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Abstract. We study the networks formed by the directors of the most important Swiss boards and the boards them-
selves for the year 2009. The networks are obtained by projection from the original bipartite graph. We highlight a
number of important statistical features of those networks such as degree distribution, weight distribution, and several
centrality measures as well as their interrelationships. While similar statistics were already known for other board sys-
tems, and are comparable here, we have extended the study with a careful investigation of director and board centrality,
a k-core analysis, and a simulation of the speed of information propagation and its relationships with the topological
aspects of the network such as clustering and link weight and betweenness. The overall picture that emerges is one in
which the topological structure of the Swiss board and director networks has evolved in such a way that special actors
and links between actors play a fundamental role in the flow of information among distant parts of the network. This
is shown in particular by the centrality measures and by the simulation of a simple epidemic process on the directors

network.
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1 Introduction

Corporate governance as expressed by directors boards plays
a fundamental role in the economy of a country and, through
multinational firms, the influence may also reach other coun-
tries. Given that many board directors usually sit on more than
one board, a web of relationships between boards and direc-
tors implicitly arises. These affiliation networks are potentially
a useful tool to understand information flow and influence be-
tween companies. In fact, board decisions and practices may
diffuse and percolate through the network and knowledge of
the structure of the latter becomes of the utmost interest if one
wants to understand the dynamics of such phenomena. Through
the use of well established techniques in complex network the-
ory [1L2] it is now possible to study the structure of corporate
boards networks in great detail. Indeed, a few studies dealing
with the subject have been published recently. In particular, we
mention Davis’ et al. work on the American corporate élite [3]],
and a couple of similar investigations dealing with the Italian
and American corporate board systems [4,5]]. Although the de-
tails do differ, it turns out that there are several strikingly com-
mon features across different countries and over a span of time.
Of course, there can be many other conceivable ways in which
board directors may interact outside of the board meetings,
such as shared service on educational, non-profit, and even be-
longing to the same country club. However, all these possible
connections are very difficult to disentangle and quantify, in
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contrast with straight affiliation to a board. It is thus very likely
that the composition of corporate boards are a sufficiently good

proxy.

In this paper we present an investigation along the same
lines of the Swiss corporate boards network. This case study
is an interesting one for several reasons as Switzerland plays
an important role in corporate finance and in other production
sectors throughout the world. A recent research paper has dealt
with the interesting issue of gender diversity and nationality
in Swiss corporate boards [6]. However, a study of the struc-
tural aspects of Swiss boards from the point of view of complex
networks is still missing, to the best of our knowledge, except
for [7]] which, however, puts the emphasis on the sociology of
industrial family networks in the country during the 20th cen-
tury and uses time-resolved data up to the year 2000 only. Here,
on the other hand, we focus on several important network char-
acteristics using data from the year 2009, which is interesting
since they belong to a period that immediately follows the on-
set of the recent world-wide financial and economical crisis.
We shall study in detail the structure of the Swiss boards direc-
tors network in order to pave the way for a better understanding
of decision making processes and how the web of relationships
between firms and board directors may influence it. However,
we shall limit ourselves to the general inferences that can rea-
sonably be made on structural considerations alone, refraining
from attempting to provide sociological or managerial analyses
of corporate strategy and practices. Such a sociological analy-
sis, taking into account historical evolution and managing prac-
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Fig. 1. A small example of a bipartite graph. The leftmost image is the original bipartite graph in which circles represent directors nodes and
squares stand for company boards. The middle image is the boards projection graph and the rightmost image is the directors projection. The

thickness of the links is proportional to the corresponding edge weight.

tices as well as network structure can be found, for example, in
Davis et al. in the US case [3]].

The paper is organized as follows: in the next section we
describe the data collection process and the construction of the
network from the raw data. We then present the main network
statistics and their relationships with the social and economic
entities they represent. This is followed by a simple analysis of
the propagation of ideas, decisions, or influences through the
network and of the role of tie strength and tie position. Finally,
we give our conclusions.

2 Network Construction and Structure

In this section we present the basic concepts for the directors
and boards network construction and description starting from
the row data in order to make the article self-contained. Much
more detailed explanations can be found in standard texts on
complex networks such as [1,2].

