
closure” into a link. There are oriented and framed variants.

However, the trace as we have defined it is not quite correct in the non-symmetric
case. For instance, with our definitions, the trace of the identity id2 in Tang is two
linked circles, while the trace of the braiding s2 is two unlinked circles; clearly it
would make more sense for this to be the other way round. This can be remedied
with the notion of a balanced monoidal category, which is a braided monoidal
category in which each object is equipped with a “double-twist” automorphism;
see [20,21]. Symmetric monoidal categories can be identified with balanced ones in
which every double-twist is the identity. In a balanced monoidal category, we define
the trace of an endomorphism f by including a double-twist with f in between η
and ε; this remedies the problem noted above with Tang. For simplicity, however,
in this paper we will consider only the symmetric case.

4. Twisted traces and transfers

The examples in §3 show that the canonical trace defined in §2 does give use-
ful information about fixed points, but usually it only indicates their presence or
absence, or at best counts the number of them (with multiplicity). However, in §1
we saw that in the presence of “diagonals”, we could hope to extract not merely
the number of fixed points, but the fixed points themselves. The use of diagonals
in this way turns out to be a special case of the following more general notion of
“twisted trace.”

Definition 4.1. Let C be a symmetric monoidal category, M a dualizable object
of C, and f : Q ⊗ M → M ⊗ P a morphism in C. The trace tr(f) of f is the
following composite:

(4.2) Q
η

−→ Q⊗M ⊗M⋆ f
−→ M ⊗ P ⊗M⋆ s

−→∼ M⋆ ⊗M ⊗ P
ε

−→ P

This trace is displayed graphically in Figure 5.

Remark 4.3. Since C is symmetric, it may seem odd to write the domain of f as
Q⊗M but its codomain as M⊗P . Indeed, in the literature on symmetric monoidal
traces it is more common to align the M ’s on one side, as in the right-hand version
of Figure 5. Our notation is chosen instead to match that of the bicategorical
generalization presented in [35], in which case the order we have chosen here is the
only possibility.

Of course, when Q = P = I is the unit object, this reduces to the previous
notion of trace. It is also cyclic, in a suitable sense.

Lemma 4.4. If M and N are dualizable and f : Q⊗M → N⊗P and g : K⊗N →
M ⊗ L are morphisms, then

tr
(

(g ⊗ idP )(idK ⊗f)
)

= tr
(

s(f ⊗ idL)(idQ ⊗g)s
)

.
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f

Q

P

M

M⋆

=

Q

id⊗η

��

Q⊗M ⊗M⋆

f⊗id

��

M ⊗ P ⊗M⋆

∼=

��

M⋆ ⊗M ⊗ P

ε⊗id

��

P

or
just f

Q

P

M⋆

Figure 5. The “twisted” trace

f

Q

P

g

K

L

N

M

M⋆

M⋆ M

=

g

K

L

f

Q

P

M

N

N⋆

N⋆ N

Figure 6. Cyclicity of the “twisted” trace

The string diagram for this lemma is Figure 6, which should be compared to
Figure 4.

As promised, the trace using a “diagonal morphism” is a special case of the
general notion of twisting.

Definition 4.5. Let M ∈ C be a dualizable object equipped with a “diagonal”
morphism ∆: M → M ⊗M , and let f : M → M be an endomorphism of M . Then
the trace of f with respect to ∆ is the trace of ∆ ◦ f : M → M ⊗M . The trace
of idM with respect to ∆ is called the transfer of M .

The trace of f with respect to ∆ is a morphism I → M ; by cyclicity it is also
equal to the trace of (f ⊗ id) ◦∆.
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Where do such diagonals come from? Of course, if C is cartesian monoidal,
then any object M has such a diagonal, but we have seen (Example 3.6) that
in this case there are few dualizable objects. However, we have also seen that
often the dualizable objects for which we are interested in traces are in the image
of a symmetric monoidal functor whose domain is cartesian monoidal, and such a
functor preserves the existence of diagonals. That is, if X is an object of a cartesian
monoidal category, and Z a symmetric monoidal functor, then the diagonal X →
X ×X gives rise to a diagonal Z(X) → Z(X)⊗ Z(X). This is usually the source
of “diagonals” in examples.

Example 4.6. Let S = Set, C = Ab, and Σ be the free abelian group functor
Z[−]. In this case the induced diagonal Z[X ] → Z[X ]⊗Z[X ] sends a generator x to
x⊗x. If X is finite, so that Z[X ] is dualizable, the trace of Z[f ] with respect to this
diagonal is

∑

f(x)=x x ∈ Z[X ]. In particular, the transfer of Z[X ] is
∑

x∈X x ∈ Z[X ].