2.1 Data

We have collected the data from publicly available sources,
essentially annual reports of companies, and their web sites.
Board structure in Switzerland is based in the majority of cases
on a two-tier system; this means that there is a supervisory
board of directors and a second separate management board
of executive directors that meet separately. This is also the case
in Germany and Austria for example, but some other countries
have only either a single board or a mixed system where the
two boards meet separately, but some executive directors sit on
the supervisory board. We have collected data on both boards
for companies that adhere to the two-tier system but, for sim-
plicity and for the sake of comparison with countries where the
system is different, in this work we only use the supervisory
boards data.

The sample consists of the 108 top revenue companies in
Switzerland with a total of 818 distinct directors in 2009. The
ranking we used is based on a 2005 report [8] and it has been

integrated with the information available on relevant magazines
and websites [9L[10L11] for an update. This should not produce
any noticeable bias in the selection, as the Swiss corporate
landscape has been dominated by a few tens of big companies,
only a small number of which have changed by acquisition,
bankruptcy, or mergers in the last ten years. Then, the man-
ually collected data on the boards of those companies, have
been carefully checked for names that are reported differently
in different boards but correspond to the same person, and also
true duplicates. In the collection process we have also recorded,
when available, data on age, gender, and nationality of direc-
tors.

2.2 Bipartite Graphs and Projections

Once the directors in each board are know, one can obtain
a network by assigning a node to each director and to each
board. Going through the directors nodes and tracing an edge
between a given director and the boards he/she sits in, produces
a network that is called a bipartite graph. A graph G(V, E) in
which V' = {v1,...,vn} is the set of vertices or nodes, and
E = {e1,...,en} is the set of edges or links, is said to be
bipartite when the vertices can be partitioned into two disjoint
sets V = V1 U Vs, V3 N V5 = 0, such that there are no edges
e = {u, v} between vertices belonging to the same set:

{H{u,v} :ueVi,veVa}, Vee E.

This can be depicted as in the leftmost image of Fig. [
where a set of nodes (circles) represents directors and the other
set (squares) represents the boards. A link between a director
and a board means that the director sits in that board. When
two boards share the same director it is said that there is an in-
terlock. Multiple interlocks are also possible, in which at least
two directors of a board sit together on another board. The in-
cidence matrix B of a bipartite network with, say, [ boards and
m directors is an [ X m rectangular matrix such that the generic
matrix element B;; is 1 if director j belongs to board 4 and 0
otherwise [2].
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Table 1. Average and global quantities for board networks (B) and director networks (D) of the top companies in Switzerland (CH,2009), Italy
(IT,2002), and United States of America (US,1999). N =n1£nber of nodes, E=number of edges, N./N=relative size of the largest connected
component, (k)=average degree, (k)/k.=network density, C' =average clustering coefficient, d=average path length.

B-CH,09 D-CH09 B-IT02 D-IT02 B-US99 D-US.99
N 108 818 240 1906 916 7680
E 91 3971 636 12815 3321 55437
N./N 0.62 0.61 0.82 0.84 0.87 0.89
(k 1.69 9.71 530 1345 7.25 14.44
(k) /ke(%) 157 1.19 222 0.71 1.57 0.79
c 0.246 0859 0318 0915 0376 0.884
d 6.4 72 44 3.6 46 37

From the bipartite graph, it is an easy matter to obtain two
derived graphs which are called projections. One can construct
a graph in which two directors are connected if they sit on the
same board. Or we can also build the projection in which two
boards are connected if they share a common director. These
two projections are schematically depicted in the central and
right images of Fig. 1| The two projections capture the essence
of the relationships we are looking for but they do not account
for the “weight” of a relationship. Indeed, it is sensible to say
that it is not the same whether two people sit together on a
single board or on several. In some sense, their degree of inter-
action should be higher in the latter case. To account for this,
the projection can be weighted; for example, for the directors
projection, an edge, i.e. a pair of connected directors, will have
a weight equal to the number of common boards. The weighted
projection can be obtained from the incidence matrix B as fol-
lows [2]]:

!
P =DB"B, where P;; = ZBZCB’” ey
k=1

where BT is the transpose of B, and [ is the number of boards.
The elements P;; of the m xm matrix P are the weights, i.e. the
number of common boards shared by directors ¢ and j, whereas
the diagonal elements P;; are the number of boards in which
director 7 sits.