Note that while the ordinary trace of Z[f ] records only the number of fixed points
of f , its trace with respect to ∆ records what those fixed points are (as elements of
Z[X ]).

Example 4.7. As a more sophisticated version of the previous example, let S = Top

and let C = Ho(Sp) be the stable homotopy category. Since Top is cartesian
monoidal and the suspension spectrum functor Σ∞

+ is strong monoidal, the diagonal
M → M ×M of any space induces a diagonal

∆: Σ∞
+ (M) → Σ∞

+ (M) ∧ Σ∞
+ (M).

Thus, when M is n-dualizable, we can define traces and transfers with respect to
∆. This example is the original use of the term transfer. In this case, the transfer of
an n-dualizable space M is a map S → Σ∞

+ (M), which is by definition an element

of πs
0(M+), the 0th stable homotopy group of M . If M is connected, there is an

isomorphism

πs
0(M+) ∼= H0(M+)

under which the image of the transfer is χ(M) times the generator of H0(M+); see
[25, III.8.4]. More generally, if f is an endomorphism of M , then the trace of f
with respect to ∆ is the fixed point transfer defined by Dold in [10]. We have the
same intuition as for the previous example; while the fixed point index only counts
the fixed points, the fixed point transfer records them.

There are also equivariant and parametrized transfers. For example, the Becker-
Gotleib transfer [3] is the parametrized transfer of a fibration with compact manifold
fibers.

Example 4.8. Recall from Example 3.11 that we also have a functor Set → Rel

which is the identity on objects and sends a function f to its graph Γf . In this
case, for any endofunction f : M → M , the trace of Γf with respect to Γ∆ is the
set of all fixed points of f , regarded as a relation from ⋆ to M . In particular, the
transfer of M is M itself so regarded.

Example 4.9. Likewise, if Σ is the free suplattice functor P : Set → Sup from
Example 3.12, then for any endofunction f : M → M the trace of P(f) with respect
to P(∆) is also the set of fixed points of f , now regarded as an element of P(M).

Twisted traces not arising from diagonals are less common, but they do occur.
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Example 4.10. Let f : Q×M → M be a function between sets, where M is finite.
Then the trace of Z[f ] : Z[Q]⊗Z[M ] → Z[M ] inAb is the homomorphism Z[Q] → Z

which sends each generator q ∈ Q to the number of fixed points of f(q,−).
We can also combine this with a transfer, by considering (f, pr2) : Q × M →

M×M . This induces a map Z[Q]⊗Z[M ] → Z[M ]⊗Z[M ], whose trace Z[Q] → Z[M ]
sends each generator q ∈ Q to the sum of the fixed points of f(q,−).

Similarly, for any set M and any function f : Q ×M → M , the trace of Γf in
Rel is the relation from Q to ∗ defined by

tr(Γf ) = { q ∈ Q | f(q,−) has a fixed point } ,

and the trace of the induced relation Q×M → M ×M is

{ (q,m) ∈ Q×M | m is a fixed point of f(q,−) } .

Example 4.11. If f : Q × M → M is a continuous map of topological spaces and
Σ∞

+ M is dualizable, the trace of f is the stable homotopy class of a map

Q → S0.

Using explicit descriptions of the coevaluation and evaluation for Σ∞
+ M , it is not

difficult to verify this stable map is homotopically trivial if the set

{(q,m) ∈ Q×M |f(q,m) = m}

is empty.
Let π : Q ×M → Q be the first coordinate projection. Note that f determines

a fiberwise map F : Q × M → Q × M by F (q,m) = (q, f(q,m)). The trace of F
as described in Example 3.9 coincides with the trace of f under a corresponding
comparison of fiberwise stable endomorphism of the unit object over Q with the
stable maps from Q to S0.

This trace is related to the higher Euler characteristics in [15].

Example 4.12. For any topological space A we have an “intersection” morphism
∩ : O(A) ⊗ O(A) → O(A) in Sup. If A is moreover Alexandrov, so that O(A) is
dualizable in Sup, then for any f : A → A, the trace of f−1 ◦ ∩ is the function
O(A) → I that takes U ⊂ A to 1 if U contains a point x with x ≤ f(x) and to 0
otherwise. If we identify a suplattice map g : O(A) → I with the closed subset

⋂

K closed
g(A\K)=0

K

(which determines it), then the trace of f−1 ◦ ∩ is identified with the closure of

{ a ∈ A | a ≤ f(a) } .

On the other hand, if B is another Alexandrov space with a map m : A×B → A,
then we have an induced suplattice map m−1 : O(A) → O(A×B) ∼= O(A)⊗O(B).
Its trace is the suplattice map I → O(B) which takes 1 to the open set

{ b ∈ B | (∃a ∈ A)(a ≤ m(a, b)) } .

Example 4.13. If p : X → B is any local homeomorphism, then regarding O(X) as
a O(B)-module we again have an “intersection” morphism ∩ : O(X)⊗O(B)O(X) →
O(X) (corresponding to the diagonal X → X ×B X). For any f : X → X over B,
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the trace of f−1 ◦∩ is the O(B)-module map O(X) → O(B) that sends V ∈ O(X)
to

{

b ∈ B
∣

∣ ∃x ∈ p−1(b) ∩ V : f(x) = x
}

.

In particular, the trace of ∩ itself sends each V ∈ O(X) to its support.
On the other hand, if q : Y → B is another local homeomorphism and f : X ×B

Y → X is a map over B, then the trace of f−1 : O(X) → O(X)⊗O(B) O(Y ) is the
map O(B) → O(Y ) sending the unit B to the open set

{

y ∈ Y
∣

∣ ∃x ∈ p−1(q(y)) : f(x, y) = x
}

.

5. Properties of traces

In addition to cyclicity, the (twisted) symmetric monoidal trace satisfies many
useful naturality properties which we summarize here. We omit most proofs, which
are straightforward diagram chases (and are especially easy in string diagram no-
tation). References include [11, 21, 25, 30].

We begin with invariance under dualization. Recall that any f : Q⊗M → M⊗P
has a mate f⋆ : Q ⊗M⋆ → M⋆ ⊗ P , and since M⋆ is also dualizable (with dual
M), after composing with symmetry isomorphisms on either side we can take the
trace of f⋆ as well.

Proposition 5.1. If M is dualizable and f : Q ⊗M → M ⊗ P is any morphism,
then tr(f) = tr(sf⋆

s).

Next we have a naturality property.

Proposition 5.2. Let M be dualizable, let f : Q⊗M → M ⊗ P be a map, and let
g : Q′ → Q and h : P → P ′ be two maps. Then

h ◦ tr(f) ◦ g = tr
(

(idM ⊗h) ◦ f ◦ (g ⊗ idM )
)

.

In other words, the function

tr : C(Q⊗M,M ⊗ P ) −→ C(Q,P )

is natural in Q and P .

This implies that quite generally, traces “calculate fixed points”, as described
informally in §1.

Corollary 5.3 (Fixed point property). If M is dualizable, ∆: M → M⊗P is a map
and f : M → M is an endomorphism, and h : P → P is such that (f ⊗ h)∆ = ∆f ,
then

h ◦ tr(∆f) = tr(∆f).

In particular, we may take h = f , in which case (f ⊗ f)∆ = ∆f will hold
automatically if f and ∆ both come from a cartesian monoidal category. In this
case the conclusion is exactly that tr(∆f) is a fixed point of f , as promised.

An additional naturality property follows directly from cyclicity.

Proposition 5.4. Let M and N be dualizable and let f : Q ⊗ M → N ⊗ P and
h : N → M be maps. Then

tr((h⊗ idP )f) = tr(f(idQ ⊗h)).
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In fancier language, this says that the function

tr : C(Q⊗M,M ⊗ P ) −→ C(Q,P )

is “extraordinary-natural” (see [12]) in the dualizable object M .
We now consider compatibility of traces with the monoidal structure. Note that

the unit I is always dualizable with I⋆ = I.

Proposition 5.5. If f : Q⊗I → I⊗P is a morphism in C, then tr(f) = f (modulo
unit isomorphisms).

If M and N are dualizable, then so is M ⊗N , with dual M⋆⊗N⋆. In this case,
if we have a map

f : Q⊗N ⊗M −→ M ⊗N ⊗ P,

we can either take the trace of fs with respect to M ⊗N , or we can first take the
trace of f with respect to M and then with respect to N ; either way results in a
map Q → P .

Proposition 5.6. In the above situation, we have tr(fs) = tr(tr(f)).

A different situation is when M and N are still both dualizable, but we have two
maps f : Q⊗M → M ⊗ P and g : K ⊗N → N ⊗ L.