3 Statistical Analysis

For the statistical analysis, symbols have the following mean-
ings. A network is a graph G(V, E'), where the set of vertices
V represents the agents, and the set of weighted edges F repre-
sents their symmetric interactions. Here, depending on which
projection is studied, the vertices are directors or firms respec-
tively.

The weight of an edge e € E will be denoted by w, or by w;;,
by using the edge endpoints ¢ and j. The size of a graph G is
the number of edges | E/| but here we shall follow the physicists’
convention and define the size N as the cardinality of V.

A neighbor of an agent ¢ is any other agent j at distance one
from ¢ (ignoring the weight of the link). The set of neighbors
of ¢ is called V; and its cardinality is the degree k; of vertex
i € V. The average degree of the network is called (k).

Other important quantities based on the previous definitions
will be introduced in the sequel as needed. All the computa-
tions have been carried out with the package igraph [[12] in the
statistical computing environment R [13]].

3.1 Average Quantities

Table [I] summarizes the results for the Swiss boards case and
compares them with those found in previous studies [5,4] for
the Italian and American cases in the years 2002 and 1999 re-
spectively. These data are reported here only for the sake of
comparison as they refer to separated moments in time. No
doubt, the Italian and American networks have evolved some-
how in the meantime, but we are not aware of more recent re-
sults.

Except for the noticeably smaller average degree and size
of the largest connected component, the global statistics of the
boards and director graphs are comparable with those of the
American and Italian cases. The reason for smaller largest con-
nected components is related to the number of interlocks. The
larger this number in the bipartite graph, the more connected
the two projections. This points to the fact that the interlock
phenomenon is less acute in Swiss boards. The lower aver-
age degree (k) indicates that directors and boards alike are less
densely connected in the Swiss case and, in the same manner,
the slightly larger mean path lengths can also be attributed to a
lower degree of interlock.

Although the present study is not focused on sociological
issues, since we collected the corresponding data, it might be
interesting to note that as per gender diversity in Swiss boards
in 2009 the percentage of women is 8.6%, which agrees with
the figure published in the 2009 report [14]. There is an increas-
ing trend since 2003 data had a 3% fraction [6]].

Another piece of information is the average age of direc-
tors, which is slightly under 60, in agreement with the smaller
sample (19 companies) used in [14]. Finally, the proportion of
non-national directors in our sample turns out to be about 0.46,
which again agrees with the figures reported in [[14] and rep-
resents a marked increase with the 2003 figure of 22.1% [6].
However, a caveat is in order here: the nationality of some di-
rectors was not available and a presumably small but unknown
amount of directors are binationals. Anyway, a new trend to-
wards internationalization has clearly established itself in the
last few years, probably as a result of more advanced corporate



4 Fabio Daolio et al.: The Swiss Board Directors Network in 2009

practices and more transparency in difficult economic times.
The trend is common to several other European countries as
well [14].
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Fig. 2. Directors network: empirical cumulative distribution function
of degree, on log-log scale (top) and on lin-log scale (bottom). Large
pictures refer to the whole network, the insets refer to the largest con-
nected component.

3.2 Distributions

The degree distribution function p(k) of a graph represents
the probability that an arbitrarily chosen node has degree k
or, equivalently, the fraction of nodes with degree k. Figure
depicts the empirical cumulative degree distribution function
F(k),ie F(k) = ZZ;C':M" p(k), for the directors network.
From the figure, it can be seen that the distribution falls off
faster than a power-law, which is clear from the log-log plot on
the top image of the figure. In fact, the distribution decreases

faster than linear on this plot; rather, it seems to be closer to
an exponential, as seen from the bottom lin-log plot. However,
owing to lack of sufficient data we refrain from trying to fit
an analytical curve to the observed points. The insets show
the corresponding distributions for the largest connected com-
ponent only. It is clear that the distributions are very similar
to those referring to the whole graph. On the one hand, these
results differ somewhat from those found for the Italian and
American boards of directors, where the authors could observe
a power-law tail [Sii4]. On the other hand, we also observe a
characteristic plateau in the distribution at about k£ = 8, which
corresponds to the mean number of directors per board. In the
case of [5./4] the average was about 10.
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Fig. 3. Boards network: empirical cumulative distribution function of
degree, on log-log scale (top) and on lin-log scale (bottom). Large
pictures refer to the whole network, the insets refer to the largest con-
nected component.

The board projection degree distributions, shown in Fig. 3]
do not present any notable feature. Owing to the small size of
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the network, the curves fall off quickly due to the limited de-
gree range, as no degree larger than 7 is present. The relatively
poor connectivity of boards confirms and reinforces the previ-
ous observation (Sect. about the lower number of inter-
locks in the Swiss boards directors network.

The previous distributions were concerned with the topo-
logical aspects only; we present next two distributions that take
into account the weighted nature of the networks that were ob-
tained according to equation [T} The link weight distribution is
called p(w,) and gives the probability that a randomly drawn
link e € E has weight w.. An analogous of the node degree
for weighted networks is the node strength s; of a vertex 1 € V
defined as s; = Zjevi w;j, i.e. the sum of the weights of the
links incident in ¢ [I5]. The strength distribution p(s) denotes
the frequency of a given strength s in the network.
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Fig. 4. Directors network: empirical cumulative distribution function
of the strength, on log-log scale (top) and on lin-log scale (bottom).
Large pictures refer to the whole network, the insets refer to the largest
connected component.

In the present case, the p(w.) distributions are not very in-
formative and therefore are not shown. In fact, in the direc-
tors projection, only 21 out of 3971 links have w. = 2; no
weight greater then 2 is found and all the remaining connec-
tions have unitary weight. In the boards network, indeed, one
can find values up to 3 and 4, but those are just two cases of
companies belonging to same groups: “Migros” and ‘“Denner”
share 3 directors, whereas “Alpiq” and “EOS Holding” share
4. Beside these, only 5 out of 91 links have a weight greater
than one. This feature points to the fact that multiple interlocks
are extremely rare in the Swiss case; this is not the same as
the American and especially the Italian examples, where one
observes weights up to 6 and a longer tail of the distribution.

Figure [dis a plot of the cumulative node strength distribu-
tion for the directors network. It appears that the strength dis-
tribution is closely related to the degree distribution, see Fig.[2]
Indeed, the average strength (s(k)) of nodes with degree k,
when there is no particular influence of topology on weights,
simply follows an expected linear behaviour (s(k)) = (w)k,
where (w) is the average weight of a link. In our case, the lin-
ear fit is almost perfect, with an adjusted r-squared correlation
coefficient of 0.9955; in fact, a power-law fit of the same model
would yield an even higher r-squared of 0.9988, but the expo-
nent would be 1.014 + 0.013. The same holds for the boards
projections. This linear growth of the average strength as a
function of vertex degree, agrees with the findings on other net-
works resulting from the projection of bipartite graphs, such as
scientific collaboration networks [[15]].

20
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Fig. 5. Average degree of nearest neighbors as a function of vertex
degree in the largest connected component of the directors projection.
Red line shows linear regression (slope 0.18792, p-value 0.00293).

Figure [5is a plot of the average mean degree (k) of the
neighbors of the nodes with degree k in the case of the directors
graph. This provides an easy to compute approximation to de-
gree-degree correlation [[16] and shows an assortative behavior,
i.e. high degree vertices tend to have high degree neighbors.
This seems to be a general feature of real social networks [17,
2] and has been found in other directors networks [4.5]. The
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Table 2. Ranking of the 10 most central directors with respect to the the four centrality measures evaluated on the directors projection.