Proposition 5.7. In the above situation, we have tr
(

s(f ⊗ g)s
)

= tr(f)⊗ tr(g).

Taking N = I we obtain the following.

Corollary 5.8. If M is dualizable and f : Q ⊗ M → M ⊗ P and g : K → L are
maps, then tr(s(f ⊗ g)) = tr(f)⊗ g.

On the other hand, it is not hard to show that Proposition 5.7 follows from
Corollary 5.8 together with Proposition 5.6.

Finally, if M and N are dualizable and we have maps f : Q⊗M → M ⊗ P and
g : P ⊗N → N ⊗K, then we have the composite

(idM ⊗g)(f ⊗ idN ) : Q⊗M ⊗N −→ M ⊗N ⊗K.

The next result then follows from Proposition 5.2 and Proposition 5.6.

Corollary 5.9. In the above situation, we have

tr
(

(idM ⊗g)(f ⊗ idN )
)

= tr(g) ◦ tr(f).

In particular, we can apply these results to untwisted traces. Note that by the
Eckmann-Hilton argument, the two operations ⊗ and ◦ on C(I, I) agree (up to
unit isomorphisms) and make it a commutative monoid. We thereby obtain the
following.

Corollary 5.10. If C is symmetric monoidal, M and N are dualizable, and
f : M → M and g : N → N are endomorphisms, then

tr(f ⊗ g) = tr(f)⊗ tr(g) = tr(f) ◦ tr(g).

One final property of traces that should be mentioned here is the following.

Proposition 5.11. If M is dualizable, then the trace of idM⊗M : M⊗M → M⊗M
is idM : M → M .

In [21] the above properties were taken to constitute the following definition.
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Definition 5.12. A symmetric monoidal category C is traced if it is equipped
with functions

tr : C(Q⊗M,M ⊗ P ) → C(Q,P )

satisfying the conclusions of Propositions 5.2, 5.4, 5.5, 5.6, and 5.11 as well as
Corollary 5.8.

Actually, [21] deals with the more general case of a balanced monoidal category;
we have simplified things by treating only the symmetric case. A similar set of
axioms is considered in [27].

Evidently if C is compact closed (every object is dualizable), then it is traced in a
canonical (and, in fact, unique) way. Conversely, it is shown in [21] that any traced
symmetric monoidal category can be embedded in a compact closed one, in a way
that identifies the given trace with the canonical trace. On the other hand, much
of the interest of the canonical symmetric monoidal trace lies in its applicability
to particular interesting dualizable objects in categories where not every object is
dualizable.

6. Functoriality of traces

One of the main advantages of having an abstract formulation of trace is that
disparate notions of trace which all fall into the general framework can be compared
functorially. In this section we summarize the relevant results and their applicability
in some examples, including the Lefschetz fixed point theorem.

Recall that a lax symmetric monoidal functor F : C → D between sym-
metric monoidal categories consists of a functor F and natural transformations

c : F (M)⊗ F (N) −→ F (M ⊗N)

i : ID −→ F (IC)

satisfying appropriate coherence axioms. We say F is normal if i is an isomorphism,
and strong if c and i are both isomorphisms.

Proposition 6.1. Let F : C → D be a normal lax symmetric monoidal functor,
let M ∈ C be dualizable with dual M⋆, and assume that c : F (M) ⊗ F (M⋆) →
F (M⊗M⋆) is an isomorphism (as it is when F is strong). Then F (M) is dualizable
with dual F (M⋆).

Proof. Suppose given M with dual M⋆ exhibited by η and ε. Then the maps

ID
i

−→ F (IC)
F (η)
−−−→ F (M ⊗M⋆)

c
−1

−−→ F (M)⊗ F (M⋆)

and

F (M⋆)⊗ F (M)
c

−→ F (M⋆ ⊗M)
F (ε)
−−−→ F (IC)

i
−1

−−→ ID

show that F (M) is dualizable with dual F (M⋆). �

In the above situation, we say that F preserves the dual M⋆ of M . Actually,
a slightly weaker condition on F suffices for the above conclusion; see [6].

Proposition 6.2. If F preserves the dual M⋆ of M , and moreover c : F (P ) ⊗
F (M) → F (P ⊗M) is an isomorphism (as it is whenever P = I and F is normal),
then for any map f : Q⊗M → M ⊗ P , we have

F (tr(f)) = tr
(

c ◦ F (f) ◦ c−1
)

.
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In particular, for an endomorphism f : M → M , we have

F (tr(f)) = i ◦ tr(F (f)) ◦ i−1

Proof. Use the dual F (M⋆) of F (M) to evaluate the right hand side. �

Example 6.3. If R and S are commutative rings and φ : R → S is a ring homo-
morphism, then extension of scalars defines a strong symmetric monoidal func-
tor (− ⊗R S) from R-modules to S-modules. If M is a dualizable R-module and
f : Q⊗M → M ⊗ P is a map of R-modules, Proposition 6.2 implies tr(f ⊗R S) =
tr(f) ⊗R S. If Q and P are both the ring R, then as usual, we can think of the
traces of f and f ⊗R S as elements of R and S, respectively; in this case, we have
tr(f ⊗R S) = tr(f)⊗R S = φ(tr(f)).

Example 6.4. Homology is a normal lax symmetric monoidal functor from ChR or
Ho(ChR) to the category GrModR of graded R-modules. The Künneth theorem
implies that the natural transformation

c : H(M∗)⊗H(N∗) → H(M∗ ⊗N∗)

is an isomorphism if Mp and Hp(M∗) are projective for each p. When these con-
ditions are satisfied (such as when the ground ring R is a field), Proposition 6.2
implies

tr(H∗(f)) = H∗(tr(f))

for any map of chain complexes f : M∗ → M∗. In other words, the Lefschetz number
is the same whether it is calculated at the level of chain complexes or homology.

Example 6.5. By composing the rational cellular chain complex functor with a func-
torial CW approximation, we obtain a functor Top → ChQ. In fact, this functor
factors through Sp via a similar construction of CW spectra, and we have moreover
an induced functor Ho(Sp) → Ho(ChQ) which is strong symmetric monoidal. It
follows that the fixed point index of a continuous map is equal to the Lefschetz
number of the induced map on chain complexes. Combining this with the previous
example, and using rational coefficients so the Künneth theorem holds, we obtain
the Lefschetz fixed point theorem: if f : M → M is a continuous map, where Σ∞

+ (M)
is dualizable, and trH∗(f,Q) 6= 0, then tr(f) 6= 0, and thus f has a fixed point.
This example was one of the original motivations for the abstract study of traces
in [11].

Example 6.6. Generalizing the previous example, if Σ∞
+ (M) is dualizable in Ho(Sp)

and f : Q ×M → M is a continuous map, then the trace of Σ∞
+ (f) in Ho(Sp) is a

morphism Σ∞
+ (Q) → S in Ho(Sp). We can then take the rational homology of this

map to obtain a map tr(H∗(f+)) : H∗(Q+) → Z. On the other hand, we can also
apply rational homology before taking the trace; this way we obtain a map

H∗(f+) : H∗(Q+)⊗H∗(M+) → H∗(M+)

whose trace is a map H∗(Q+) → Z. Proposition 6.2 then shows

H∗(tr f+)) = tr(H∗(f+)).

When Q is a point, the set of morphisms Σ∞
+ (Q) → S in Ho(Sp) and the set of

morphisms H0(Q+) → Z in Ab can both be identified with Z, so no information
about traces is lost by passage to rational homology. For general Q, information
is lost, but this is not necessarily a bad thing: the set of maps Σ∞

+ (Q) → S can
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be difficult to calculate, while the set of maps H0(Q+) → Z will usually be much
easier to describe.

Example 6.7. An n-dimensional topological field theory [2] with values in a sym-
metric monoidal category C (such as Vectk) is a strong symmetric monoidal func-
tor Z : nCob → C. Since every object M of nCob is dualizable, so is each object
Z(M). Thus, the trace of a cobordism B from M to itself is mapped to an endo-
morphism of the unit of C, which can be regarded as an algebraic invariant of B
computed by the field theory Z.

If n = 1, then 1Cob is the free symmetric monoidal category on a dualizable
object; thus a 1-dimensional TFT is just a dualizable object. Likewise, if n = 2,
then 2Cob is the free symmetric monoidal category on a Frobenius algebra; see,
for instance, [24]. For a higher-dimensional generalization, see [26].

Finally, since monoidal categories form not just a category but a 2-category, it
is natural to ask also how traces interact with monoidal natural transformations.
Recall that if F,G : C → D are lax symmetric monoidal functors, a monoidal nat-

ural transformation is a natural transformation α : F → G which is compatible
with the monoidal constraints of F and G in an evident way.