Rank Degree Centrality Eigenvector Centrality =~ Betweenness Centrality Closeness Centrality
1¢t Peter Brabeck-Letmathe Herbert Bolliger Daniel J.Sauter Daniel J.Sauter
ond Herbert Bolliger Beat Zahnd Fritz Studer Peter Kuepfer
3rd Theo Siegert Oswald Kessler Doris Russi Schurter Monika Ribar
4th Paola Ghillani Paola Ghillani Peter Kuepfer Peter Brabeck-Letmathe
5th Pius Baschera Ernst Weber Urs Widmer Daniel Borel
6th Ernst Tanner Andrea Broggini Peter Brabeck-Letmathe Fritz Studer
7th Beat Zahnd Christian Biland Conrad Loffel Dieter Spalti
gth Oswald Kessler Claude Hauser Monika Ribar Andreas von Planta
9th Ulrich Gygi Doris Aebi Daniel Borel Rolf P.Jetzer

10th Andreas Koopmann Fabrice Zumbrunnen Paola Ghillani Charles G.T Stonehill

Key Actor Analysis for Directors Projection
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Fig. 6. Directors network: key-actors analysis. Each point in the plane corresponds to a director; x and y coordinates define its betweenness and
closeness centrality scores, respectively. Point size grows with degree (dc), color gets darker with eigenvector centrality (ec) score (see legend
on the side). Due to readability reasons, only those who rank higher are labeled (refer to Table2).

same plot for the boards networks is not statistically significant
in our case due to insufficient data.

3.3 Centrality

In any social network it is of importance to try to assess which
actors play a key role with respect to the rest of the network.
This idea can be made quantitative through the use of centrality
measures. Here we have used the betweenness centrality, the
closeness centrality, the eigenvector centrality and the degree
centrality [18]].

Degree centrality is a straightforward measure that simply
attributes more importance to highly connected actors. How-
ever, it is local in character and does not take into account
the global network environment. Contrastingly, the other three
measures are more informative as they take into account the
whole structure of the graph in different ways in evaluating the

centrality of a node. The betweenness b, of anode v € V is
defined as:

b= 3

n
e I

where n;; is the total number of shortest paths between 4 and j,
and n;; (v) is the number of those shortest paths that go through
v. Nodes with high betweenness are more central in the sense
that they have more control since more traffic goes through
them. Nodes with high betweenness play the role of “brokers”
in a social sense.

Closeness centrality gives the average distance of a given
node to all others and is expressed by the following formula:

1

hi==———
Zk;ﬁi Lik
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Table 3. Ranking of the 10 most central companies with respect to the four centrality measures evaluated on the boards projection.

Rank Degree Centrality ~ Eigenvector Centrality =~ Betweenness Centrality Closeness Centrality
1¢t Credit Suisse Denner Julius Baer Julius Baer
ond Rieter Migros Helvetia Holcim
3rd Roche Hotelplan Sika Sika
4th CFF Banque Migros Luzerner KantonalBank Logitech
5th Clariant Migrol Holcim Nestlé
6th Holcim Helvetia Barry Callebaut Luzerner KantonalBank
7th Hotelplan Kuehne-Nagel Roche Rieter
gth Julius Baer Raiffeisen Valora Sulzer
9th Migros Barry Callebaut CFF Novartis
10" Banque Migros Luzerner KantonalBank Syngenta Roche

Key Actor Analysis for Boards Projection
Julius Baer
0.22 ’ !
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Fig. 7. Boards network: key-actors analysis. Each point in the plane corresponds to a company; x and y coordinates define its betweenness and
closeness centrality scores, respectively. Point size grows with degree (dc), color gets darker with eigenvector centrality (ec) score (see legend
on the side). Due to readability reasons, only those who rank higher are labeled (refer to Table[3).

where [;, is the shortest path from node ¢ to node k. As a conse-
quence, nodes that have small shortest paths distances to other
nodes will enjoy high centrality under this measure since they
are “closer” to the other nodes.

The third centrality measure is due to Bonacich [19], ac-
cording to whom the centrality of a node depends on how cen-
tral are its neighbors and it can be expressed in terms of the
eigenvectors of the adjacency matrix A(G) of graph G. Table
gives a summary of the above described measures for the top
10 actors in the directors network and Table [3] does the same
for the boards.

The various centrality measures are not necessarily corre-
lated among them, as can already be spotted in the tables. For
this reason, we offer in Fig. [6]a global view of the correlation
between the four centrality measures for the same best-ranked
actors. The placement of points in the plane reflects poten-
tial correlation between closeness and betweenness, whereas

the circles’ area stands for degree, and circles’ color repre-
sents eigenvector centrality. The directors that find themselves
on the top right corner are very central in the network in the
sense of the paths leading or passing through them, as directors
“Daniel J. Sauter”, “Fritz Studer”, and “Peter Kuepfer”. How-
ever, they are not necessarily the most well connected ones,
as shown by the relatively small size of the corresponding cir-
cles and their light colors. On the other hand, some directors
are both highly connected locally and have neighbors that are
also well connected, which is reflected by the size and dark-
ness of their circles, but in general they don’t score very high
in terms of betweenness. Directors “Paola Ghillani”, “Peter
Brabeck-Letmathe”, and “Herbert Bollinger” seem to enjoy a
high amount of centrality in the network, as they rank high with
respect to at least three measures.

An equivalent investigation can be performed on the boards
projection by looking at Table [3| and Figure /] In this case the
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private bank “Julius Bir”, which ranks 8" as for degree, has
the combined highest betweenness and closeness centrality. We
didn’t perform a complete cross-correlation among the scores
in the two projections, nevertheless we observe that director
Daniel J. Sauter, who has an identical position in the plot of
Fig.[f] is actually a board member of Julius Bir, and of “Sika”
as well. Similarly, director Fritz Studer sits in both Sika and in
the “Luzerner KantonalBank”, with the latter ranking among
the top 10 in three of four measures despite its small degree.
Focusing on eigenvector centrality alone, it is the “Migros”
Group that stands out with its associate companies, which are
tightly coupled among themselves. Interestingly again, central
directors as Paola Ghillani and Herbert Bollinger sit on those
boards. We refrain from moving the discussion to the point of
view of management and organization, however, the analysis
of several centrality measures at a time and on the two projec-
tions, permits to highlight those actors who play a key role in
the topology of the network.
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Fig. 8. Boards network: k—core decomposition of the largest con-
nected component. Nodes size scales with vertex degree, nodes color
depends on the shell index (see lateral legends).

3.4 Shells and Communities

Large networks are typically difficult to visualize in two dimen-
sions but any network can be depicted according to its k-core
decomposition, which facilitates the graph layout. The k-core
of a graph G is the connected maximal induced subgraph which
has minimum degree greater than or equal to k [20]]. This de-
composition can be obtained by a recursive pruning of the least
connected vertices and it allows to disentangle the hierarchical
structure of networks by progressively focusing on their cen-
tral cores. Figure [8| shows such a representation for the boards
network obtained with the LaNet-Vi software [21]]. There is a
clear central 3-core shell formed by the following firms: “Mi-
gros”, “Denner”, “Migros Bank”, “Hotelplan”, and “Migrol”.
The existence of this shell is not surprising, given that the com-
ponent firms are all associates of Migros but it is interesting to

point it out since it is not immediately apparent without per-
forming the core analysis. From a board management point of
view it is quite reasonable that some directors might be shared
among companies belonging to the same group. We also re-
mark that coreness and degree are not necessarily correlated:
larger values of coreness correspond to nodes with both larger
degree and more central position in the network’s structure.
This can be seen in Table [3] where firms belonging to the Mi-
gros group happen to possess high eigenvector centrality and,
for some of them also high degree. However, “Credit Suisse”,
which has the highest degree but is not otherwise very globally
central, belongs to the 2-core. In fact other banks like “UBS”
and “BCV”, lie in the outer shell despite having a degree of
3, which is above average. In conclusion, the k-core view of
the boards network shows that there is not a clear global hier-
archical structure, nonetheless, with the aid of such a tool, the
network fingerprinting is quite clear.