Proposition 6.8. Let F,G : C → D be normal lax symmetric monoidal functors,
let α : F → G be a monoidal natural transformation, let M be dualizable in C,
and assume that F and G preserve its dual M⋆. Then αM : F (M) → G(M) is an
isomorphism, and for any f : Q⊗M → M ⊗ P , the square

F (Q)
tr(c◦F (f)◦c−1)

//

αQ

��

F (P )

αP

��

G(Q)
tr(c◦G(f)◦c−1)

// G(P )

commutes. In particular, for an endomorphism f : M → M , we have

tr(F (f)) = tr(G(f)).

Proof. Since F (M) and G(M) have duals F (M⋆) and G(M⋆) respectively, the

morphism αM⋆ : F (M⋆) → G(M⋆) has a dual (αM⋆)⋆ : G(M) → F (M). A
diagram chase (see [6, Prop. 6]) shows that this is an inverse to αM . Then since
G(f) = αM ◦ (F (f)) ◦ (αM )−1, cyclicity implies that tr(F (f)) = tr(G(f)). �

Remark 6.9. In particular, if C is compact closed and F,G : C → D are strong
monoidal, then any monoidal transformation F → G is an isomorphism. Thus,
that when we say 1Cob is the free symmetric monoidal category on a dualizable
object, as in Example 6.7, we really mean that the category of strong monoidal
functors 1Cob → D is equivalent to the groupoid of dualizable objects in D and
isomorphisms between them. This also generalizes to higher dimensions.

Proposition 6.8 implies some useful “comparisons between comparisons” of ways
to compute traces.

Example 6.10. As in Example 6.4, since Q is a field, the Künneth theorem implies
that the functor H∗(−;Q) from Ho(Sp) to the category GrVectQ of graded Q-
vector spaces is strong symmetric monoidal. While integral homology H∗(−;Z) is
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not strong symmetric monoidal, the Künneth theorem implies that it becomes so
if we quotient by torsion; thus H∗(−;Z)/Torsion is a strong symmetric monoidal
functor from Ho(Sp) to GrModZ. Hence we can compute Lefschetz numbers using
integral homology as well, and it is natural to want to compare the two results.

Now as in Example 6.3, extension of scalars along the inclusion ι : Z → Q defines
a strong symmetric monoidal functor from GrModZ to GrVectQ. Thus we have
two functors

H∗(−;Q) and
(

H∗(−;Z)/Torsion
)

⊗Q

from Ho(Sp) to GrVectQ, and the same inclusion also defines a natural transfor-
mation

α :
(

H∗(−;Z)/Torsion
)

⊗Q −→ H∗(−;Q).

Therefore, we can combine Propositions 6.2 and 6.8 to compare the Lefschetz num-
bers computed using H∗(−;Z) and H∗(−;Q).

Explicitly, suppose Σ∞
+ (M) is dualizable and f : M → M is an endomorphism

in Ho(Sp). Then Proposition 6.8 implies that, first of all, α is an isomorphism
(

H∗(M ;Z)/Torsion
)

⊗Q ∼= H∗(M ;Q),

and secondly, the trace of
(

H∗(f ;Z)/Torsion) ⊗ Q is the same as the trace of
H∗(f ;Q). Since this trace is not twisted, the observation at the end of Example 6.3
implies

tr
(

(

H∗(f ;Z)/Torsion
)

⊗Q

)

= ι
(

tr
(

H∗(f ;Z)/Torsion
)

)

;

thus the Lefschetz number of f computed using H∗(−;Z)/Torsion is the same as
the Lefschetz number computed using H∗(−;Q).

7. Vistas

The symmetric monoidal trace described in this paper can be generalized in vari-
ous directions. We have already mentioned its generalizations to balanced monoidal
categories (at the end of §3) and to traced monoidal categories (Definition 5.12).
There are also straightforward generalizations to symmetric monoidal 2-categories
and symmetric monoidal n-categories (modulo a definition of the latter).

Categorifying in a different direction, in [33] the first author introduced a gen-
eral notion of trace for bicategories, regarded as “monoidal categories with many
objects”. This type of trace applies to noncommutative situations such as modules
over a noncommutative ring, and has applications to refinements of the Lefschetz
fixed point theorem which use versions of the Reidemeister trace. Bicategorical
traces are studied further in [35], including a suitable notion of string diagram.

Finally, the forthcoming [34] deals with an abstract context that gives rise to both
bicategories and symmetric monoidal categories (including parametrized spectra as
a prime example), and the relationships of the traces therein.
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[21] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Math. Proc. Cam-

bridge Philos. Soc., 119(3):447–468, 1996. 2, 5, 7, 13, 17, 18, 19
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