It is less so for the projection on the directors’ set. That
network is mainly composed by cliques (the boards) which are
loosely connected among themselves (through the interlocks).
This would induce a k-core decomposition in which a simple
concentric arrangement by shell index would not be possible,
because some cores would present separated components, i.e.
cliques having the same coreness value but no connections with
the rest of their k-shell. For this reason we argue that such a
representation would not help to reveal the structure of the net-
work, to the contrary, it would make it more confused. This is
why the k-core decomposition for the giant connected compo-
nent of the directors network is not shown. The whole picture
is given instead in Figure[9] by means of a more standard force-
based layout algorithm.

3.5 Tie Importance and Information Spreading

In the same way as viruses can spread from a person to another
in a network of people contacts, or from a computer to another
in the case of computer viruses, ideas can spread through a so-
cial network in a kind of contagion process. Actually, there
are differences between the two cases, for viruses can spread
with a certain probability related to their infectiousness and
the state of the target person or computer without any clear
decision-making process of the latter, whereas in social conta-
gion agents may evaluate ideas and decide whether to accept
them or not and are submitted to other external influences as
well, such as broadcasting, existing practices, and the media
in general. However, when the people’s decision processes are
unknown, or difficult to model, a random model similar to the
ones used in epidemiology is a useful starting point. In this
spirit, we present in the following a numerical analysis of in-
formation spreading through the board directors network. This
analysis may shed some light on the influence of the directors’
network on the way information travels among people and thus
among the boards themselves.

The model is a very simple SI (susceptible-infected) model
in which there are only two states: either a node is susceptible
or it is infected. A susceptible node may become infected with
a certain probability if it has a neighbor who is in the infected
state. When a node has been infected, it remains infected for-
ever. Let us suppose that node ¢ is in the infected state at time
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Fig. 9. Largest connected component of the directors network. Nodes
color scales with the closeness centrality score of the corresponding
vertex: the darker the color, the higher the “efficiency” in global infor-
mation spreading when starting from the considered point.

t; then, if node 5 € V;, j becomes infected at time ¢ + 1 with
probability 3 x w;;, where (3 is the so-called infection rate and
w;; is the link weight. In the present case, in which no dis-
ease is implied, 5 might represent an unknown average speed
with which information such as news and rumors flows through
neighbors in the network. Similar models, in which the trans-
mission rate also depends on the link weight, have been used
in an economical setting in [22] and in an actual large social
network in [23]].

We ran 500 simulations of the epidemics process in the gi-
ant connected component of the directors graph starting each
time from a single randomly chosen infected node with § =
0.05. The 3 parameter has only a scaling role in the process,
influencing the rate at which information travels through the
network but it doesn’t change the relative behaviors on differ-
ent topologies. The average results are shown in Figure[I0](top
image, red curve), in which are also reported (green curve) the
results corresponding to the same process carried out on a fam-
ily of randomized networks having the same size and degree se-
quence as the original directors network. An interesting effect
is immediately apparent from the figure: the propagation speed
in the real network is notably slower than on the randomized
versions. This would not be surprising if the resulting random
graphs were of the Erdos-Rényi type [24]. However, in random-
izing, we kept the degree sequence invariant, which means that
the resulting network, though random, does not have a Poisson
degree distribution. Thus, the slowing down must be caused by
particular topological features of the directors network, which
is depicted in Figure[9]
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Fig. 10. Number of infected nodes as a function of time in the giant
connected component of the directors network. Curves are averages
over 500 runs. Top image: the red curve refers to the real network,
while the green one corresponds to a family of graphs obtained by ran-
domizing the real graph but keeping the degree sequence unchanged.
The inset shows two single executions. Bottom image: the red curve
is the same as in the top image; the blue curve corresponds to the real
network after suppressing 7% of the links in decreasing betweenness
order. The inset shows two particular runs. Note that in the top and
bottom plots the horizontal scales differ.

We attribute the different shape of the information prop-
agation (see inset of the top image of Fig. [I0), which is less
smooth in the real network compared to the randomized one,
to the presence of well connected clusters of directors, almost
cliques, that are clearly visible in Fig. 0] Because of this, the
information flow has first to propagate within a cluster before
being able to conquer another one. This interpretation is con-
firmed by the bottom image of Fig. in which the red curve
is the same as before, whilst the blue one represents the aver-
age propagation speed with a fraction 0.07 of the highest be-
tweenness links being suppressed, which corresponds to a loss
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of only 19 edges out of 2546. From our computations, and as
it can also be noticed from Fig.[9] in this network there are no
bridges, i.e. links whose cutting would cause the graph to fall
apart into two separated connected components, neither local-
bridges, i.e. edges whose endpoints have disjoint sets of near-
est neighbors. Thus, after the suppression of these links, the
graph remains connected but, although the number of links be-
ing suppressed is very small with respect to the total, the global
information spreading is significantly slowed down. This can
be explained by the fact that, although clusters are not affected,
there are less paths available among them. Indeed, looking at
the inset in the right figure, which shows a single run, the inter-
cluster communication is even less smooth and takes a little
more time when such links are cut (blue curve in the inset of
the bottom figure).

We are aware that the previous information diffusion model
is, at best, only a very rough approximation of the actual hu-
man processes that might take place between directors and their
boards in real-life. It is difficult to relate the results found for
a highly idealized model of information spreading with actual
decision processes in the boards, where people talk, vote, and
submit ideas through complex and largely unknown communi-
cation and decision patterns. In this context, network topology
is only a rough proxy for aggregating all these rich human in-
teractions. With such a caveat in mind, the conclusions of this
section can be summarized as follows. The particular structure
of this directors network has a marked influence on the way
in which information flows through the network. The presence
of small densely connected clusters, which are typical of these
kind of projections of bipartite affiliation networks, have the
effect of slowing down the epidemic process with respect to
randomized versions of the same network. What could be said
is that opinions, practices, and ideas, will have more time to
mature and evolve in a such a network structure than in an ar-
bitrary one.

4 Conclusion

Starting from empirical data defining a bipartite graph in which
a set of vertices, the directors, have links with another set, the
boards, when a director sits in a given board, we have produced
two projection graphs: the directors graph and the boards graph
for the Swiss top 108 companies in 2009. This is an interest-
ing case study because it deals with the main companies’ orga-
nization in an economically and financially important country
during the present crisis.

First we have studied a number of standard statistics of
these graphs: average degree, degree distribution, weight and
strength distribution, and degree-degree correlation. The results
of these measures are in general comparable with those of the
few preceding similar studies [3445] dealing with US and Ital-
ian boards, with some exceptions. The main differences are the
smaller size of the whole networks, as well as of their giant con-
nected components, in the Swiss case, which is related to the
smaller size of the country itself, and the smaller number of in-
terlocks. Besides the basic statistical study, we have performed
new investigations with the goal of highlighting the key ac-
tors and connections in the networks. To this purpose we used
several centrality measures and their correlations, and a k-core

analysis of the whole networks. This study has allowed us to
find out a few directors and boards that play a central role in
the topological sense. Of course, we are careful not to draw
any conclusions about management or governance from these
statistics, but we highlight a potential role of these actors in the
networks.

Finally, we set out to a study of the way in which informa-
tion, such as rumors, ideas, or practices, may spread through
the directors network. Using a very basic SI model and com-
puter simulations, we showed that the particular structure of
the directors network strongly influences the way in which in-
formation flows. Indeed, the average propagation speed is no-
tably slower in the real network than in randomized versions of
it. It appears that the many cluster structures present in the di-
rectors network are responsible for the slowing down. This has
been confirmed by a second simulation study in which a small
fraction of the most central links is removed. The result is that
the spread is further slowed-down, and thus these links have an
important role in inter-cluster communication.

As future works we think that it would be important to com-
plement the present study with an investigation of the Swiss
boards in years before 2007 in such a way that the evolution of
the networks in this crucial time frame be evaluated. This re-
quires a time-consuming data gathering activity but the results
might prove useful for a better understanding how the econom-
ical system of the country has reacted to the crisis at the level of
board governance at least. Another interesting study would be
a comparison of the Swiss systems with other European coun-
tries, for which small samples are available [14], by completing
that data sets and performing a cross-comparison study of the
network aspects.
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